1
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
2
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
3
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Shih LC, Lin RJ, Chen YL, Fu SC. Unravelling the mechanisms of underweight in Parkinson's disease by investigating into the role of gut microbiome. NPJ Parkinsons Dis 2024; 10:28. [PMID: 38267447 PMCID: PMC10808448 DOI: 10.1038/s41531-023-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 01/26/2024] Open
Abstract
Approximately half of patients with Parkinson's disease (PD) suffer from unintentional weight loss and are underweight, complicating the clinical course of PD patients. Gut microbiota alteration has been proven to be associated with PD, and recent studies have shown that gut microbiota could lead to muscle wasting, implying a possible role of gut microbiota in underweight PD. In this study, we aimed to (1) investigate the mechanism underlying underweight in PD patients with respect to gut microbiota and (2) estimate the extent to which gut microbiota may mediate PD-related underweight through mediation analysis. The data were adapted from Hill-Burns et al., in which 330 participants (199 PD, 131 controls) were enrolled in the study. Fecal samples were collected from participants for microbiome analysis. 16S rRNA gene sequence data were processed using DADA2. Mediation analysis was performed to quantify the effect of intestinal microbial alteration on the causal effect of PD on underweight and to identify the key bacteria that significantly mediated PD-related underweight. The results showed that the PD group had significantly more underweight patients (body mass index (BMI) < 18.5) after controlling for age and sex. Ten genera and four species were significantly different in relative abundance between the underweight and non-underweight individuals in the PD group. Mediation analysis showed that 42.29% and 37.91% of the effect of PD on underweight was mediated through intestinal microbial alterations at the genus and species levels, respectively. Five genera (Agathobacter, Eisenbergiella, Fusicatenibacter, Roseburia, Ruminococcaceae_UCG_013) showed significant mediation effects. In conclusion, we found that up to 42.29% of underweight PD cases are mediated by gut microbiota, with increased pro-inflammatory bacteria and decreased SCFA-producing bacteria, which indicates that the pro-inflammatory state, disturbance of metabolism, and interference of appetite regulation may be involved in the mechanism of underweight PD.
Collapse
Affiliation(s)
| | - Ru-Jen Lin
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan, ROC
| | - Yan-Lin Chen
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan, ROC
| | - Shih-Chen Fu
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC.
| |
Collapse
|
5
|
Osowiecka K, Skrypnik D, Myszkowska-Ryciak J. Assessment of the Impact of Nutritional Intervention with the Probiotic Lactiplantibacillus plantarum 299v on Nutritional Status and Quality of Life of Hashimoto's Thyroiditis Patients-A Randomized Double-Blind Study Protocol. J Pers Med 2023; 13:1659. [PMID: 38138886 PMCID: PMC10744439 DOI: 10.3390/jpm13121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
The current treatment for the autoimmune disease of hypothyroidism (AIDH) is based on pharmacotherapy with levothyroxine. A non-pharmacological supplementary element of therapy could be the implementation of an individualized balanced diet and probiotics. Lactiplantibacillus plantarum 299v (Lp299v), with its anti-inflammatory effects, may also support the therapy. However, the number of studies on personalized dietary interventions with probiotics in AIDH is limited, and no clear conclusions can be drawn from the results so far. Therefore, this trial will analyze the effect of Lp299v supplementation in conjunction with nutrition education on the quality of life and nutritional status of patients with Hashimoto's. Methods: This double-blind, 12-week intervention study will include 100 female patients with AIDH. They will be divided into two groups: (1) individual personalized nutrition education + Lp299v and (2) individual personalized nutrition education + placebo. Before and after the education intervention, selected elements in the diet, eating behavior, quality of life, nutritional status (anthropometric parameters, body composition), blood pressure, and anti-TPO (antibodies against thyroid peroxidase) titer will be assessed. Hypothesis: It is expected that this study will provide deeper knowledge on the validity of using proper nutritional principles and Lp299v in AIDH. Specifically, the impact on the subjective assessment of the quality of life, selected elements in the diet, and the state of nutrition and health will be assessed.
Collapse
Affiliation(s)
- Karolina Osowiecka
- Doctoral School, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-776 Warsaw, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Joanna Myszkowska-Ryciak
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Chen S, Zhang P, Duan H, Wang J, Qiu Y, Cui Z, Yin Y, Wan D, Xie L. Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities. Innovation (N Y) 2023; 4:100479. [PMID: 37539440 PMCID: PMC10394038 DOI: 10.1016/j.xinn.2023.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Skeletal muscle atrophy is a debilitating condition that significantly affects quality of life and often lacks effective treatment options. Muscle atrophy can have various causes, including myogenic, neurogenic, and other factors. Recent investigation has underscored a compelling link between the gut microbiota and skeletal muscle. Discerning the potential differences in the gut microbiota associated with muscle atrophy-related diseases, understanding their influence on disease development, and recognizing their potential as intervention targets are of paramount importance. This review aims to provide a comprehensive overview of the role of the gut microbiota in muscle atrophy-related diseases. We summarize clinical and pre-clinical studies that investigate the potential for gut microbiota modulation to enhance muscle performance and promote disease recovery. Furthermore, we delve into the intricate interplay between the gut microbiota and muscle atrophy-related diseases, drawing from an array of studies. Emerging evidence suggests significant differences in gut microbiota composition in individuals with muscle atrophy-related diseases compared with healthy individuals. It is conceivable that these alterations in the microbiota contribute to the pathogenesis of these disorders through bacterium-related metabolites or inflammatory signals. Additionally, interventions targeting the gut microbiota have demonstrated promising results for mitigating disease progression in animal models, underscoring the therapeutic potential of modulating the gut microbiota in these conditions. By analyzing the available literature, this review sheds light on the involvement of the gut microbiota in muscle atrophy-related diseases. The findings contribute to our understanding of the underlying mechanisms and open avenues for development of novel therapeutic strategies targeting the gut-muscle axis.
Collapse
Affiliation(s)
- Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Puxuan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huimin Duan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jie Wang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yuyueyang Qiu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Biology, Grinnell College, Grinnell, IA 501122, USA
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528308, China
| |
Collapse
|
7
|
Jing Y, Feng B, Gao J, Li J, Zhou G, Sun Z, Wang Y. BLAB2CancerKD: a knowledge graph database focusing on the association between lactic acid bacteria and cancer, but beyond. Database (Oxford) 2023; 2023:7176387. [PMID: 37221044 DOI: 10.1093/database/baad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
In a broad sense, lactic acid bacteria (LAB) is a general term for Gram-positive bacteria that can produce lactic acid by utilizing fermentable carbohydrates. It is widely used in essential fields such as industry, agriculture, animal husbandry and medicine. At the same time, LAB are closely related to human health. They can regulate human intestinal flora and improve gastrointestinal function and body immunity. Cancer, a disease in which some cells grow out of control and spread to other body parts, is one of the leading causes of human death worldwide. In recent years, the potential of LAB in cancer treatment has attracted attention. Mining knowledge from the scientific literature significantly accelerates its application in cancer treatment. Using 7794 literature studies of LAB cancer as source data, we have processed 16 543 biomedical concepts and 23 091 associations by using automatic text mining tools combined with manual curation of domain experts. An ontology containing 31 434 pieces of structured data is constructed. Finally, based on ontology, a knowledge graph (KG) database, which is called Beyond 'Lactic acid bacteria to Cancer Knowledge graph Database' (BLAB2CancerKD), is constructed by using KG and web technology. BLAB2CancerKD presents all the relevant knowledge intuitively and clearly in various data presentation forms, and the interactive system function also makes it more efficient. BLAB2CancerKD will be continuously updated to advance the research and application of LAB in cancer therapy. Researchers can visit BLAB2CancerKD at. Database URL http://110.40.139.2:18095/.
Collapse
Affiliation(s)
- Yi Jing
- Faculty of Science, The University of New South Wales, High Street, Sydney, New South Wales 2052, Australia
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot 010018, China
| | - Baiyang Feng
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot 010018, China
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
| | - Jing Gao
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot 010018, China
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Big Data Center, Chilechuan Street No. 1, Hohhot 010091, China
| | - Jin Li
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot 010018, China
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
| | - Ganghui Zhou
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot 010018, China
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
| | - Zhihong Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Zhaowuda Road No. 306, Hohhot 010018, China
| | - Yufei Wang
- The Affiliated Hospital of Inner Mongolia Medical University, Tongdao North road No.1, Hohhot 010050, China
| |
Collapse
|
8
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
9
|
Fu Z, Song X, Shen A, Zhou T. Microarray analysis reveals the potential molecular mechanism of Lp299v in stable coronary atherosclerotic disease. AMB Express 2022; 12:125. [PMID: 36152115 PMCID: PMC9509519 DOI: 10.1186/s13568-022-01466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence has confirmed that inflammatory mechanisms are involved in the formation and treatment of coronary atherosclerotic disease (CAD). An increase in circulatory levels of inflammatory cytokines has been found in patients with CAD, while the molecular mechanisms of inflammation still remain elusive. This study was designed to identify differentially expressed genes (DEGs), and to explore the molecular mechanism and hub genes that are involved in the effects of Lactobacillus plantarum 299v (Lp299v) supplementation. Microarray dataset (GSE156357) was downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were identified by the R software. Then, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and construction of protein–protein interaction (PPI) network were performed by DAVID, STRING, and Cytoscape software. In daily alcohol user (DAU) group, 7,541 DEGs were identified, including 206 up-regulated and 7,335 down-regulated DEGs. In non-daily alcohol user (non-DAU) group, 2,799 DEGs were identified (2,491 up-regulated and 308 down-regulated DEGs). The GO enrichment analysis revealed that miosis was up-regulated and immune response was down-regulated. The KEGG enrichment analysis showed that Lp299v supplementation reduced the levels of chemotactic cytokines, and weakened immune response. Proteins of G protein-coupled receptor, inflammatory response, regulation of cell proliferation and apoptosis-related proteins were found in the PPI network. The hub genes were associated with G protein-coupled receptor, inflammatory response, and cell proliferation and apoptosis. The weighted gene co-expression network analysis (WGCNA) enriched the DEGs in 4 modules. This study indicated the expressions of chemokine receptors and regulation of immune response in the Lp299v supplementation. Meanwhile, it was supposed that chemokine receptors may have a cellular effect.
Collapse
Affiliation(s)
- Zhenyang Fu
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Xiaolei Song
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University,Guangzhou Medical University, Guangzhou, China
| | - Anna Shen
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Tao Zhou
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Giron M, Thomas M, Dardevet D, Chassard C, Savary-Auzeloux I. Gut microbes and muscle function: can probiotics make our muscles stronger? J Cachexia Sarcopenia Muscle 2022; 13:1460-1476. [PMID: 35278043 PMCID: PMC9178375 DOI: 10.1002/jcsm.12964] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that gut microbiota composition and diversity can be a determinant of skeletal muscle metabolism and functionality. This is true in catabolic (sarcopenia and cachexia) or anabolic (exercise or in athletes) situations. As gut microbiota is known to be causal in the development and worsening of metabolic dysregulation phenotypes such as obesity or insulin resistance, it can regulate, at least partially, skeletal muscle mass and function. Skeletal muscles are physiologically far from the gut. Signals generated by the gut due to its interaction with the gut microbiome (microbial metabolites, gut peptides, lipopolysaccharides, and interleukins) constitute links between gut microbiota activity and skeletal muscle and regulate muscle functionality via modulation of systemic/tissue inflammation as well as insulin sensitivity. The probiotics able to limit sarcopenia and cachexia or promote health performances in rodents are mainly lactic acid bacteria and bifidobacteria. In humans, the same bacteria have been tested, but the scarcity of the studies, the variability of the populations, and the difficulty to measure accurately and with high reproducibility muscle mass and function have not allowed to highlight specific strains able to optimize muscle mass and function. Further studies are required on more defined population, in order to design personalized nutrition. For elderly, testing the efficiency of probiotics according to the degree of frailty, nutritional state, or degree of sarcopenia before supplementation is essential. For exercise, selection of probiotics capable to be efficient in recreational and/or elite athletes, resistance, and/or endurance exercise would also require further attention. Ultimately, a combination of strategies capable to optimize muscle functionality, including bacteria (new microbes, bacterial ecosystems, or mix, more prone to colonize a specific gut ecosystem) associated with prebiotics and other 'traditional' supplements known to stimulate muscle anabolism (e.g. proteins), could be the best way to preserve muscle functionality in healthy individuals at all ages or patients.
Collapse
Affiliation(s)
- Muriel Giron
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.,Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,INRAE UMR0545, Unité Mixte de Recherche sur le Fromage, Aurillac, France
| | - Muriel Thomas
- Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
11
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
13
|
Karpiński TM. Evidence is insufficient to suggest that probiotics may reduce the risk of oral cancer. J Evid Based Dent Pract 2021; 21:101637. [PMID: 34922715 DOI: 10.1016/j.jebdp.2021.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION Wan Mohd Kamaluddin et al. Probiotic inhibits oral carcinogenesis: A systematic review and meta-analysis. Arch Oral Biol. 2020 Oct;118:104,855. Doi: 10.1016/j.archoralbio.2020.104855. Epub 2020 Aug 2. SOURCE OF FUNDING The study was funded by International Islamic University Malaysia (P-RIGS18-036-0036). TYPE OF STUDY/DESIGN Systematic review with meta-analysis.
Collapse
|
14
|
Munekata PES, Pateiro M, Tomasevic I, Domínguez R, da Silva Barretto AC, Santos EM, Lorenzo JM. Functional fermented meat products with probiotics-A review. J Appl Microbiol 2021; 133:91-103. [PMID: 34689391 DOI: 10.1111/jam.15337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Fermentation has been an important strategy in the preservation of foods. The use of starter cultures with probiotic activity has gained the attention of researchers to produce functional fermented meat products. This review aims to overview the main strengths, weakness, opportunities and threats of fermented meat products with probiotics. Fermented meat products can be considered as a relevant matrix for the delivery of probiotics with potential health benefits. Moreover, fermented meat products produced by traditional methods are sources of probiotics that can be explored in the production of functional meat products. However, some barriers are limit the progression with these products: the complex selection process to obtain new and tailored probiotic strains, the current perception of healthiness associated with meat and meat products, and the limited application of probiotic to fermented sausages. Promising opportunities to improve the value of functional fermented meat products have been developed by exploring new meat products as functional fermented foods, improving the protection of probiotics with microencapsulation and improving the quality of meat product (reducing nitrate and nitrate salts, adding dietary fibre, and exploring the inherent antioxidant and cardioprotective activity of meat products). Attention to potential threats is also indicated such as the unclear future changes in meat and meat products consumption due to changes in consumer preferences and the presence of competitors (dairy, fruit and vegetable-based products, for instance) in more advanced stages of development and commercialization. SIGNIFICANCE AND IMPACT OF STUDY: This review provides an overview of the Strengths, Weakness, Opportunities and Threats related to the development of functional fermented meat products with probiotics. Internal and external factors that explain the current scenario and strategies to advance the production are highlighted.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Andrea C da Silva Barretto
- Department of Food Technology and Engineering, UNESP-São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Eva M Santos
- Área Académica de Química, Mineral de la Reforma, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
15
|
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021; 13:nu13082674. [PMID: 34444834 PMCID: PMC8401094 DOI: 10.3390/nu13082674] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression and recently several investigators have evaluated the therapeutic effectiveness of targeting the microbiota. This gut microbiota-related approach is especially attractive in the treatment of gastrointestinal cancers. Probiotics supplementation is a microbiota-targeted strategy that appears to improve treatment efficacy; Lactobacillus spp. and Bifidobacterium spp. are among the most commonly used probiotic agents. These bacteria seem to exert immunomodulatory effects, impacting on the immune system both locally and systemically. The gut microbiota are able to affect the efficiency of immunotherapy, mainly acting as inhibitors at immune checkpoints. The effects of immunotherapy may be modulated using traditional probiotic strains and/or next generation probiotics, such as Akkermansia municiphila. It is possible that probiotics might enhance the efficiency of immunotherapy based on PD-1/PD-L1 and CTLA-4 but more data are needed to confirm this speculation. Indeed, although there is experimental evidence for the efficacy of several strains, the health-promoting effects of numerous probiotics have not been demonstrated in human patients and furthermore the potential risks of these products, particularly in oncologic patients, are rarely mentioned.
Collapse
Affiliation(s)
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| |
Collapse
|
16
|
Lee MC, Tu YT, Lee CC, Tsai SC, Hsu HY, Tsai TY, Liu TH, Young SL, Lin JS, Huang CC. Lactobacillus plantarum TWK10 Improves Muscle Mass and Functional Performance in Frail Older Adults: A Randomized, Double-Blind Clinical Trial. Microorganisms 2021; 9:microorganisms9071466. [PMID: 34361902 PMCID: PMC8305125 DOI: 10.3390/microorganisms9071466] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Sarcopenia is a condition in which there is a loss of muscle caused by aging and it is one of the most significant factors that affects physical fragility. In recent years, the role of the gut–muscle axis has garnered attention as, along with the gut microbiota, it potentially plays a significant role in muscle regeneration, in addition to nutritional supplements and exercise training. Past studies have found that supplementation with Lactobacillus plantarum TWK10 could effectively increase the muscle mass of animals or adult humans. Therefore, in this study, we investigated whether the supplementation of L. plantarum TWK10 produces increased muscle mass and improves the functional performance of elderly persons with mild fragility. A total of 68 elderly subjects were recruited, of which 13 subjects were excluded or withdrew from the study. We adopted a double-blind design, and the 55 subjects were randomly divided into three groups: the placebo group, the TWK10 low-dose group (2 × 1010 CFU/day) (TWK10-L), and the TWK10 high-dose group (6 × 1010 colony-forming unit (CFU)/day) (TWK10-H). For 18 weeks, all subjects were required to regularly take experimental samples, perform functional activity testing, and have their body composition analyzed before the study and every six weeks after the intervention. Finally, 17 subjects in the placebo group, 12 subjects in the TWK10-L group, and 13 subjects in the TWK10-H group finished the study. It was found that supplementation with TWK10 had a tendency to increase and improve muscle mass, left hand grip strength, lower limb muscle strength, and gait speed and balance after the sixth week, especially in the TWK10-H group, and, as the supplement time was longer up to the 18th week, it had an even greater effect (p < 0.05). In conclusion, consecutive supplementation of L. plantarum TWK10 for more than six weeks could effectively improve the muscle strength and endurance of the elderly, reducing sarcopenia and physical fragility. This trial was registered as NCT04893746.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-T.T.)
| | - Yu-Tsai Tu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-T.T.)
- Department of Physical Medicine and Rehabilitation, Taipei City Hospital, Zhongxiao Branch, Taipei City 11556, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City 82151, Taiwan; (C.-C.L.); (H.-Y.H.); (S.-L.Y.)
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City 112, Taiwan;
| | - Han-Yin Hsu
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City 82151, Taiwan; (C.-C.L.); (H.-Y.H.); (S.-L.Y.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (T.-Y.T.); (T.-H.L.)
| | - San-Land Young
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City 82151, Taiwan; (C.-C.L.); (H.-Y.H.); (S.-L.Y.)
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City 82151, Taiwan; (C.-C.L.); (H.-Y.H.); (S.-L.Y.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-328-3201 (ext. 2604) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-T.T.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-328-3201 (ext. 2604) (C.-C.H.)
| |
Collapse
|
17
|
Sobolewska A, Dunisławska A, Stadnicka K. Natural substances in cancer—do they work? PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Owing to anticancer properties of selected natural substances, it is assumed that they have potential to be used in oncological therapy. Here, the recently proven effects of the selected natural polyphenols, resveratrol and curcumin, are described. Secondly, the potential of probiotics and prebiotics in modulation of immunological response and/or enhancing the chemotherapeutic treatments is reported based on the recent clinical trials. Further, the chapter presents current knowledge regarding the targeted supplementation of the patient with probiotic bacteria and known efficacy of probiotics to support immunotherapy. The major clinical trials are listed, aiming to verify whether, and to which extent the manipulation of patient’s microbiome can improve the outcome of chemotherapies. In the end, a potential of natural substances and feed ingredients to pose epigenetic changes is highlighted. The chapter provides an insight into the scientific proofs about natural bioactive substances in relation to cancer treatment, leaded by the question – do they really work?
Collapse
Affiliation(s)
- Adrianna Sobolewska
- Department of Anatomy , Faculty of Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz , Bydgoszcz , Kujawsko-Pomorskie , Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics , Faculty of Animal Breeding and Biology, UTP University of Science and Technology , Bydgoszcz , Kujawsko-Pomorskie , Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics , Faculty of Animal Breeding and Biology, UTP University of Science and Technology , Bydgoszcz , Kujawsko-Pomorskie , Poland
| |
Collapse
|
18
|
Zhao J, Huang Y, Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int J Gen Med 2021; 14:1263-1273. [PMID: 33880058 PMCID: PMC8053521 DOI: 10.2147/ijgm.s301141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a multifactorial disease related to aging, chronic inflammation, insufficient nutrition, and physical inactivity. Previous studies have suggested that there is a relationship between sarcopenia and gut microbiota,namely, the gut-muscle axis. The present review highlights that the gut microbiota can affect muscle mass and muscle function from inflammation and immunity,substance and energy metabolism, endocrine and insulin sensitivity, etc., directly or indirectly establishing a connection with sarcopenia, thereby realizing the “gut-muscle axis”.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yiqin Huang
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaofeng Yu
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021; 9:349. [PMID: 33578806 PMCID: PMC7916596 DOI: 10.3390/microorganisms9020349] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentation processes have been used for centuries for food production and preservation. Besides the contribution of fermentation to food quality, recently, scientific interest in the beneficial nature of fermented foods as a reservoir of probiotic candidates is increasing. Fermented food microbes are gaining attention for their health-promoting potential and for being genetically related to human probiotic bacteria. Among them, Lactiplantibacillus (Lpb.) plantarum strains, with a long history in the food industry as starter cultures in the production of a wide variety of fermented foods, are being investigated for their beneficial properties which are similar to those of probiotic strains, and they are also applied in clinical interventions. Food-associated Lpb. plantarum showed a good adaptation and adhesion ability in the gastro-intestinal tract and the potential to affect host health through various beneficial activities, e.g., antimicrobial, antioxidative, antigenotoxic, anti-inflammatory and immunomodulatory, in several in vitro and in vivo studies. This review provides an overview of fermented-associated Lpb. plantarum health benefits with evidence from clinical studies. Probiotic criteria that fermented-associated microbes need to fulfil are also reported.
Collapse
Affiliation(s)
| | | | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy; (N.G.-G.); (N.B.); (A.C.)
| | | |
Collapse
|
20
|
Li Y, Yang J, Sun S, Huang J, Zhang A, Tang X. Effects of intermittent feeding versus continuous feeding on enteral nutrition tolerance in critically ill patients: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23528. [PMID: 33327299 PMCID: PMC7738118 DOI: 10.1097/md.0000000000023528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nutritional support is an indispensable treatment for critically ill patients. Enteral nutrition intolerance is one of the obstacles to the smooth progress of enteral nutrition.Enteral nutrition can be divided into continuous feeding and intermittent feeding. However, the effectiveness and safety of the 2 ways of nutrition infusion are controversial clinically. Therefore, this meta-analysis further evaluated the effect of intermittent feeding versus continuous feeding on enteral nutrition tolerance in critically ill patients. METHODS Cochrane Library, PubMed, Web of Science, EMbase, China Biology Medicine disc (CBM), China Science and Technology Journal Database (VIP), China Journal full-text Database (CNKI), and Wanfang Database were searched for all randomized controlled trials (RCTs) on the effects of intermittent and continuous feeding on enteral nutrition tolerance in critically ill patients. The quality of literatures was strictly evaluated and the data were extracted by 2 investigators. Meta-analysis was carried out by applying RevMan 5.5 software. RESULTS The results of this meta-analysis are published in peer-reviewed journals. CONCLUSIONS This study provides reliable evidence-based support for the effects of intermittent and continuous feeding on enteral nutrition tolerance in critically ill patients. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/4BP5X.
Collapse
|