1
|
Shu X, Hua G, Zheng X, Chen Z, Zhang J, Zhuang W, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract. Poult Sci 2024; 103:103980. [PMID: 38959666 PMCID: PMC11269787 DOI: 10.1016/j.psj.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Chen Z, Hua G, Shu X, Zhuang W, Zhang J, Zhu R, Zheng X, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells. Sci Rep 2024; 14:17828. [PMID: 39090210 PMCID: PMC11294616 DOI: 10.1038/s41598-024-68752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
3
|
Zhang X, Chen H, Chen X, Liang A. Genomic and Transcriptomic Insights into the Genetic Basis of Foam Secretion in Rice Spittlebug Callitettix versicolor. Int J Mol Sci 2024; 25:2012. [PMID: 38396690 PMCID: PMC10889267 DOI: 10.3390/ijms25042012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Many animal species produce protective foams, the majority of which exhibit evolutionary adaptability. Although the function and composition of foams have been widely studied, the genetic basis of foam secretion remains unknown. Unlike most species that produce foam under specific situations, spittlebugs continuously secrete foams throughout all nymphal stages. Here, we capitalize on the rice spittlebug (Callitettix versicolor) to explore the genetic basis of foam secretion through genomic and transcriptomic approaches. Our comparative genomic analysis for C. versicolor and eight other insect species reveals 606 species-specific gene families and 66 expanded gene families, associated with carbohydrate and lipid metabolism. These functions are in accordance with the composition of foams secreted by spittlebugs. Transcriptomic analyses of malpighian tubules across developmental stages detected 3192 differentially expressed genes. Enrichment analysis of these genes highlights functions also revealed by our comparative genomic analysis and aligns with previous histochemical and morphological observations of foam secretion. This consistency suggests the important roles of these candidate genes in foam production. Our study not only provides novel insights into the genetic basis of foam secretion in rice spittlebugs but also contributes valuable knowledge for future evolutionary studies of spittlebugs and the development of pest control strategies for C. versicolor.
Collapse
Affiliation(s)
- Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hong Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chen
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Aiping Liang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Hwang SH, Jang HA, Kojour MAM, Yun K, Lee YS, Han YS, Jo YH. Effects of TmTak1 silencing on AMP production as an Imd pathway component in Tenebrio molitor. Sci Rep 2023; 13:18914. [PMID: 37919359 PMCID: PMC10622451 DOI: 10.1038/s41598-023-45978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Mealworms beetles, Tenebrio molitor, are the limelight next-generation food for humans due to their high nutrient contents. Since Tenebrio molitor is used as feed for pets and livestock in addition to their ability to decompose polystyrene and plastic waste, it is recognized as an insect with an industrial core value. Therefore, it is important to study the immune mechanism related to the development and infection of mealworms for mass breeding purposes. The immune deficiency (Imd) signaling is one of the main pathways with pivotal roles in the production of antimicrobial peptides (AMPs). Transforming growth factor-β activated kinase (TAK1) is one of the Imd pathway components, forms a complex with TAK1 binding protein 2 (TAB2) to ultimately help activate the transcription factor Relish and eventually induce host to produce AMPs. Relatively, little has been revealed about TAK1 in insect models, especially in the T. molitor. Therefore, this study was conducted to elucidate the function of TmTak1 in T. molitor. Our results showed that the highest and lowest mRNA expression of TmTak1 were found in egg and young larvae respectively. The tissue-specific expression patterns were reported in the gut of T. molitor larvae and the fat bodies of adults. Systemic microbial challenge illustrated TmTak1 high expression following the fungal infection in all dissected tissues except for the whole body. However, silencing TmTak1 experiments showed that the survivability of T. molitor larvae affected significantly following Escherichia coli infection. Accordingly, AMP induction after TmTak1 knock down was mainly reported in the integument and the fat bodies.
Collapse
Affiliation(s)
- Su Hyeon Hwang
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Maryam Ali Mohammadie Kojour
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Keunho Yun
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea.
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea.
| |
Collapse
|
5
|
Bullones A, Castro AJ, Lima-Cabello E, Alché JDD, Luque F, Claros MG, Fernandez-Pozo N. OliveAtlas: A Gene Expression Atlas Tool for Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:1274. [PMID: 36986964 PMCID: PMC10053119 DOI: 10.3390/plants12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The olive (Olea europaea L.) is an ancient crop of great importance in the Mediterranean basin due to the production of olive oil and table olives, which are important sources of fat and have benefits for human health. This crop is expanding and increasing its production worldwide and five olive genomes have recently been sequenced, representing a wild olive and important cultivars in terms of olive oil production, intensive agriculture, and adaptation to the East Asian climate. However, few bioinformatic and genomic resources are available to assist olive research and breeding, and there are no platforms to query olive gene expression data. Here, we present OliveAtlas, an interactive gene expression atlas for olive with multiple bioinformatics tools and visualization methods, enabling multiple gene comparison, replicate inspection, gene set enrichment, and data downloading. It contains 70 RNA-seq experiments, organized in 10 data sets representing the main olive plant organs, the pollen germination and pollen tube elongation process, and the response to a collection of biotic and abiotic stresses, among other experimental conditions. OliveAtlas is a web tool based on easyGDB with expression data based on the 'Picual' genome reference and gene annotation.
Collapse
Affiliation(s)
- Amanda Bullones
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Departamento de Biología Experimental, Universidad de Jaén (UJA), 23071 Jaén, Spain
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
| |
Collapse
|
6
|
The Botrytis cinerea Gene Expression Browser. J Fungi (Basel) 2023; 9:jof9010084. [PMID: 36675905 PMCID: PMC9861337 DOI: 10.3390/jof9010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
Collapse
|
7
|
Cheng SS, Ku YS, Cheung MY, Lam HM. Identification of stably expressed reference genes for expression studies in Arabidopsis thaliana using mass spectrometry-based label-free quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:1001920. [PMID: 36247637 PMCID: PMC9557097 DOI: 10.3389/fpls.2022.1001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis thaliana has been used regularly as a model plant in gene expression studies on transcriptional reprogramming upon pathogen infection, such as that by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), or when subjected to stress hormone treatments including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been extensively employed to quantitate these gene expression changes. However, the accuracy of the quantitation is largely dependent on the stability of the expressions of reference genes used for normalization. Recently, RNA sequencing (RNA-seq) has been widely used to mine stably expressed genes for use as references in RT-qPCR. However, the amplification step in RNA-seq creates an intrinsic bias against those genes with relatively low expression levels, and therefore does not provide an accurate quantification of all expressed genes. In this study, we employed mass spectrometry-based label-free quantification (LFQ) in proteomic analyses to identify those proteins with abundances unaffected by Pst DC3000 infection. We verified, using RT-qPCR, that the levels of their corresponding mRNAs were also unaffected by Pst DC3000 infection. Compared to commonly used reference genes for expression studies in A. thaliana upon Pst DC3000 infection, the candidate reference genes reported in this study generally have a higher expression stability. In addition, using RT-qPCR, we verified that the mRNAs of the candidate reference genes were stably expressed upon stress hormone treatments including JA, SA, and ABA. Results indicated that the candidate genes identified here had stable expressions upon these stresses and are suitable to be used as reference genes for RT-qPCR. Among the 18 candidate reference genes reported in this study, many of them had greater expression stability than the commonly used reference genes, such as ACT7, in previous studies. Here, besides proposing more appropriate reference genes for Arabidopsis expression studies, we also demonstrated the capacity of mass spectrometry-based LFQ to quantify protein abundance and the possibility to extend protein expression studies to the transcript level.
Collapse
|
8
|
Hasanpur K, Hosseinzadeh S, Mirzaaghayi A, Alijani S. Investigation of chicken housekeeping genes using next-generation sequencing data. Front Genet 2022; 13:827538. [PMID: 36176302 PMCID: PMC9514876 DOI: 10.3389/fgene.2022.827538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate normalization of the gene expression assays, using housekeeping genes (HKGs), is critically necessary. To do so, selection of a proper set of HKGs for a specific experiment is of great importance. Despite many studies, there is no consensus about the suitable set of HKGs for implementing in the quantitative real-time PCR analyses of chicken tissues. A limited number of HKGs have been widely used. However, wide utilization of a little number of HKGs for all tissues is challenging. The emergence of high-throughput gene expression RNA-seq data has enabled the simultaneous comparison of the stability of multiple HKGs. Therefore, employing the average coefficient of variations of at least three datasets per tissue, we sorted all reliably expressed genes (REGs; with FPKM ≥ 1 in at least one sample) and introduced the top 10 most suitable and stable reference genes for each of the 16 chicken tissues. We evaluated the consistency of the results of five tissues using the same methodology on other datasets. Furthermore, we assessed 96 previously widely used HKGs (WU-HKGs) in order to challenge the accuracy of the previous studies. The New Tuxedo software suite was used for the main analyses. The results revealed novel, different sets of reference genes for each of the tissues with 17 common genes among the top 10 genes lists of 16 tissues. The results did disprove the suitability of WU-HKGs such as Actb, Ldha, Scd, B2m, and Hprt1 for any of the tissues examined. On the contrary, a total of 6, 13, 14, 23, and 32 validated housekeeping genes (V-HKGs) were discovered as the most stable and suitable reference genes for muscle, spleen, liver, heart, and kidney tissues, respectively. Although we identified a few new HKGs usable for multiple tissues, the selection of suitable HKGs is required to be tissue specific. The newly introduced reference genes from the present study, despite lacking experimental validation, will be able to contribute to the more accurate normalization for future expression analysis of chicken genes.
Collapse
|
9
|
Vieira PS, Bonfim IM, Araujo EA, Melo RR, Lima AR, Fessel MR, Paixão DAA, Persinoti GF, Rocco SA, Lima TB, Pirolla RAS, Morais MAB, Correa JBL, Zanphorlin LM, Diogo JA, Lima EA, Grandis A, Buckeridge MS, Gozzo FC, Benedetti CE, Polikarpov I, Giuseppe PO, Murakami MT. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun 2021; 12:4049. [PMID: 34193873 PMCID: PMC8245568 DOI: 10.1038/s41467-021-24277-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.
Collapse
Affiliation(s)
- Plinio S. Vieira
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Isabela M. Bonfim
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Araujo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.452567.70000 0004 0445 0877Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Ricardo R. Melo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Augusto R. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Melissa R. Fessel
- grid.418514.d0000 0001 1702 8585Butantan Institute, Butantan Foundation, São Paulo, São Paulo Brazil
| | - Douglas A. A. Paixão
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Gabriela F. Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Silvana A. Rocco
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Tatiani B. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Renan A. S. Pirolla
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mariana A. B. Morais
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jessica B. L. Correa
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Leticia M. Zanphorlin
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jose A. Diogo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Adriana Grandis
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marcos S. Buckeridge
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Gozzo
- grid.411087.b0000 0001 0723 2494Institute of Chemistry, University of Campinas, Campinas, São Paulo Brazil
| | - Celso E. Benedetti
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Igor Polikarpov
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo Brazil
| | - Priscila O. Giuseppe
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mario T. Murakami
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| |
Collapse
|
10
|
A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L. Genes (Basel) 2021; 12:genes12040545. [PMID: 33918715 PMCID: PMC8070190 DOI: 10.3390/genes12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ branches. These genes could directly and indirectly modulate different pathways, suggesting their key role during the lateral bud transition to flowering stage. Interestingly, several genes related to the flowering process appeared as over-expressed in buds from March ‘OFF’ branches and they could address the buds towards flower differentiation. By this approach, interesting candidate genes related to the switch from vegetative to reproductive stages were detected and analyzed. The functional analysis of these genes will provide tools for developing breeding programs to obtain olive trees characterized by more constant productivity over the years.
Collapse
|
11
|
Wang M, Bhullar NK. Selection of Suitable Reference Genes for qRT-PCR Gene Expression Studies in Rice. Methods Mol Biol 2021; 2238:293-312. [PMID: 33471340 DOI: 10.1007/978-1-0716-1068-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With a widely established use of quantitative real-time PCR (qRT-PCR) for gene expression analysis, reliable and stable expression of reference genes is often discussed. Suitable reference genes should show less variation of expression across the target samples and allow for error minimization by normalization of qRT-PCR data. Therefore, selection of reliable reference genes is essential for accurate results and to support the conclusions drawn on expression levels of genes under study. In this chapter, we describe the workflow for selection and evaluation of reference genes in rice, including identification of candidate genes by using Genevestigator® and evaluation of expression stability using various algorithms. The ranking of the genes guides qRT-PCR performance and data analysis. This protocol used rice as an example but is not limited to rice, and could be applied to other species as well.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Navreet K Bhullar
- Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| |
Collapse
|
12
|
Dastkar E, Soleimani A, Jafary H, de Dios Alche J, Bahari A, Zeinalabedini M, Salami SA. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees. Sci Rep 2020; 10:15762. [PMID: 32978460 PMCID: PMC7519672 DOI: 10.1038/s41598-020-72895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Alternate bearing (AB) refers to the tendency of trees to have an irregular crop load from 1 year (ON) to the next year (OFF). Despite its economic importance, it is not fully understood how gene networks and their related metabolic pathways may influence the irregular bearing in olive trees. To unravel molecular mechanisms of this phenomenon in olive (cv. Conservalia), the whole transcriptome of leaves and buds from ON and OFF-trees was sequenced using Illumina next generation sequencing approach. The results indicated that expressed transcripts were involved in metabolism of carbohydrates, polyamins, phytohormones and polyphenol oxidase (POD) related to antioxidant system. Expression of POD was increased in leaf samples of ON- versus OFF-trees. The expression pattern of the greater number of genes was changed more in buds than in leaves. Up-regulation of gene homologues to the majority of enzymes that were involved in photorespiration metabolism pathway in buds of ON-trees was remarkable that may support the hypotheses of an increase in photorespiratory metabolism in these samples. The results indicated changes in expression pattern of homologous to those taking part of abscisic acid and cytokinin synthesis which are connected to photorespiration. Our data did not confirm expression of homologue (s) to those of chlorogenic acid metabolism, which has been addressed earlier that have a probable role in biennial bearing in olive. Current findings provide new candidate genes for further functional analysis, gene cloning and exploring of molecular basses of AB in olive.
Collapse
Affiliation(s)
- Ebrahim Dastkar
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Soleimani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Juan de Dios Alche
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biotechnology, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Abbas Bahari
- Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Seyed Alireza Salami
- Faculty of Agricultural Science and Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Hampton TH, Koeppen K, Bashor L, Stanton BA. Selection of reference genes for quantitative PCR: identifying reference genes for airway epithelial cells exposed to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2020; 319:L256-L265. [PMID: 32521165 PMCID: PMC7473940 DOI: 10.1152/ajplung.00158.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Most quantitative PCR (qPCR) experiments report differential expression relative to the expression of one or more reference genes. Therefore, when experimental conditions alter reference gene expression, qPCR results may be compromised. Little is known about the magnitude of this problem in practice. We found that reference gene responses are common and hard to predict and that their stability should be demonstrated in each experiment. Our reanalysis of 15 airway epithelia microarray data sets retrieved from the National Center for Biotechnology Information (NCBI) identified no common reference gene that was reliable in all 15 studies. Reanalysis of published RNA sequencing (RNA-seq) data in which human bronchial epithelial cells (HBEC) were exposed to Pseudomonas aeruginosa revealed that minor experimental details, including bacterial strain, may alter reference gene responses. Direct measurement of 32 TaqMan reference genes in primary cultures of HBEC exposed to P. aeruginosa (strain PA14) demonstrated that choosing an unstable reference gene could make it impossible to observe statistically significant changes in IL8 gene expression. We found that reference gene instability is a general phenomenon and not limited to studies of airway epithelial cells. In a diverse compendium of 986 human microarray experiments retrieved from the NCBI, reference genes were differentially expressed in 42% of studies. Experimentally induced changes in reference gene expression ranged from 21% to 212%. These results highlight the importance of identifying adequate reference genes for each experimental system and documenting their response to treatment in each experiment. This will enhance experimental rigor and reproducibility in qPCR studies.
Collapse
Affiliation(s)
- Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Laura Bashor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
14
|
Athanasiou AT, Nussbaumer T, Kummer S, Hofer M, Johnston IG, Staltner M, Allmer DM, Scott MC, Vogl C, Fenger JM, Modiano JF, Walter I, Steinborn R. S100A4 mRNA-protein relationship uncovered by measurement noise reduction. J Mol Med (Berl) 2020; 98:735-749. [PMID: 32296879 PMCID: PMC7241963 DOI: 10.1007/s00109-020-01898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 10/30/2022]
Abstract
Intrinsic biological fluctuation and/or measurement error can obscure the association of gene expression patterns between RNA and protein levels. Appropriate normalization of reverse-transcription quantitative PCR (RT-qPCR) data can reduce technical noise in transcript measurement, thus uncovering such relationships. The accuracy of gene expression measurement is often challenged in the context of cancer due to the genetic instability and "splicing weakness" involved. Here, we sequenced the poly(A) cancer transcriptome of canine osteosarcoma using mRNA-Seq. Expressed sequences were resolved at the level of two consecutive exons to enable the design of exon-border spanning RT-qPCR assays and ranked for stability based on the coefficient of variation (CV). Using the same template type for RT-qPCR validation, i.e. poly(A) RNA, avoided skewing of stability assessment by circular RNAs (circRNAs) and/or rRNA deregulation. The strength of the relationship between mRNA expression of the tumour marker S100A4 and its proportion score of quantitative immunohistochemistry (qIHC) was introduced as an experimental readout to fine-tune the normalization choice. Together with the essential logit transformation of qIHC scores, this approach reduced the noise of measurement as demonstrated by uncovering a highly significant, strong association between mRNA and protein expressions of S100A4 (Spearman's coefficient ρ = 0.72 (p = 0.006)). KEY MESSAGES: • RNA-seq identifies stable pairs of consecutive exons in a heterogeneous tumour. • Poly(A) RNA templates for RT-qPCR avoid bias from circRNA and rRNA deregulation. • HNRNPL is stably expressed across various cancer tissues and osteosarcoma. • Logit transformed qIHC score better associates with mRNA amount. • Quantification of minor S100A4 mRNA species requires poly(A) RNA templates and dPCR.
Collapse
Affiliation(s)
| | - Thomas Nussbaumer
- Computational Systems Biology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stefan Kummer
- VetBioBank, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Martin Hofer
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Moritz Staltner
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Daniela M Allmer
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Milcah C Scott
- College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, 425 East River Road, Minneapolis, MN, USA
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Jaime F Modiano
- College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, 425 East River Road, Minneapolis, MN, USA
| | - Ingrid Walter
- VetBioBank, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinärplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
15
|
Reference gene selection and validation for mRNA expression analysis by RT-qPCR in murine M1- and M2-polarized macrophage. Mol Biol Rep 2020; 47:2735-2748. [PMID: 32193769 DOI: 10.1007/s11033-020-05372-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/04/2020] [Indexed: 12/28/2022]
Abstract
Murine bone marrow-derived macrophages (M0) and M1- and M2-polarized macrophages are being widely used as a laboratory model for polarized macrophages related molecular mechanism analysis. Gene expression analysis based on reference gene normalization using RT-qPCR was a powerful way to explore the molecular mechanism. But little is known about reference genes in these cell models. So, the goal of this study was to identify reference genes in these types of macrophages. Candidate reference genes in murine bone marrow-derived and polarized macrophages were selected from microarray data using Limma linear model method and evaluated by determining the stability value using five algorithms: BestKeeper, NormFinder, GeNorm, Delta CT method, and RefFinder. Finally, the selected stable reference genes were validated by testing three important immune and inflammatory genes (NLRP1, IL-1β, and TNF-α) in the cell lines. Our study has clearly shown that Ubc followed by Eef1a1 and B2m respectively were recognized as the three ideal reference genes for gene expression analysis in murine bone marrow-derived and polarized macrophages. When three reference genes with strong different stability were used for validation, a large variation of a gene expression level of IL-1β, TNF-α and NLRP1 were obtained which provides clear evidence of the need for careful selection of reference genes for RT-qPCR analysis. Normalization of mRNA expression level with Ubc rather than Actb or Gusb by qPCR in macrophages and polarized macrophages is required to ensure the accuracy of the qPCR analysis.
Collapse
|
16
|
Selection of suitable reference genes for gene expression studies in myxosporean (Myxozoa, Cnidaria) parasites. Sci Rep 2019; 9:15073. [PMID: 31636316 PMCID: PMC6803631 DOI: 10.1038/s41598-019-51479-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
Myxozoans (Cnidaria: Myxozoa) are an extremely diversified group of endoparasites some of which are causative agents of serious diseases in fish. New methods involving gene expression studies have emerged over the last years to better understand and control myxozoan diseases. Quantitative RT-PCR is the most extensively used approach for gene expression studies. However, the accuracy of the results depends on the normalization of the data to reference genes. We studied the expression of eight commonly used reference genes, adenosylhomocysteinase (AHC1), beta actin (ACTB), eukaryotic translation elongation factor 2 (EF2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), DNA-directed RNA polymerase II (RPB2), 18S ribosomal RNA (18S), 28S ribosomal RNA (28S) across different developmental stages of three myxozoan species, Sphaerospora molnari, Myxobolus cerebralis and Ceratonova shasta, representing the three major myxozoan linages from the largest class Myxosporea. The stable reference genes were identified using four algorithms: geNorm, NormFinder, Bestkeeper and ΔCq method. Additionally, we analyzed transcriptomic data from S. molnari proliferative and spore-forming stages to compare the relative amount of expressed transcripts with the most stable reference genes suggested by RT-qPCR. Our results revealed that GAPDH and EF2 are the most uniformly expressed genes across the different developmental stages of the studied myxozoan species.
Collapse
|
17
|
Smitha PK, Vishnupriyan K, Kar AS, Anil Kumar M, Bathula C, Chandrashekara KN, Dhar SK, Das M. Genome wide search to identify reference genes candidates for gene expression analysis in Gossypium hirsutum. BMC PLANT BIOLOGY 2019; 19:405. [PMID: 31521126 PMCID: PMC6744693 DOI: 10.1186/s12870-019-1988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cotton is one of the most important commercial crops as the source of natural fiber, oil and fodder. To protect it from harmful pest populations number of newer transgenic lines have been developed. For quick expression checks in successful agriculture qPCR (quantitative polymerase chain reaction) have become extremely popular. The selection of appropriate reference genes plays a critical role in the outcome of such experiments as the method quantifies expression of the target gene in comparison with the reference. Traditionally most commonly used reference genes are the "house-keeping genes", involved in basic cellular processes. However, expression levels of such genes often vary in response to experimental conditions, forcing the researchers to validate the reference genes for every experimental platform. This study presents a data science driven unbiased genome-wide search for the selection of reference genes by assessing variation of > 50,000 genes in a publicly available RNA-seq dataset of cotton species Gossypium hirsutum. RESULT Five genes (TMN5, TBL6, UTR5B, AT1g65240 and CYP76B6) identified by data-science driven analysis, along with two commonly used reference genes found in literature (PP2A1 and UBQ14) were taken through qPCR in a set of 33 experimental samples consisting of different tissues (leaves, square, stem and root), different stages of leaf (young and mature) and square development (small, medium and large) in both transgenic and non-transgenic plants. Expression stability of the genes was evaluated using four algorithms - geNorm, BestKeeper, NormFinder and RefFinder. CONCLUSION Based on the results we recommend the usage of TMN5 and TBL6 as the optimal candidate reference genes in qPCR experiments with normal and transgenic cotton plant tissues. AT1g65240 and PP2A1 can also be used if expression study includes squares. This study, for the first time successfully displays a data science driven genome-wide search method followed by experimental validation as a method of choice for selection of stable reference genes over the selection based on function alone.
Collapse
Affiliation(s)
- P. K. Smitha
- Department of Biotechnology, Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - K. Vishnupriyan
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| | - Ananya S. Kar
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - M. Anil Kumar
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - Christopher Bathula
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| | - K. N. Chandrashekara
- Division of Plant Physiology and Biotechnology, UPASI Tea Research Foundation, Tea Research Institute, Nirar Dam, Valparai, Coimbatore, Tamil Nadu 642 127 India
| | - Sujan K. Dhar
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - Manjula Das
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| |
Collapse
|
18
|
Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV, Dmitriev AA. Pan-Cancer Analysis of TCGA Data Revealed Promising Reference Genes for qPCR Normalization. Front Genet 2019; 10:97. [PMID: 30881377 PMCID: PMC6406071 DOI: 10.3389/fgene.2019.00097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Quantitative PCR (qPCR) remains the most widely used technique for gene expression evaluation. Obtaining reliable data using this method requires reference genes (RGs) with stable mRNA level under experimental conditions. This issue is especially crucial in cancer studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas (TCGA) project provides RNA-Seq data for thousands of samples corresponding to dozens of cancers and presents the basis for assessment of the suitability of genes as reference ones for qPCR data normalization. Using TCGA RNA-Seq data and previously developed CrossHub tool, we evaluated mRNA level of 32 traditionally used RGs in 12 cancer types, including those of lung, breast, prostate, kidney, and colon. We developed an 11-component scoring system for the assessment of gene expression stability. Among the 32 genes, PUM1 was one of the most stably expressed in the majority of examined cancers, whereas GAPDH, which is widely used as a RG, showed significant mRNA level alterations in more than a half of cases. For each of 12 cancer types, we suggested a pair of genes that are the most suitable for use as reference ones. These genes are characterized by high expression stability and absence of correlation between their mRNA levels. Next, the scoring system was expanded with several features of a gene: mutation rate, number of transcript isoforms and pseudogenes, participation in cancer-related processes on the basis of Gene Ontology, and mentions in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were analyzed using the expanded scoring system that allowed us to reveal novel promising RGs for each examined cancer type and identify several "universal" pan-cancer RG candidates, including SF3A1, CIAO1, and SFRS4. The choice of RGs is the basis for precise gene expression evaluation by qPCR. Here, we suggested optimal pairs of traditionally used RGs for 12 cancer types and identified novel promising RGs that demonstrate high expression stability and other features of reliable and convenient RGs (high expression level, low mutation rate, non-involvement in cancer-related processes, single transcript isoform, and absence of pseudogenes).
Collapse
Affiliation(s)
- George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Yan X, Qian C, Yin X, Fan X, Zhao X, Gu M, Wang T, Ma XF. A whole-transcriptome approach to evaluate reference genes for quantitative diurnal gene expression studies under natural field conditions in Tamarix ramosissima leaves. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Zafra A, Carmona R, Traverso JA, Hancock JT, Goldman MHS, Claros MG, Hiscock SJ, Alche JD. Identification and Functional Annotation of Genes Differentially Expressed in the Reproductive Tissues of the Olive Tree ( Olea europaea L.) through the Generation of Subtractive Libraries. FRONTIERS IN PLANT SCIENCE 2017; 8:1576. [PMID: 28955364 PMCID: PMC5601413 DOI: 10.3389/fpls.2017.01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/28/2017] [Indexed: 05/07/2023]
Abstract
The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - José A. Traverso
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - John T. Hancock
- Faculty of Health and Life Sciences, University of the West of EnglandBristol, United Kingdom
| | - Maria H. S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São PauloSão Paulo, Brazil
| | - M. Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de MálagaMálaga, Spain
| | - Simon J. Hiscock
- School of Biological Sciences, University of BristolBristol, United Kingdom
| | - Juan D. Alche
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alche
| |
Collapse
|