1
|
Oliveira LS, Andrade CA, Oliveira MD, Zine N, Elaissari A, Errachid A. Recent trends in biosensors for leukemia diagnosis: A critical overview of electrochemical and optical approaches for clinical applicability. Trends Analyt Chem 2025; 182:118063. [DOI: 10.1016/j.trac.2024.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Iurchenko NP, Glushchenko NM, Nespryadko SV, Buchynska LG. SIGNIFICANCE OF miRNA-185-5P AND miRNA-424-5P AS PROGNOSTIC MARKERS IN PROGRESSION OF EARLY-STAGE ENDOMETRIAL CANCER. Exp Oncol 2024; 46:244-252. [PMID: 39704456 DOI: 10.15407/exp-oncology.2024.03.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
AIM To compare the expression of miRNA-185-5p and miRNA-424-5p in tumor cells and peripheral blood serum (PBS) of patients with endometrioid carcinoma of the endometrium (ECE) and to evaluate the significance of these biomarkers in cancer progression. MATERIALS AND METHODS The study was conducted on the samples of peripheral blood serum (PBS) and tumor tissue of 58 patients with stage I ECE using clinical and morphological methods and real-time polymerase chain reaction. RESULTS A significant increase in the levels of circulating and tumor-associated miRNA-424-5p was established in ECE patients with a history of recurrences compared to patients without recurrences. To the contrary, the expression level of miRNA-185-5p increased in the PBS and decreased in the tumor tissue of ECE patients with recurrences compared to the patients without recurrence. In addition, we revealed that the expression levels of the studied miRNAs were associated with the differentiation grade and degree of tumor invasion. We established that miRNA-424-5p levels in PBS could serve as the most significant indicator for predicting the occurrence of recurrence in patients with ECE (AUC = 0.991; Sp 94.0%; Se 99.9%). CONCLUSIONS The expression features of miRNA-185-5p and miRNA-424-5p in the PBS and tumor tissue of patients with ECE are associated with the aggressiveness of cancer course and the risk of recurrence.
Collapse
Affiliation(s)
- N P Iurchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N M Glushchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - L G Buchynska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Aswathy R, Chalos VA, Suganya K, Sumathi S. Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting. Med Oncol 2024; 42:30. [PMID: 39688780 DOI: 10.1007/s12032-024-02579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, play a vital role in regulating gene expression at the post-transcriptional level. Their discovery has profoundly impacted therapeutic strategies, particularly in cancer treatment, where RNA therapeutics, including miRNA-based targeted therapies, have gained prominence. Advances in RNA sequencing technologies have facilitated a comprehensive exploration of miRNAs-from fundamental research to their diagnostic and prognostic potential in various diseases, notably cancers. However, the manual handling and interpretation of vast RNA datasets pose significant challenges. The advent of artificial intelligence (AI) has revolutionized biological research by efficiently extracting insights from complex data. Machine learning algorithms, particularly deep learning techniques are effective for identifying critical miRNAs across different cancers and developing prognostic models. Moreover, the integration of AI has led to the creation of comprehensive miRNA databases for identifying mRNA and gene targets, thus facilitating deeper understanding and application in cancer research. This review comprehensively examines current developments in the application of machine learning techniques in miRNA research across diverse cancers. We discuss their roles in identifying biomarkers, elucidating miRNA targets, establishing disease associations, predicting prognostic outcomes, and exploring broader AI applications in cancer research. This review aims to guide researchers in leveraging AI techniques effectively within the miRNA field, thereby accelerating advancements in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Varghese Angel Chalos
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
4
|
Nabavizadeh SS, Shadi M, Khorraminejad-Shirazi M, Daneshi S, Tavanafar S, Naseri R, Abbaspour A, Alaei-Jahromi K, Talaei-Khozani T. Moldable Alginate/Hydroxyapatite Hydrogel Loaded with Metformin Enhanced Regeneration of the Rabbit Mandibular Defects. J Maxillofac Oral Surg 2024; 23:1391-1404. [PMID: 39618445 PMCID: PMC11607265 DOI: 10.1007/s12663-023-02094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Moldable hydrogel-based techniques loaded with osteoinductive agents such as metformin have become a promising field for reconstructing critical-sized bone defects, particularly in those with irregular shapes. Here, we used metformin incorporated in an alginate/hydroxyapatite hydrogel to accelerate the repair of the rabbit critical-sized mandibular defect. METHODS Cytotoxicity and osteoinduction of the metformin-loaded alginate/hydroxyapatite hydrogel were evaluated by culturing the osteosarcoma cell line (MG63). Moreover, in vivo bone formation was assessed in a rabbit bone defect model using computed tomography and histomorphometric analysis to compare the effects of alginate/hydroxyapatite hydrogel with or without metformin. RESULTS The data showed that the scaffolds were not cytotoxic and enhanced osteogenic characteristics of the cells, as manifested by augmented alkaline phosphatase activity and calcium deposition. In vivo studies indicated that all the treated groups exhibited more osteogenesis with a significant increase in bone-specific cell population and less residual scaffold remnant at the defect sites compared with the control group, which was significantly prominent in the group treated with alginate/hydroxyapatite/metformin. Moreover, computed tomography scan analysis also confirmed better bone filling in all the treated groups, especially in the defects treated with alginate/hydroxyapatite/metformin hydrogel. CONCLUSIONS Both In vitro and in vivo experiments revealed that locally loaded metformin with the easy size- and shape-adapted alginate/hydroxyapatite hydrogel has proper biocompatibility and osteogenesis properties. Moreover, our study highlighted the synergistic effect of metformin and hydroxyapatite on osteogenesis.
Collapse
Affiliation(s)
- Sara S Nabavizadeh
- Department of Otolaryngology, Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Shadi
- Anatomy Department, Shiraz Medical School, Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Tavanafar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhaneh Naseri
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abbaspour
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Alaei-Jahromi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Radiology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Anatomy Department, Shiraz Medical School, Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Lab, Dept. of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
6
|
Al‐Temaimi R, Abdulkarim B, Al‐Ali A, John B, Mallik MK, Kapila K. Analysis of Candidate miRNAs' Expression in Pancreatic Cancer. Cancer Med 2024; 13:e70400. [PMID: 39513319 PMCID: PMC11544394 DOI: 10.1002/cam4.70400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive types of cancer. Despite advances in molecular diagnostics, PC diagnosis relies on imaging technologies and morphological assessment of fine needle aspirates (FNAs). MicroRNA (miRNA) involvement in PC pathogenesis and potential diagnostics application have been suggested, albeit current supporting evidence is lacking. Here, we investigated the association of selected miRNAs with PC incidence and clinical characteristics. METHODS Fold expression of miR-216a-3p, -217-5p, -221-3p, -222-3p, and miR-196a-5p was assessed in 73 PC FNA cell-block sections and 6 healthy pancreas tissues using Taqman advanced miRNA assays. Potential miRNA targets were ascertained using immunocytochemistry. RESULTS miR-196a-5p was upregulated in PC compared to healthy pancreatic tissue (β = -0.05, 95% CI: -0.065 - (-0.035); p < 0.001). miR-221-3p and miR-222-3p fold expression were strongly correlated (r = 0.897, p < 0.001), whereas miR-196a-5p fold expression correlated with that of miR-221-3p (r = 0.688, p < 0.001) and miR-222-3p (r = 0.489, p < 0.001). Moreover, miR-196a-5p fold expression positively correlated with tumor stage (r = 0.32, p = 0.034). miR-217-5p fold expression inversely correlated with KRAS expression (r = -0.69, p = 0.0027). CONCLUSION Our study shows miR-196a-5p has reasonable specificity to PC and thus may have diagnostic and prognostic potential in PC as proposed in the literature. Moreover, KRAS and NFKBIA may be potential targets for miR-217-5p and miR-196a-5p, respectively. Thus, these miRNAs may be involved in tumor progression and may have valuable applications in novel therapeutics or treatment monitoring.
Collapse
Affiliation(s)
- Rabeah Al‐Temaimi
- Human Genetics Unit, Department of Pathology, College of MedicineKuwait UniversityJabriyaKuwait
| | - Bicher Abdulkarim
- Undergraduate Medical Program, College of MedicineKuwait UniversityJabriyaKuwait
| | - Ali Al‐Ali
- Department of Medicine, College of MedicineKuwait UniversityJabriyaKuwait
- Department of Gastroenterology and HepatologyAmiri HospitalKuwait CityKuwait
| | - Bency John
- Department of Pathology, College of MedicineKuwait UniversityJabriyaKuwait
| | | | - Kusum Kapila
- Department of Pathology, College of MedicineKuwait UniversityJabriyaKuwait
- Department of Laboratory MedicineMubarak Al Kabeer HospitalJabriyaKuwait
| |
Collapse
|
7
|
Rahdan F, Saberi A, Saraygord-Afshari N, Hadizadeh M, Fayeghi T, Ghanbari E, Dianat-Moghadam H, Alizadeh E. Deciphering the multifaceted role of microRNAs in hepatocellular carcinoma: Integrating literature review and bioinformatics analysis for therapeutic insights. Heliyon 2024; 10:e39489. [PMID: 39498055 PMCID: PMC11532857 DOI: 10.1016/j.heliyon.2024.e39489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health challenge, necessitating innovative therapeutic strategies. MicroRNAs (miRNAs) have emerged as pivotal regulators of HCC pathogenesis, influencing key processes such as self-renewal, angiogenesis, glycolysis, autophagy, and metastasis. This article integrates findings from a comprehensive literature review and bioinformatics analysis to elucidate the role of miRNAs in HCC. We discuss how dysregulation of miRNAs can drive HCC initiation, progression, and metastasis by modulating various signaling pathways and target genes. Moreover, leveraging high-throughput technology and bioinformatics tools, we identify key miRNAs involved in multiple cancer hallmarks, offering insights into potential combinatorial therapeutic strategies. Through our analysis considering p-values and signaling pathways associated with key features, we unveil miRNAs with simultaneous roles across critical cancer characteristics, providing a basis for the development of high-performance biomarkers. The microRNAs, miR-34a-5p, miR-373-3p, miR-21-5p, miR-214-5p, miR-195-5p, miR-139-5p were identified to be shared microRNAs in stemness, angiogenesis, glycolysis, autophagy, EMT, and metastasis of HCC. However, challenges such as miRNA stability and delivery hinder the translation of miRNA-based therapeutics into clinical practice. This review underscores the importance of further research to overcome existing barriers and realize the full potential of miRNA-based interventions for HCC management.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahura Fayeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Pastor-Navarro B, Ramírez-Calvo M, Gil Aldea I, Cortell Granero I, López Guerrero JA. The Impact of Tube Type, Centrifugation Conditions, and Hemolysis on Plasma Circulating MicroRNAs. Diagnostics (Basel) 2024; 14:2369. [PMID: 39518337 PMCID: PMC11545111 DOI: 10.3390/diagnostics14212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, liquid biopsy has emerged as a promising tool for the diagnosis and prognosis of numerous diseases, including cancer. Among the biomolecules analyzed in liquid biopsies are plasma circulating microRNAs (miRNAs), small non-coding RNAs that have proven to be crucial in the regulation of gene expression and the pathobiology of different health conditions, making them useful as biomarkers. However, variations in preanalytical conditions during biospecimen collection and processing can affect the analytical results. OBJECTIVES Herein, we determined how the type of collection tube, the number of centrifugations, and the degree of hemolysis can affect plasma circulating miRNA levels. METHODS A cohort of 11 healthy donors was included. Whole blood was collected and handled in three different conditions, and miRNAs levels were analyzed using quantitative RT-PCR. RESULTS Our results show that the differences in the type of preservative tubes influence hemolysis, measured as OD at 414 nm. Moreover, the number of centrifugations performed also altered miRNAs levels, increasing or decreasing them depending on the miRNA analyzed. Hence, our study shows that alterations in preanalytical conditions affect miRNAs levels, particularly the number of centrifugations and the type of collection tubes. CONCLUSIONS In our work, we highlight the importance of registering the preanalytical conditions in a standardized way that might be considered when analytical results are obtained.
Collapse
Affiliation(s)
- Belén Pastor-Navarro
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Unidad Mixta Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Medicine and Health Sciences Faculty, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Marta Ramírez-Calvo
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - Isabel Gil Aldea
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - Isabel Cortell Granero
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - José A. López Guerrero
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Unidad Mixta Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Medicine and Health Sciences Faculty, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
9
|
Tylden ES, Delgado AB, Lukic M, Moi L, Busund LTR, Pedersen MI, Lombardi AP, Olsen KS. Roles of miR-20a-5p in breast cancer based on the clinical and multi-omic (CAMO) cohort and in vitro studies. Sci Rep 2024; 14:25022. [PMID: 39443510 PMCID: PMC11499649 DOI: 10.1038/s41598-024-75557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs are involved in breast cancer development and progression, holding potential as biomarkers and therapeutic targets or tools. The roles of miR-20a-5p, a member of the oncogenic miR-17-92 cluster, remain poorly understood in the context of breast cancer. In this study, we elucidate the role of miR-20a-5p in breast cancer by examining its associations with breast cancer risk factors and clinicopathological features, and its functional roles in vitro. Tissue microarrays from 313 CAMO cohort breast cancer surgical specimens were constructed, in situ hybridization was performed and miR-20a-5p expression was semiquantitatively scored in tumor stromal fibroblasts, and in the cytoplasm and nuclei of cancer cells. In vitro analysis of the effect of miR-20a-5p transfection on proliferation, migration and invasion was performed in three breast cancer cell lines. High stromal miR-20a-5p was associated with higher Ki67 expression, and higher odds of relapse, compared to low expression. Compared to postmenopausal women, women who were premenopausal at diagnosis had higher odds of high stromal and cytoplasmic miR-20a-5p expression. Cytoplasmic miR-20a-5p was significantly associated with tumor grade. In tumors with high cytoplasmic miR-20a-5p expression compared to low expression, there was a tendency towards having a basal-like subtype and high Ki67. In contrast, high nuclear miR-20a-5p in cancer cells was associated with smaller tumor size and lower odds of lymph node metastasis, compared to low nuclear expression. Transfection with miR-20a-5p in breast cancer cell lines led to increased migration and invasion in vitro. While the majority of our results point towards an oncogenic role, some of our findings indicate that the associations of miR-20a-5p with breast cancer related risk factors and outcomes may vary based on tissue- and subcellular location. Larger studies are needed to validate our findings and further investigate the clinical utility of miR-20a-5p.
Collapse
Affiliation(s)
- Eline Sol Tylden
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - André Berli Delgado
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Marko Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Ana Paola Lombardi
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway.
| |
Collapse
|
10
|
Zhang L, He X, Bai H, Yu X, Wu P, Cai Z, Ren Y, Luo Y, Zhuang W, Hu J, Ying B, Luo F, Yao Y, Sun X, Hu W. On-Site Visualization Assay for Tumor-Associated miRNAs: Using Ru@TiO 2 as a Peroxidase-like Nanozyme. Anal Chem 2024; 96:16499-16504. [PMID: 39383474 DOI: 10.1021/acs.analchem.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Accurate diagnosis of highly aggressive and deadly tumors is essential for effective treatment and improved patient outcomes, and microRNAs (miRNAs) have emerged as crucial biomarkers for their roles in tumor initiation, progression, and metastasis. Herein, we present an on-site visualization colorimetric assay for tumor-associated miRNAs using ruthenium nanoparticle decorated titanium dioxide nanoribbon (Ru@TiO2) as a peroxidase-like (POD) nanozyme. Remarkably, the Ru@TiO2 nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by pyrophosphate generated during the rolling circle amplification process, thereby enabling miRNA detection through a visible colorimetric readout. This approach provides a highly sensitive and specificity assay for miRNAs in diluted human serum with a detection limit of 100 pM. It shows great potential for clinical diagnostics and biological research, offering a promising tool for early cancer diagnosis and molecular diagnostics.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xingzhi Yu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Peilin Wu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Jie Hu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongchao Yao
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Wenchuang Hu
- Department of Laboratory Medicine & Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| |
Collapse
|
11
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
12
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
13
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
14
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
15
|
Mu X, Wei Y, Fan X, Zhang R, Xi W, Zheng G, Yang AG. Aberrant activation of a miR-101-UBE2D1 axis contributes to the advanced progression and chemotherapy sensitivity in human hepatocellular carcinoma. Cell Death Discov 2024; 10:422. [PMID: 39353886 PMCID: PMC11445525 DOI: 10.1038/s41420-024-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Chemotherapeutic drugs, such as cisplatin (cis-dichlorodiamineplatinum [II], cDDP) and 5-fluorouracil (5Fu), are widely used in transarterial chemoembolization (TACE), which is a standard therapy for patients with hepatocellular carcinoma (HCC). Chemoresistance is a major cause of TACE treatment failure in HCC patients. Our previous studies have identified the expression levels of miR-101 responsive genes, such as EED, EZH2, STMN1 and JUNB, exhibit significant correlation with the occurrence and progression of HCC, while the role of miR-101 responsive gene signatures in the chemoresistance of HCC treatment remains unclear. In this study, we identified ubiquitin-coupled enzyme E2D1 (UBE2D1) as a crucial regulatory factor in the chemoresistance of HCC, which is a direct target of miR-101 and exhibits significant correlation with miR-101-responsive gene signatures. The bioinformatics analysis showed the expression of UBE2D1 was significantly increased in HCC tissues and was closely correlated with the poor prognosis. In addition, we analyzed the role of miR-101/UBE2D1 axis in regulating chemo-sensitive of HCC cells. Our results showed that miR-101 increases the DNA damage and apoptosis of HCC cells by inhibiting the expression of UBE2D1, which in turn increases the sensitivity of HCC cells to cDDP and 5Fu both in vitro and in vivo. Therefore, simultaneous assessment of miR-101 and UBE2D1 expression levels might provide an effective approach in preselecting HCC patients with survival benefit from TACE treatment. Moreover, further elucidation of the underlying molecular mechanisms of the miR-101/UBE2D1 axis could provide novel insight for targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiuli Mu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuchen Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenjin Xi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoxu Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - An-Gang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Küçük BN, Yilmaz EG, Aslan Y, Erdem Ö, Inci F. Shedding Light on Cellular Secrets: A Review of Advanced Optical Biosensing Techniques for Detecting Extracellular Vesicles with a Special Focus on Cancer Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:5841-5860. [PMID: 39175406 PMCID: PMC11409220 DOI: 10.1021/acsabm.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In the relentless pursuit of innovative diagnostic tools for cancer, this review illuminates the cutting-edge realm of extracellular vesicles (EVs) and their biomolecular cargo detection through advanced optical biosensing techniques with a primary emphasis on their significance in cancer diagnosis. From the sophisticated domain of nanomaterials to the precision of surface plasmon resonance, we herein examine the diverse universe of optical biosensors, emphasizing their specified applications in cancer diagnosis. Exploring and understanding the details of EVs, we present innovative applications of enhancing and blending signals, going beyond the limits to sharpen our ability to sense and distinguish with greater sensitivity and specificity. Our special focus on cancer diagnosis underscores the transformative potential of optical biosensors in early detection and personalized medicine. This review aims to help guide researchers, clinicians, and enthusiasts into the captivating domain where light meets cellular secrets, creating innovative opportunities in cancer diagnostics.
Collapse
Affiliation(s)
- Beyza Nur Küçük
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Özgecan Erdem
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
17
|
Tang S, Xie X, Li L, Zhou L, Xing Y, Chen Y, Cai K, Li F, Zhang J. High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation. Biosens Bioelectron 2024; 260:116435. [PMID: 38820724 DOI: 10.1016/j.bios.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.
Collapse
Affiliation(s)
- Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
| |
Collapse
|
18
|
Wen S, Liu Y, Yang G, Chen W, Wu H, Zhu X, Wang Y. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations. Sci Rep 2024; 14:20490. [PMID: 39227405 PMCID: PMC11371806 DOI: 10.1038/s41598-024-68897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
MicroRNAs (miRNAs) are a key class of endogenous non-coding RNAs that play a pivotal role in regulating diseases. Accurately predicting the intricate relationships between miRNAs and diseases carries profound implications for disease diagnosis, treatment, and prevention. However, these prediction tasks are highly challenging due to the complexity of the underlying relationships. While numerous effective prediction models exist for validating these associations, they often encounter information distortion due to limitations in efficiently retaining information during the encoding-decoding process. Inspired by Multi-layer Heterogeneous Graph Transformer and Machine Learning XGboost classifier algorithm, this study introduces a novel computational approach based on multi-layer heterogeneous encoder-machine learning decoder structure for miRNA-disease association prediction (MHXGMDA). First, we employ the multi-view similarity matrices as the input coding for MHXGMDA. Subsequently, we utilize the multi-layer heterogeneous encoder to capture the embeddings of miRNAs and diseases, aiming to capture the maximum amount of relevant features. Finally, the information from all layers is concatenated to serve as input to the machine learning classifier, ensuring maximal preservation of encoding details. We conducted a comprehensive comparison of seven different classifier models and ultimately selected the XGBoost algorithm as the decoder. This algorithm leverages miRNA embedding features and disease embedding features to decode and predict the association scores between miRNAs and diseases. We applied MHXGMDA to predict human miRNA-disease associations on two benchmark datasets. Experimental findings demonstrate that our approach surpasses several leading methods in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve.
Collapse
Affiliation(s)
- SiJian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - YinBo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Guang Yang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - WenXi Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - HaiTao Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - XiaoLei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
| | - YongMei Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Hefei, 230036, China.
| |
Collapse
|
19
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
21
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
22
|
Haryana SM, Ardiansyah SA, Noficandra H, Wardana T, Sesotyosari SL, Afira FR, Satriyo PB, Setiasari DW, Heriyanto DS. G2/M Checkpoint Modulation: Insights from miRNA Profiles in FAM and Breast Cancer. Asian Pac J Cancer Prev 2024; 25:2661-2668. [PMID: 39205563 PMCID: PMC11495450 DOI: 10.31557/apjcp.2024.25.8.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The aim of this research is to understand the role of microRNA in cell cycle regulation especially on G2M Checkpoint from Luminal A samples Indonesian population. The profile results are used as biomarkers and therapeutic targets for breast cancer. For this reason, analysis was carried out on the comparison of miRNA expression between Luminal A and Fibroadenoma mamae (FAM) using Nanostring nCounter. METHODS In this study, 5 (Formalin-Fixed Paraffin-Embedded) FFPE Luminal A tissues and 4 FFPE FAM samples were used. RNA was isolated from cancer tissue samples. Differential expression analysis of miRNA was conducted using Nanostring nCounter technology, subsequently followed by the expression analysis between FAM and Luminal A using nSolver softwere. Elevated expression levels of miRNAs were subjected to pathway and gene regulation analysis using KEGG and GSEA MsigDB databases. Data visualization was performed utilizing Cytoscape, NetworkAnalyst, and SRplot tools. RESULT Based on 792 miRNAs detected on Nanostring nCounter, it was found that 60 miRNAs were upregulated and 6 miRNAs were downregulated. The 15 upregulated miRNAs analyzed show their role in the G2M Checkpoint through several pathways. The five miRNAs that significantly regulate the G2M Checkpoint are hsa-miR-196b-5p, hsa-miR-218-5p, hsa-miR-7-5p, hsa-miR-19a-5p, and hsa-miR-18a-5p Where each of these miRNAs regulates the CDKN1B gene. CONCLUSION Significant differences in the expression of multiple miRNAs between Luminal A and FAM samples were observed. Furthermore, several of these miRNAs were found to modulate the G2M Checkpoint in Luminal A cancer by suppressing tumor suppressor genes.
Collapse
Affiliation(s)
- Sofia Mubarika Haryana
- Study Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Syamsul Arif Ardiansyah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Habibullah Noficandra
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Tirta Wardana
- Department Biomedicine, School of Dentistry, Faculty of Medicine Jenderal Soedirman University, Jawa Tengah, Indonesia.
| | | | - Fathiya Rahma Afira
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Pamungkas Bagus Satriyo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dicka Wahyu Setiasari
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Didik Setyo Heriyanto
- Study Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
23
|
Zhang J, Yan C, Liu G. Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification. Mikrochim Acta 2024; 191:491. [PMID: 39066913 DOI: 10.1007/s00604-024-06557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
24
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Xu J, Pan L, Wu D, Yao L, Jiang W, Min J, Xu S, Deng Z. Comparison of the diagnostic value of various microRNAs in blood for colorectal cancer: a systematic review and network meta-analysis. BMC Cancer 2024; 24:770. [PMID: 38926893 PMCID: PMC11209970 DOI: 10.1186/s12885-024-12528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Despite the existence of numerous studies investigating the diagnostic potential of blood microRNAs for colorectal cancer, the microRNAs under consideration vary widely, and comparative analysis of their diagnostic value is lacking. Consequently, this systematic review aims to identify the most effective microRNA blood tumor markers to enhance clinical decision-making in colorectal cancer screening. METHOD A comprehensive search of databases, including PubMed, Embase, Web of Science, Scopus, and Cochrane, was conducted to identify case‒control or cohort studies that examined the diagnostic value of peripheral blood microRNAs in colorectal cancer. Studies were included if they provided sensitivity and specificity data, were published in English and were available between January 1, 2000, and February 10, 2023. The Critical Appraisal Skills Programme (CASP) checklist was employed for quality assessment. A Bayesian network meta-analysis was performed to estimate combined risk ratios (RRs) and 95% confidence intervals (CIs), with results presented via rankograms. This study is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 202,380,092. RESULTS From an initial pool of 2254 records, 79 met the inclusion criteria, encompassing a total of 90 microRNAs. The seven most frequently studied microRNAs (43 records) were selected for inclusion, all of which demonstrated moderate to high quality. miR-23, miR-92, and miR-21 exhibited the highest sensitivity and accuracy, outperforming traditional tumor markers CA19-9 and CEA in terms of RR values and 95% CI for both sensitivity and accuracy. With the exception of miR-17, no significant difference was observed between each microRNA and CA19-9 and CEA in terms of specificity. CONCLUSIONS Among the most extensively researched blood microRNAs, miR-23, miR-92, and miR-21 demonstrated superior diagnostic value for colorectal cancer due to their exceptional sensitivity and accuracy. This systematic review and network meta-analysis may serve as a valuable reference for the clinical selection of microRNAs as tumor biomarkers.
Collapse
Affiliation(s)
- Jianhao Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Lanfen Pan
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Dan Wu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Liqian Yao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Wenqian Jiang
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jiarui Min
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Song Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| | - Zhiyong Deng
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
26
|
Sierra-Díaz DC, Cabrera R, Gonzalez-Vasquez LA, Angulo-Aguado M, Llinás-Caballero K, Fonseca-Mendoza DJ, Contreras-Bravo NC, Restrepo CM, Ortega-Recalde O, Morel A. Functional Analysis of BRCA1 3'UTR Variants Predisposing to Breast Cancer. Appl Clin Genet 2024; 17:57-62. [PMID: 38803352 PMCID: PMC11129763 DOI: 10.2147/tacg.s444546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Breast Cancer (BC) is the main female cancer diagnosed worldwide, and it has been described that few genes, such as BRCA1, have a high penetrance for this type of cancer. In this manuscript, we were interested in evaluating the effect of 3'UTR variants on BRCA1 expression. Patients and Methods To accomplish this objective, Whole Exome Sequencing (WES) data of 400 patients with unselected BC was used to filter variants located in the region of interest of BRCA1 gene, finding two of them (c.*36C>G and c.*369_373del). miRGate and miRanda in silico tools were used to predict microRNA (miRNA) interaction. Results The two variants (c.*36C>G, c.*369_373del) were predicted to affect miRNA interaction. After cloning of BRCA1 3'UTR into pMIR-Report vector, the construct was transfected into two BC cell lines (MDA-MB-231 and MCF-7), and the variant c.*36C>G evidenced overexpression of reporter gene luciferase, showing that the transcript was not being degraded by the miRNA in MDA-MB-231 cells. Conclusion The variant seems to protect against Triple Negative BC probably due to the expression level of miRNA in this particular cell line (MDA-MB-231). This is consistent with the clinical history of the patients who harbor BC Hormone Receptors positive (HR+).
Collapse
Affiliation(s)
- Diana Carolina Sierra-Díaz
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Rodrigo Cabrera
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Laura Alejandra Gonzalez-Vasquez
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Mariana Angulo-Aguado
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kevin Llinás-Caballero
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Nora Constanza Contreras-Bravo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Martin Restrepo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
28
|
Watanabe Y, Yajima S, Koda M, Kinjou A, Koto A, Takamura E, Sakamoto H, Suye SI. Selective miR-21 detection technology based on photocrosslinkable artificial nucleic acid-modified magnetic particles and hybridization chain reaction. Biosens Bioelectron 2024; 247:115920. [PMID: 38091896 DOI: 10.1016/j.bios.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Recently, microRNA (miRNA) detection in blood has attracted attention as a new early detection technology for cancer. The extraction of target miRNA is a necessary preliminary step for detection; however, currently, most extraction methods extract all RNA from the blood, which limits the detection selectivity. Therefore, a method for the selective extraction and detection of target miRNA from blood is very important. In this study, we utilized photocrosslinkable artificial nucleic acids and the hybridization chain reaction (HCR) in an attempt to improve upon the current standard method RT-qPCR, which is hampered by problems with primer design and enzymatic amplification. By introducing photocrosslinkable artificial nucleic acids to oligonucleotide probes modified with magnetic particles with a sequence complementary to that of the target miRNA and irradiating them with light, covalent bonds were formed between the target miRNA and the oligonucleotide probes. These tight covalent bonds enabled the capture of miRNA in blood, and intensive washing ensured that only the target miRNA were extracted. After extraction, two types of DNA (H1 and H2) modified with fluorescent dyes were added and the fluorescence signals were amplified by the HCR in the presence of the target miRNA bound to the photocrosslinkable artificial nucleic acids, allowing for isothermal and enzyme-free miRNA detection. The novel method is suitable for selective miRNA detection in real blood samples. Because the reaction proceeds isothermally and no specialized equipment is used for washing, this detection technology is simple and selective and suitable for application to point-of-care technology using microfluidic devices.
Collapse
Affiliation(s)
- Yui Watanabe
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Shuto Yajima
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Maho Koda
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Ayumu Kinjou
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | | | - Eiichiro Takamura
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Hiroaki Sakamoto
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan.
| | - Shin-Ichiro Suye
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| |
Collapse
|
29
|
Soares S, Aires F, Monteiro A, Pinto G, Faria I, Sales G, Correa-Duarte MA, Guerreiro S, Fernandes R. Radiotherapy Metastatic Prostate Cancer Cell Lines Treated with Gold Nanorods Modulate miRNA Signatures. Int J Mol Sci 2024; 25:2754. [PMID: 38474003 DOI: 10.3390/ijms25052754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNA (miRNA) modulation has been identified as a promising strategy for improving the response of human prostate cancer (PCa) to radiotherapy (RT). Studies have shown that mimics or inhibitors of miRNAs could modulate the sensitivity of PCa cells to RT. In addition, pegylated gold nanoparticles have been studied as a therapeutic approach to treat PCa cells and/or vehicles for carrying miRNAs to the inside of cells. Therefore, we evaluated the capacity of hypofractionated RT and pegylated gold nanorods (AuNPr-PEG) to modulate the miRNA signature on PCa cells. Thus, RT-qPCR was used to analyze miRNA-95, miRNA-106-5p, miRNA-145-5p, and miRNA-541-3p on three human metastatic prostate cell lines (PC3, DU145, and LNCaP) and one human prostate epithelial cell line (HprEpiC, a non-tumor cell line) with and without treatment. Our results showed that miRNA expression levels depend on cell type and the treatment combination applied using RT and AuNPr-PEG. In addition, cells pre-treated with AuNPr-PEG and submitted to 2.5 Gy per day for 3 days decreased the expression levels of miRNA-95, miRNA-106, miRNA-145, and miRNA-541-3p. In conclusion, PCa patients submitted to hypofractionated RT could receive personalized treatment based on their metastatic cellular miRNA signature, and AuNPr-PEG could be used to increase metastatic cell radiosensitivity.
Collapse
Affiliation(s)
- Sílvia Soares
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Fátima Aires
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Gabriela Pinto
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Isabel Faria
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Goreti Sales
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana Guerreiro
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Rúben Fernandes
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- UFP@RISE, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
30
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
31
|
Shrivastav D, Singh DD. Emerging roles of microRNAs as diagnostics and potential therapeutic interest in type 2 diabetes mellitus. World J Clin Cases 2024; 12:525-537. [PMID: 38322458 PMCID: PMC10841963 DOI: 10.12998/wjcc.v12.i3.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose utilization. Uncontrolled high sugar levels lead to advanced glycation end products (AGEs), which affects several metabolic pathways by its receptor of advanced glycation end products (RAGE) and causes diabetic complication. MiRNAs are small RNA molecules which regulate genes linked to diabetes and affect AGEs pathogenesis, and target tissues, influencing health and disease processes. AIM To explore miRNA roles in T2DM's metabolic pathways for potential therapeutic and diagnostic advancements in diabetes complications. METHODS We systematically searched the electronic database PubMed using keywords. We included free, full-length research articles that evaluate the role of miRNAs in T2DM and its complications, focusing on genetic and molecular disease mechanisms. After assessing the full-length papers of the shortlisted articles, we included 12 research articles. RESULTS Several types of miRNAs are linked in metabolic pathways which are affected by AGE/RAGE axis in T2DM and its complications. miR-96-5p, miR-7-5p, miR-132, has_circ_0071106, miR-143, miR-21, miR-145-5p, and more are associated with various aspects of T2DM, including disease risk, diagnostic markers, complications, and gene regulation. CONCLUSION Targeting the AGE/RAGE axis, with a focus on miRNA regulation, holds promise for managing T2DM and its complications. MiRNAs have therapeutic potential as they can influence the metabolic pathways affected by AGEs and RAGE, potentially reducing inflammation, oxidative stress, and vascular complications. Additionally, miRNAs may serve as early diagnostic biomarkers for T2DM. Further research in this area may lead to innovative therapeutic strategies for diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
32
|
Wang C, Xie Y, Song X, Chao Z, Wu K, Fang Y, Zhao H, Ju H, Liu Y. A NIR Programmable In Vivo miRNA Magnifier for NIR-II Imaging of Early Stage Cancer. Angew Chem Int Ed Engl 2023; 62:e202312665. [PMID: 37903741 DOI: 10.1002/anie.202312665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid "false positive" signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.
Collapse
Affiliation(s)
- Caixia Wang
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxin Xie
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefang Song
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science Department, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
33
|
Banchelli M, Tombelli S, de Angelis M, D'Andrea C, Trono C, Baldini F, Giannetti A, Matteini P. Molecular beacon decorated silver nanowires for quantitative miRNA detection by a SERS approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6165-6176. [PMID: 37961002 DOI: 10.1039/d3ay01661g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Advantages of biosensors based on surface enhanced Raman scattering (SERS) rely on improved sensitivity and specificity, and suited reproducibility in detecting a target molecule that is localized in close proximity to a SERS-active surface. Herein, a comprehensive study on the realization of a SERS biosensor designed for detecting miRNA-183, a miRNA biomarker that is specific for chronic obstructive pulmonary disease (COPD), is presented. The used strategy exploits a signal-off mechanism by means of a labelled molecular beacon (MB) as the oligonucleotide biorecognition element immobilized on a 2D SERS substrate, based on spot-on silver nanowires (AgNWs) and a multi-well low volume cell. The MB was properly designed by following a dedicated protocol to recognize the chosen miRNA. A limit of detection down to femtomolar concentration (3 × 10-16 M) was achieved and the specificity of the biosensor was proved. Furthermore, the possibility to regenerate the sensing system through a simple procedure is shown: with regeneration by using HCl 1 mM, two detection cycles were performed with a good recovery of the initial MB signal (83%) and a reproducible signal after hybridization.
Collapse
Affiliation(s)
- Martina Banchelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Sara Tombelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Marella de Angelis
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cristiano D'Andrea
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cosimo Trono
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Francesco Baldini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Ambra Giannetti
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| |
Collapse
|
34
|
Samara M, Vlachostergios PJ, Thodou E, Zachos I, Mitrakas L, Evmorfopoulos K, Tzortzis V, Giakountis A. Characterization of a miRNA Signature with Enhanced Diagnostic and Prognostic Power for Patients with Bladder Carcinoma. Int J Mol Sci 2023; 24:16243. [PMID: 38003433 PMCID: PMC10671612 DOI: 10.3390/ijms242216243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Bladder carcinoma is globally among the most prevalent cancers and is associated with a high mortality rate at advanced stages. Its detection relies on invasive diagnostic methods that are unpleasant for the patient. Non-invasive molecular biomarkers, such as miRNAs, could serve as alternatives for early detection and prognosis of this malignancy. We designed a computational approach that combines transcriptome profiling, survival analyses, and calculation of diagnostic power in order to isolate miRNA signatures with high diagnostic and prognostic utility. Our analysis of TCGA-BLCA data from 429 patients yielded one miRNA signature, consisting of five upregulated and three downregulated miRNAs with cumulative diagnostic power that outperforms current diagnostic methods. The same miRNAs have a strong prognostic significance since their expression is associated with the overall survival of bladder cancer patients. We evaluated the expression of this signature in 19 solid cancer types, supporting its unique diagnostic utility for bladder carcinoma. We provide computational evidence regarding the functional implications of this miRNA signature in cell cycle regulation, demonstrating its abundance in body fluids, including peripheral blood and urine. Our study characterized a novel miRNA signature with the potential to serve as a non-invasive method for bladder cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece
| | - Panagiotis J. Vlachostergios
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece
| | - Ioannis Zachos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Lampros Mitrakas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Konstantinos Evmorfopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Vassilios Tzortzis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41335 Larissa, Greece
| |
Collapse
|
35
|
Gómez-Acebo I, Llorca J, Alonso-Molero J, Díaz-Martínez M, Pérez-Gómez B, Amiano P, Belmonte T, Molina AJ, Burgui R, Castaño-Vinyals G, Moreno V, Molina-Barceló A, Marcos-Gragera R, Kogevinas M, Pollán M, Dierssen-Sotos T. Circulating miRNAs signature on breast cancer: the MCC-Spain project. Eur J Med Res 2023; 28:480. [PMID: 37925534 PMCID: PMC10625260 DOI: 10.1186/s40001-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
PURPOSE To build models combining circulating microRNAs (miRNAs) able to identify women with breast cancer as well as different types of breast cancer, when comparing with controls without breast cancer. METHOD miRNAs analysis was performed in two phases: screening phase, with a total n = 40 (10 controls and 30 BC cases) analyzed by Next Generation Sequencing, and validation phase, which included 131 controls and 269 cases. For this second phase, the miRNAs were selected combining the screening phase results and a revision of the literature. They were quantified using RT-PCR. Models were built using logistic regression with LASSO penalization. RESULTS The model for all cases included seven miRNAs (miR-423-3p, miR-139-5p, miR-324-5p, miR-1299, miR-101-3p, miR-186-5p and miR-29a-3p); which had an area under the ROC curve of 0.73. The model for cases diagnosed via screening only took in one miRNA (miR-101-3p); the area under the ROC curve was 0.63. The model for disease-free cases in the follow-up had five miRNAs (miR-101-3p, miR-186-5p, miR-423-3p, miR-142-3p and miR-1299) and the area under the ROC curve was 0.73. Finally, the model for cases with active disease in the follow-up contained six miRNAs (miR-101-3p, miR-423-3p, miR-139-5p, miR-1307-3p, miR-331-3p and miR-21-3p) and its area under the ROC curve was 0.82. CONCLUSION We present four models involving eleven miRNAs to differentiate healthy controls from different types of BC cases. Our models scarcely overlap with those previously reported.
Collapse
Affiliation(s)
- Inés Gómez-Acebo
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain.
- IDIVAL, Santander, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain.
| | - Javier Llorca
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Jessica Alonso-Molero
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- IDIVAL, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Thalía Belmonte
- IUOPA, University of Oviedo and ISPA (Health Research Institute of Asturias), Oviedo, Spain
| | - Antonio J Molina
- Grupo de Investigación en Interacción, Gen-Ambiente-Salud (GIIGAS), Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Rosana Burgui
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Institute of Public and Occupational Health of Navarre (ISPLN), 31003, Pamplona, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Víctor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Colorectal Cancer Group, ONCOBELL Program, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Ana Molina-Barceló
- Cancer and Public Health UnitFoundation for the Promotion of Health and Biomedical Research (FISABIO-Salud Pública) in the Valencia Region, Valencia, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IdiBGi), Girona, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Trinidad Dierssen-Sotos
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- IDIVAL, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Smith DA, Redman JE, Fraser DJ, Bowen T. Identification and detection of microRNA kidney disease biomarkers in liquid biopsies. Curr Opin Nephrol Hypertens 2023; 32:515-521. [PMID: 37678380 DOI: 10.1097/mnh.0000000000000927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are emerging rapidly as a novel class of biomarkers of major organ disorders, including kidney diseases. However, current PCR-based detection methods are not amenable to development for high-throughput, cost-effective miRNA biomarker quantification. RECENT FINDINGS MiRNA biomarkers show significant promise for diagnosis and prognosis of kidney diseases, including diabetic kidney disease, acute kidney injury, IgA nephropathy and delayed graft function following kidney transplantation. A variety of novel methods to detect miRNAs in liquid biopsies including urine, plasma and serum are being developed. As miRNAs are functional transcripts that regulate the expression of many protein coding genes, differences in miRNA profiles in disease also offer clues to underlying disease mechanisms. SUMMARY Recent findings highlight the potential of miRNAs as biomarkers to detect and predict progression of kidney diseases. Developing in parallel, novel methods for miRNA detection will facilitate the integration of these biomarkers into rapid routine clinical testing and existing care pathways. Validated kidney disease biomarkers also hold promise to identify novel therapeutic tools and targets. VIDEO ABSTRACT http://links.lww.com/CONH/A43.
Collapse
Affiliation(s)
- Daniel A Smith
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - James E Redman
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales, UK
| | - Donald J Fraser
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| | - Timothy Bowen
- Division of Infection & Immunity
- Wales Kidney Research Unit
- Systems Immunity University Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff
| |
Collapse
|
37
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
38
|
Álvarez-Hilario LG, Salmerón-Bárcenas EG, Ávila-López PA, Hernández-Montes G, Aréchaga-Ocampo E, Herrera-Goepfert R, Albores-Saavedra J, Manzano-Robleda MDC, Saldívar-Cerón HI, Martínez-Frías SP, Thompson-Bonilla MDR, Vargas M, Hernández-Rivas R. Circulating miRNAs as Noninvasive Biomarkers for PDAC Diagnosis and Prognosis in Mexico. Int J Mol Sci 2023; 24:15193. [PMID: 37894871 PMCID: PMC10607652 DOI: 10.3390/ijms242015193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.
Collapse
Affiliation(s)
- Lissuly Guadalupe Álvarez-Hilario
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Georgina Hernández-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico C.P. 14080, Mexico;
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de Mexico C.P. 05300, Mexico;
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Ciudad de Mexico C.P. 14080, Mexico;
| | - Jorge Albores-Saavedra
- Departamento de Patología, Medica Sur Clínica y Fundación, Ciudad de Mexico C.P. 14050, Mexico;
| | | | - Héctor Iván Saldívar-Cerón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Sandra Paola Martínez-Frías
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Avenida Vasco de Quiroga No.15, Colonia Belisario Domínguez Sección XVI, Ciudad de Mexico C.P. 14080, Mexico
| | | | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| |
Collapse
|
39
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
40
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023; 12:1916. [PMID: 37508579 PMCID: PMC10377854 DOI: 10.3390/cells12141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Jacek Kabzinski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
42
|
Chan SF, Cheng H, Goh KKR, Zou R. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn 2023; 25:438-453. [PMID: 37030398 DOI: 10.1016/j.jmoldx.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
As miRNAs emerge as potential circulating biomarkers for the diagnosis or prognosis of a wide variety of diseases, the quantification of miRNA necessitates careful preanalytic considerations and sample quality control becomes crucial. This study comprehensively analyzed the profiles of 356 miRNAs by quantitative RT-PCR in various blood sample types, with various processing protocols. The comprehensive analysis investigated the correlations of individual miRNAs with certain confounding factors. On the basis of these profiles, a panel of 7 miRNAs was established for the quality control of samples corresponding to hemolysis and platelet contamination. The panel was used to investigate the confounding impacts based on the size of the blood collection tube, the centrifugation protocol, post-freeze-thaw spinning, and whole blood storage. A standard dual-spin workflow for the processing of blood had been established for optimal sample quality. The real-time stability of 356 miRNAs was also investigated with demonstration of the temperature and time-induced miRNA degradation profile. Stability-related miRNAs were identified from real-time stability study and further incorporated into the quality control panel. This quality control panel enables the assessment of sample quality for more robust and reliable detection of circulating miRNAs.
Collapse
Affiliation(s)
- Suit-Fong Chan
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore.
| | - He Cheng
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore
| | | | - Ruiyang Zou
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore
| |
Collapse
|
43
|
González-Martínez C, Garrido-Navas C, Alcaide-Lucena M, Hidalgo JL, Ortega FG, Serrano MJ. microRNAs signature in relapse metastasis and de novo metastasis of breast cancer. A systematic review. Crit Rev Oncol Hematol 2023:104060. [PMID: 37353177 DOI: 10.1016/j.critrevonc.2023.104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
miRNAs have been widely identified as important players in cancer development and progression. Metastasis in breast cancer can occur as relapse of a treated primary tumour or at the time of diagnosis of the tumour. The aim of this review is to show if both metastasis are different molecular entities characterised by different miRNA signatures that could be studied as specific biomarkers for each entity. For this, we systematically searched the PubMed, Scopus and Web of Science databases. After searching and reviewing the literature, a total of 30 records were included in this review. Results showed a genetic signature including a total of 5 upregulated miRNAs in metastasis compared with early stages. Of them, miR-23b and miR-200c were exclusively present in relapse metastasis. Finally, we proposed a molecular signature for future studies that can be used as a complementary tool at clinical trials for the diagnosis and characterization of metastasis.
Collapse
Affiliation(s)
- Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - Carmen Garrido-Navas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain
| | - Miriam Alcaide-Lucena
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; General Surgery and Digestive System Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - J López Hidalgo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Pathological Anatomy Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Francisco Gabriel Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain.
| | - María José Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Integral Oncology Division, Hospital Virgen de las Nieves, 18014 Granada, Spain.
| |
Collapse
|
44
|
Compagnoni C, Capelli R, Zelli V, Corrente A, Vecchiotti D, Flati I, Di Vito Nolfi M, Angelucci A, Alesse E, Zazzeroni F, Tessitore A. MiR-182-5p Is Upregulated in Hepatic Tissues from a Diet-Induced NAFLD/NASH/HCC C57BL/6J Mouse Model and Modulates Cyld and Foxo1 Expression. Int J Mol Sci 2023; 24:ijms24119239. [PMID: 37298191 DOI: 10.3390/ijms24119239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a relevant liver chronic disease. Variable percentages of NAFLD cases progress from steatosis to steatohepatitis (NASH), cirrhosis and, eventually, hepatocellular carcinoma (HCC). In this study, we aimed to deepen our understanding of expression levels and functional relationships between miR-182-5p and Cyld-Foxo1 in hepatic tissues from C57BL/6J mouse models of diet-induced NAFL/NASH/HCC progression. A miR-182-5p increase was detected early in livers as NAFLD damage progressed, and in tumors compared to peritumor normal tissues. An in vitro assay on HepG2 cells confirmed Cyld and Foxo1, both tumor-suppressor, as miR-182-5p target genes. According to miR-182-5p expression, decreased protein levels were observed in tumors compared to peritumor tissues. Analysis of miR-182-5p, Cyld and Foxo1 expression levels, based on datasets from human HCC samples, showed results consistent with those from our mouse models, and also highlighted the ability of miR-182-5p to distinguish between normal and tumor tissues (AUC 0.83). Overall, this study shows, for the first time, miR-182-5p overexpression and Cyld-Foxo1 downregulation in hepatic tissues and tumors from a diet-induced NAFLD/HCC mouse model. These data were confirmed by the analysis of datasets from human HCC samples, highlighting miR-182-5p diagnostic accuracy and demonstrating the need for further studies to assess its potential role as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| |
Collapse
|
45
|
Kayani FB, Rafique S, Akram R, Hussain M, Bashir S, Nasir R, Khan JS. A simple, sensitive, label-free electrochemical immunosensor based on the chitosan-coated silver/cerium oxide (CS@Ag/CeO 2) nanocomposites for the detection of alpha-fetoprotein (AFP). NANOTECHNOLOGY 2023; 34:265501. [PMID: 36996770 DOI: 10.1088/1361-6528/acc8d8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metal oxide-based sensors have the benefit of inexpensive, quick response, and high sensitivity in detecting specific biological species. In this article, a simple electrochemical immunosensor was fabricated using antibody-chitosan coated silver/cerium oxide (Ab-CS@Ag/CeO2) nanocomposites on a gold electrode for sensitive alpha-fetoprotein (AFP) diagnosis in human serum samples. Successfully synthesis of AFP antibody-CS@Ag/CeO2conjugates was confirmed through Fourier transform infrared spectra of the prototype. The amine coupling bond chemistry was then used to immobilize the resultant conjugate on a gold electrode surface. It was observed that the interaction of the synthesized Ab-CS@Ag/CeO2nanocomposites with AFP prevented an electron transfer and reduced the voltammetric Fe(CN)63-/4-peak current, which was proportional to the amount of AFP. The linear ranges of AFP concentration were found from 10-12-10-6g.ml-1. The limit of detection was calculated using the calibration curve and came out to be 0.57 pg.ml-1. The designed label-free immunosensor successfully detected AFP in human serum samples. As a result, the resulting immunosensor is a promising sensor plate form for AFP detection and could be used in clinical bioanalysis.
Collapse
Affiliation(s)
| | - Saima Rafique
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Rizwan Akram
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Mozaffar Hussain
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Shazia Bashir
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Rubina Nasir
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Jan Sher Khan
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| |
Collapse
|
46
|
Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Zambrano AK. Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Front Med (Lausanne) 2023; 10:1139362. [PMID: 37089590 PMCID: PMC10113479 DOI: 10.3389/fmed.2023.1139362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Papillary thyroid cancer accounts for 85% of thyroid cancer. The diagnosis is based on ultrasound methods and tumor biopsies (FNA). In recent years, research has revealed the importance of miRNAs, non-coding RNA molecules that regulate gene expression and are involved in many diseases. The present mini review describes upregulated and downregulated miRNAs expression in papillary thyroid cancer patient samples (tissue, serum, plasma) and the genes regulated by these non-coding molecules. In addition, a bibliographic search was performed to identify the expression of miRNAs that are common in tumor tissue and blood. The miRNAs miR-146b, miR-221-3p, miRNA 222, miR-21, miR-296-5p, and miR-145 are common in both tissue and bloodstream of PTC patient samples. Furthermore, these miRNAs regulate genes involved in biological processes such as cell differentiation, proliferation, migration, invasion, and apoptosis. In conclusion, miRNAs could potentially become valuable biomarkers, which could help in the early diagnosis and prognosis of papillary thyroid cancer.
Collapse
|
47
|
Manisekaran R, Chettiar ADR, Kandasamy G, Garcia-Contreras R, Acosta-Torres LS. State-of-the-art: MXene structures in nano-oncology. BIOMATERIALS ADVANCES 2023; 147:213354. [PMID: 36842245 DOI: 10.1016/j.bioadv.2023.213354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Cancer nanomedicine has been investigated widely and boomed in the last two decades, resulting in designing nanostructures with biofunctionalization, giving rise to an "All-in-One" multifunctional platform. The development of rational design technology with extended functionalities brought interdisciplinary researchers to work continuously, aiming to find a prevent or effectively treat the deadly disease of the century. Thus, it led to some Food and Drug Administration (FDA)-approving nano-based formulations for cancer treatment and opening a vast area of promising discoveries by exploiting different nanomaterials. Two-dimensional (2D) materials have recently gained tremendous interest among scientists because of their outstanding structural, optical, electronic, thermal, and mechanical characteristics. Among various 2D nanomaterials, MXenes are a widely studied nanosystem because of their close similarity to graphene analogs. So, it is synthesized using multiple approaches and exploits their inherited properties. But in most cases, surface functionalization techniques are carried out for targeting, site-specific drug clearance, renal clearance, and biocompatible with healthy cells. Thus, fabricating a multimodal agent for mono or combined therapies is also an image-guided diagnostic agent. This review will explain the recent and emerging advancements of MXenes-based composites as a multifunctional theragnostic agent and discuss the possibilities of transferring laboratory research to clinical translation.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico.
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| |
Collapse
|
48
|
Park W, Maeng SW, Mok JW, Choi M, Cha HJ, Joo CK, Hahn SK. Hydrogel Microneedles Extracting Exosomes for Early Detection of Colorectal Cancer. Biomacromolecules 2023; 24:1445-1452. [PMID: 36908257 DOI: 10.1021/acs.biomac.2c01449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There are several methods for early diagnosis of tumors, such as detecting circulating tumor DNAs, detecting circulating tumor cells, or imaging with tumor-targeting contrast agents. However, these assays are time-consuming and may cause patient discomfort during the biopsy collecting process. Here, we develop a facile method for early diagnosis of tumors by extracting exosomes from interstitial fluid (ISF) using hydrogel microneedles (MNs). The hydrogel MNs expand in the skin to absorb the ISF, and the tumor exosomes contained in the ISF bind with the glypican-1 antibodies inside the hydrogel of MNs. After removing the hydrogel on the MNs, exosomes are separately purified from the ISF to analyze tumor-related biomarkers. Finally, colorectal cancer can be diagnosed by ELISA for the colorectal cancer-induced model mice. This noninvasive hydrogel MN system to obtain the exosome samples would play an important role in early cancer diagnosis.
Collapse
Affiliation(s)
- Wonchan Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seong-Woo Maeng
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jee Won Mok
- CK St. Mary's Eye Center, CK Building, 559, Gangnam-daero, Seocho-gu, Seoul 06531, Republic of Korea
| | - Minji Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Choun-Ki Joo
- CK St. Mary's Eye Center, CK Building, 559, Gangnam-daero, Seocho-gu, Seoul 06531, Republic of Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
49
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
50
|
Iacomino G. miRNAs: The Road from Bench to Bedside. Genes (Basel) 2023; 14:genes14020314. [PMID: 36833241 PMCID: PMC9957002 DOI: 10.3390/genes14020314] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
miRNAs are small noncoding RNAs that control gene expression at the posttranscriptional level. It has been recognised that miRNA dysregulation reflects the state and function of cells and tissues, contributing to their dysfunction. The identification of hundreds of extracellular miRNAs in biological fluids has underscored their potential in the field of biomarker research. In addition, the therapeutic potential of miRNAs is receiving increasing attention in numerous conditions. On the other hand, many operative problems including stability, delivery systems, and bioavailability, still need to be solved. In this dynamic field, biopharmaceutical companies are increasingly engaged, and ongoing clinical trials point to anti-miR and miR-mimic molecules as an innovative class of molecules for upcoming therapeutic applications. This article aims to provide a comprehensive overview of current knowledge on several pending issues and new opportunities offered by miRNAs in the treatment of diseases and as early diagnostic tools in next-generation medicine.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, National Research Council, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|