1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Wang M, Dai B, Liu Q, Wang X, Xiao Y, Zhang G, Jiang H, Zhang X, Zhang L. Polystyrene nanoplastics exposure causes erectile dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116551. [PMID: 38875818 DOI: 10.1016/j.ecoenv.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Bangshun Dai
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qiushi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Yunzheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, Beijing 100034, China.
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China; Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Shen Z, Zhang F, Guo Z, Qu R, Wei Y, Wang J, Zhang W, Xing X, Zhang Y, Liu J, Tang D. Association between air pollution and male sexual function: A nationwide observational study in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134010. [PMID: 38492404 DOI: 10.1016/j.jhazmat.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study aimed to explore the associations between air pollution and male sexual function. A total of 5047 male subjects in China were included in this study. The average air pollution exposure (PM2.5, PM10, SO2, CO, NO2, and O3) for the preceding 1, 3, 6, and 12 months before the participants' response was assessed. Male sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT). Generalized linear models were utilized to explore the associations between air pollution and male sexual function. K-prototype algorithm was conducted to identify the association among specific populations. Significant adverse effects on the IIEF-5 score were observed with NO2 exposure during the preceding 1, 3, and 6 months (1 m: β = -5.26E-05; 3 m: β = -4.83E-05; 6 m: β = -4.23E-05, P < 0.05). PM2.5 exposure during the preceding 12 months was found to significantly negatively affect the PEDT after adjusting for confounding variables. Our research indicated negative correlations between air pollutant exposures and male sexual function for the first time. Furthermore, these associations were more pronounced among specific participants who maintain a normal BMI, exhibit extroverted traits, and currently engage in smoking and alcohol consumption.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zihan Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute for Global Health and Development, Peking University, Beijing 100871, China; Ministry of Education, Key Laboratory of Epidemiology of Major Diseases, Peking University, Beijing 100083, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
4
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
5
|
Kerr GH, Goldberg DL, Harris MH, Henderson BH, Hystad P, Roy A, Anenberg SC. Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from Satellites, Models, and Monitors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19532-19544. [PMID: 37934506 DOI: 10.1021/acs.est.3c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In the United States (U.S.), studies on nitrogen dioxide (NO2) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO2 measurements and estimates of NO2 estimates from land-use regression and photochemical models, can aid in assessing NO2 exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO2 levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO2 disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO2. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO2.
Collapse
Affiliation(s)
- Gaige Hunter Kerr
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| | - Daniel L Goldberg
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| | - Maria H Harris
- Environmental Defense Fund, 257 Park Avenue South, New York, New York 10010, United States
| | - Barron H Henderson
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Ananya Roy
- Environmental Defense Fund, 257 Park Avenue South, New York, New York 10010, United States
| | - Susan C Anenberg
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
6
|
Schulte PA, Jacklitsch BL, Bhattacharya A, Chun H, Edwards N, Elliott KC, Flynn MA, Guerin R, Hodson L, Lincoln JM, MacMahon KL, Pendergrass S, Siven J, Vietas J. Updated assessment of occupational safety and health hazards of climate change. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:183-206. [PMID: 37104117 PMCID: PMC10443088 DOI: 10.1080/15459624.2023.2205468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Workers, particularly outdoor workers, are among the populations most disproportionately affected by climate-related hazards. However, scientific research and control actions to comprehensively address these hazards are notably absent. To assess this absence, a seven-category framework was developed in 2009 to characterize the scientific literature published from 1988-2008. Using this framework, a second assessment examined the literature published through 2014, and the current one examines literature from 2014-2021. The objectives were to present literature that updates the framework and related topics and increases awareness of the role of climate change in occupational safety and health. In general, there is substantial literature on worker hazards related to ambient temperatures, biological hazards, and extreme weather but less on air pollution, ultraviolet radiation, industrial transitions, and the built environment. There is growing literature on mental health and health equity issues related to climate change, but much more research is needed. The socioeconomic impacts of climate change also require more research. This study illustrates that workers are experiencing increased morbidity and mortality related to climate change. In all areas of climate-related worker risk, including geoengineering, research is needed on the causality and prevalence of hazards, along with surveillance to identify, and interventions for hazard prevention and control.
Collapse
Affiliation(s)
- P. A. Schulte
- Advanced Technologies and Laboratories International, Inc, Cincinnati, Ohio
| | - B. L. Jacklitsch
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - A. Bhattacharya
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - H. Chun
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Atlanta, Georgia
| | - N. Edwards
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia
| | - K. C. Elliott
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Anchorage, Alaska
| | - M. A. Flynn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - R. Guerin
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - L. Hodson
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. M. Lincoln
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - K. L. MacMahon
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - S. Pendergrass
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. Siven
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - J. Vietas
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| |
Collapse
|
7
|
Zhou X, Song L, Cong R, Luan J, Zhou X, Wang Y, Yao L, Zhang X, Ren X, Zhang T, Yu M, Song N. A comprehensive analysis on the relationship between BDE-209 exposure and erectile dysfunction. CHEMOSPHERE 2022; 308:136486. [PMID: 36150222 DOI: 10.1016/j.chemosphere.2022.136486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ether (mainly BDE-209) is a commonly used brominated flame retardant in various industrial products. Although its damage to the reproduction system has been established, its effect on erectile function remains unclear. The present study investigated whether BDE-209 induced erectile dysfunction in male SD rats and the underlying mechanisms. Pubertal male rats were exposed to BDE-209 orally (0, 5, 50, and 500 mg/kg/day) for 28 days and the ICP (intracavernous pressure) and MAP (mean arterial pressure) were measured. After the rats were euthanized, the fibrosis and apoptosis levels were evaluated. Additionally, the endothelial function of the rat vascular endothelium cells and the human umbilical vein endothelial cells were impaired after treatment with 50 μM and 100 μM BDE-209. Moreover, the bioinformatics based on CTD database and ChIP-X Enrichment Analysis, version 3 (ChEA3) and molecular docking analysis demonstrated that 5 transcription factors (NFKB1, NR3C1, E2F5, REL, IRF4) might regulate endothelial function by affecting the expression of interactive genes (BCL-2, CAP3, CAT, TNF, MAPK1, and MAPK3). In summary, the present study demonstrated that BDE-209 might affect downstream interactive genes by binding to transcription factors, leading to corpus cavernosum endothelial dysfunction, thus contributing to erectile dysfunction in rats.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Lebin Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Tongtong Zhang
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Mengchi Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China; Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, 845350, China.
| |
Collapse
|
8
|
Zhou X, Wang S, Zhou R, Zhang T, Wang Y, Zhang Q, Cong R, Ji C, Luan J, Yao L, Zhou X, Song N. Erectile dysfunction in hypospadiac male adult rats induced by maternal exposure to di-n-butyl phthalate. Toxicology 2022; 475:153227. [PMID: 35690178 DOI: 10.1016/j.tox.2022.153227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
For the treatment of hypospadias, a significant number of studies focus on penile reconstruction. However, scant attention is given to sexual behavior of hypospadiac patients and underlying mechanisms. A rat model of hypospadias was constructed by maternal di-n-butyl phthalate (DBP) exposure (800 mg/kg/day by gavage during gestational days 14-18). Ten-week-old male rats with hypospadias undertook significantly decreased penis/body weight ratio, reduced testis/body weight ratio, lower serum testosterone level and thinner myelin sheath thickness of cavernosum nerves. Meanwhile, erectile dysfunction (ED) was found in hypospadiac rats, which showed significant increases in transforming growth factor-β1 (TGF-β1) protein expression and decreases in the expression of alpha smooth muscle actin (α-SMA) protein, neuronal and endothelial nitric oxide synthase protein (nNOS and eNOS). In addition, phosphorylated protein kinase B/protein kinase B (pAkt/Akt) ratios were remarkably lower, but the Bcl-2-associated X protein (Bax)/Bcl-2 ratios, caspase-3 protein expression, nuclear factor erythroid 2-related factor 2/ Kelch-like ECH-associated protein 1 (Nrf2/Keap-1) ratios, NAD(P)H dehydrogenase quinone 1(NQO1) protein expression and heme oxygenase-1 (HO-1) protein expression were higher in the hypospadias groups than the control group. Notably, ED is comorbid with hypospadias in cases. Penile fibrosis, testosterone deficiency, and endothelial dysfunction lead to ED in hypospadias induced by DBP eventually, which might be explained by activating Akt/Bad/Bax/caspase-3 pathway, Nrf2/Keap-1 pathway and suppressing NOS/cGMP pathway in penis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruhua Zhou
- College of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Yichun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Qijie Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Rong Cong
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Chengjian Ji
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Jiaochen Luan
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Liangyu Yao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Xuan Zhou
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Ninghong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang 845350, China.
| |
Collapse
|
9
|
Kumar S, Sharma A, Thaker R. Air pollutants and impairments of male reproductive health-an overview. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:565-575. [PMID: 33544535 DOI: 10.1515/reveh-2020-0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Excessive air pollution, both ambient and indoor are might be detrimental to human wellbeing and are related to morbidity and mortality, it may also affect the reproductive function and its outcome. It is a recognized fact that air pollution contains several toxicants, gases, particulate matter, toxic metals etc. Some of them might affect reproductive and developmental process and a few are persistent. The information accessible on air pollution to human male reproduction is stated to affect semen quality by diminishing one or more sperm quality parameters i.e., sperm morphology, concentration, motility etc. and may causes sperm DNA damage, these might alter the fertility potential which in turn affect pregnancy or its outcome. The impact might be related to the pollutant's concentration and duration of exposure. The data on impact of air contamination on endocrine function are inadequate, inconsistence and the diversity of existence of air contaminants in area to area and multiplicity in semen quality parameters assessed in various studies as well as study design variables complicated the problem of evaluation of impact of air pollution on male reproduction. The data available suggests the air pollution is might be injurious to human male reproductive health, which depends upon amounts of air pollutants in the air, duration of exposure etc. but more comprehensive data are needed to substantiate the findings. The data are also needed on indoor air pollution on reproduction as people are might be subjected to greater quantities of some of the indoor air pollutants as compared to ambient air pollution.
Collapse
Affiliation(s)
- Sunil Kumar
- A-10, Radhey Kunj Apartment, Shahi Baugh, Ahmedabad, 380004, India
- National Institute of Occupational Health (ICMR), Ahmedabad, 380016, India
| | | | | |
Collapse
|
10
|
Zhou X, Zhang T, Song L, Wang Y, Zhang Q, Cong R, Ji C, Luan J, Yao L, Zhang W, Song N, Wang S. Prenatal exposure to di-n-butyl phthalate induces erectile dysfunction in male adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112323. [PMID: 34015706 DOI: 10.1016/j.ecoenv.2021.112323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Di-n-butyl phthalate (DBP) is a widely used plasticizer and an environmental endocrine-disrupting compound. However, whether prenatal exposure to DBP can impair erectile function remains unknown. We conducted this study to investigate the potential effects of prenatal exposure to DBP on erectile function and the underlying mechanisms. A rat model of prenatal DBP exposure (12.5, 100 or 800 mg/kg/day by gavage during gestational days 13-21) was established. Prenatal DBP exposure significantly decreased penis/body weight ratio, myelin sheath thickness of cavernosum nerves and serum testosterone level in male rats at the age of 10 weeks. Furthermore, erectile dysfunction was detected in all DBP exposure groups, which exhibited substantial increases in transforming growth factor-β1 (TGF-β1) expression and decreases in the expression of alpha smooth muscle actin (α-SMA), neuronal and endothelial nitric oxide synthase (nNOS and eNOS). Additionally, the phospho-B-cell lymphoma 2 (Bcl-2)-associated death promoter (p-Bad)/Bad and phospho-the protein kinase B (p-AKT)/AKT ratios were remarkably lower, but the Bcl-2-associated X protein (Bax)/Bcl-2 ratio and caspase-3 were higher in DBP exposure groups than in the control group. Notably, prenatal exposure to DBP increase the risk of ED in male adult rats, even taking low dose of DBP (12.5 mg/kg/day). DBP exposure causing penile fibrosis, decreased testosterone level, and endothelial dysfunction may be responsible for ED by activating Akt/Bad/Bax/caspase-3 pathway and suppressing NOS/cGMP pathway in penis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Lebin Song
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Yichun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Qijie Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Rong Cong
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Chengjian Ji
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Jiaochen Luan
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Liangyu Yao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Wei Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Ninghong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang 845350, China.
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 2021; 10:antiox10060837. [PMID: 34073826 PMCID: PMC8225220 DOI: 10.3390/antiox10060837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.
Collapse
|
12
|
Cox LA. How Do Exposure Estimation Errors Affect Estimated Exposure-Response Relations? INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE 2021:449-474. [DOI: 10.1007/978-3-030-57358-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Paudel U, Pant KP. Beyond Smoking: Environmental Determinants of Asthma Prevalence in Western Nepal. J Health Pollut 2020; 10:200310. [PMID: 32175181 PMCID: PMC7058133 DOI: 10.5696/2156-9614-10.25.200310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Asthma is widely prevalent in Nepal, but the causes are not well known aside from some general associations with ambient air pollution and microbial exposures. Information on the wide-ranging determinants of asthma prevalence among the population at risk can help policy makers to reduce risk. OBJECTIVE The present study is a preliminary investigation of the environmental, socioeconomic and behavioral determinants of asthma prevalence in western Nepal. METHODS A survey was conducted among 420 randomly selected households in western Nepal. A cross-sectional analytical study design was employed with the primary data using econometric tools of probit and logistic regression. RESULTS Environmental variables such as extreme cold winter, deteriorating river water quality and air pollution were associated with an increase in asthma prevalence. However, individual or household characteristics such as advancing age of household head, use of pesticides in the home for the control of pests, piped drinking water with old pipes and lack of participation in awareness programs were associated with an increase in asthma prevalence. DISCUSSION Among environmental factors, decreasing river water quality, increasing air pollution, and extremely cold winters are more likely to contribute to asthma prevalence. In light of the effects of environmental factors on the prevalence of asthma in Nepal, the high public and private costs of asthma could further impoverish the rural poor. CONCLUSIONS Environmental health policy makers should design adaptation strategies along with additional community programs addressing asthma-instigating factors. Programs to reduce environmental pollution can reduce morbidity due to asthma. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL This study was approved by the Ethical Committee of the Nepal Health Research Council. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Uttam Paudel
- Environmental Health Economist, Tribhuvan University, Nepal
| | | |
Collapse
|
14
|
Jung EJ, Na W, Lee KE, Jang JY. Elderly Mortality and Exposure to Fine Particulate Matter and Ozone. J Korean Med Sci 2019; 34:e311. [PMID: 31833266 PMCID: PMC6911868 DOI: 10.3346/jkms.2019.34.e311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The effects on particulate matter (PM) and ozone on health are being reported by a number of studies. The effects of these air pollutants are likely to be stronger in the elderly population, but studies in this regard are scarce. The purpose of this study was to study the effects of PM ≤ 2.5 μ and ozone on chronic health effects of the elderly population. METHODS In order to analyze the health status of the elderly population, National Statistical Office Mortality records were used. In this study, we calculated the number of deaths in Seoul of people who were 60 years or older between 2002 and 2012. The current study analyzed each disorder separately and the lag effect. PM and ozone were analyzed using the single exposure model, as well as the adjusted multi exposure model. RESULTS In the single exposure analysis with PM2.5 as the exposure variable, with the increase of 10 μ/m³, the number of deaths increased by 1.0039 fold, and vascular disease 1.0053 fold. In the multi exposure model adjusting for ozone, the number of deaths increased by 1.0037 fold, and vascular disease 1.0049 fold. In the single exposure analysis with ozone as the exposure variable, with the increase of 10 ppb, the number of deaths increased by 1.0038 fold, and in the multi exposure model adjusting for PM2.5, the number of deaths increased by 1.0027 fold. These results differed depending on the period or season. There was a 5-day lag effect between PM2.5 and deaths in the multi exposure model, and 1.0028 fold when adjusted for ozone. There was a 1-day lag effect in single exposure models with ozone as the main variable, and 1.0027 fold increase in deaths. CONCLUSION In our study, an increase in the number of deaths in the elderly population in accordance with the increase in the PM2.5 and ozone was found. The association found in our study could also influence socioeconomic burden. Future studies need to be performed in regards to younger population, as well as other air pollutants.
Collapse
Affiliation(s)
- En Joo Jung
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea.
| | | | - Kyung Eun Lee
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Ulsan, Korea
| | - Jae Yeon Jang
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
15
|
Nabizadeh R, Yousefian F, Moghadam VK, Hadei M. Characteristics of cohort studies of long-term exposure to PM 2.5: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30755-30771. [PMID: 31494855 DOI: 10.1007/s11356-019-06382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
This study systematically reviewed all the cohort studies investigating the relationship between long-term exposure to PM2.5 and any health outcome until February 2018. We searched ISI Web of Knowledge, Pubmed, and Scopus databases for peer-reviewed journal research articles published in English. We only extracted the results of the single-pollutant main analysis of each study, excluding the effect modifications and sensitivity analyses. Out of the initial 9523 articles, 203 articles were ultimately included for analysis. Based on the different characteristics of studies such as study design, outcome, exposure assessment method, and statistical model, we calculated the number and relative frequency of analyses with statistically significant and insignificant results. Most of the studies were prospective (84.8%), assessed both genders (66.5%), and focused on a specific age range (86.8%). Most of the articles (78.1%) had used modeling techniques for exposure assessment of cohorts' participants. Among the total of 317 health outcomes, the most investigated outcomes include mortality due to cardiovascular disease (6.19%), all causes (5.48%), lung cancer (4.00%), ischemic heart disease (3.50%), and non-accidental causes (3.50%). The percentage of analyses with statistically significant results were higher among studies that used prospective design, mortality as the outcome, fixed stations as exposure assessment method, hazard ratio as risk measure, and no covariate adjustment. We can somehow conclude that the choice of right characteristics for cohort studies can make a difference in their results.
Collapse
Affiliation(s)
- Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Kazemi Moghadam
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wilson SR, Madronich S, Longstreth JD, Solomon KR. Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochem Photobiol Sci 2019; 18:775-803. [PMID: 30810564 DOI: 10.1039/c8pp90064g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O3) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA).
Collapse
Affiliation(s)
- S R Wilson
- Centre for Atmospheric Chemistry, School of Earth, Atmosphere and Life Sciences, University of Wollongong, NSW, Australia.
| | - S Madronich
- National Center for Atmospheric Research, Boulder, CO, USA
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA and Emergent BioSolutions, Gaithersburg, MD, USA
| | - K R Solomon
- Centre for Toxicology and School of Environmental Sciences, University of Guelph, ON, Canada
| |
Collapse
|
17
|
Zhao S, Wang J, Xie Q, Luo L, Zhu Z, Liu Y, Deng Y, Kang R, Luo J, Zhao Z. Elucidating Mechanisms of Long-Term Gasoline Vehicle Exhaust Exposure–Induced Erectile Dysfunction in a Rat Model. J Sex Med 2019; 16:155-167. [DOI: 10.1016/j.jsxm.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/02/2023]
|
18
|
Zhao T, Markevych I, Romanos M, Nowak D, Heinrich J. Ambient ozone exposure and mental health: A systematic review of epidemiological studies. ENVIRONMENTAL RESEARCH 2018; 165:459-472. [PMID: 29728258 DOI: 10.1016/j.envres.2018.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND An increasing number of studies have suggested adverse effects of air pollution on mental health. Given the potentially negative impacts of ozone exposure on the immune and nervous system driven from animal experiments, ozone might also affect mental health. However, no systematic synthesis of the relevant literature has been conducted yet. This paper reviews the studies that assessed the link between ozone exposure and mental health thus far. METHODS We followed the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). PubMed, Web of Science, and EMBASE were systematically searched for epidemiological studies on ambient ozone exposure and mental or behavioral disorders according to the International Classification of Disease. The period was from January 1st, 1960 to December 14st, 2017. We evaluated the risk of bias by the Office of Health Assessment and Translation (OHAT) Approach and Navigation Guide for each included study. RESULTS The keyword search yielded 567 results. 31 papers met the selection criteria and were included in the review. We found only inconclusive evidence that ozone affects autism spectrum disorders, impairment of cognitive functions and dementia, depression, and suicide. The large heterogeneity of study designs, outcome definitions and study quality in general prevented us from conducting meta-analyses. CONCLUSIONS Current evidence for an association between ambient ozone exposure and mental health outcomes is inconclusive and further high quality studies are needed to assess any potential links given the strong biologic plausibility.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marcel Romanos
- Centre of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
19
|
Cox LAT. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5. ENVIRONMENTAL RESEARCH 2018; 164:636-646. [PMID: 29627760 DOI: 10.1016/j.envres.2018.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 05/21/2023]
Abstract
Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations.
Collapse
Affiliation(s)
- Louis Anthony Tony Cox
- Cox Associates and University of Colorado, 503 N. Franklin Street, Denver, CO 80218, USA.
| |
Collapse
|