1
|
Ochoa-Leite C, Rodrigues S, Ramos AS, Ribeiro F, Barbosa J, Jerónimo C, de Pinho PG, Dinis-Oliveira RJ, Costa JT. Metabolomics and proteomics in occupational medicine: a comprehensive systematic review. J Occup Med Toxicol 2024; 19:38. [PMID: 39407251 PMCID: PMC11479568 DOI: 10.1186/s12995-024-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Occupational biomonitoring is essential for assessing health risks linked to workplace exposures. The use of 'omics' technologies, such as metabolomics and proteomics, has become crucial in detecting subtle biological alterations induced by occupational hazards, thereby opening novel avenues for biomarker discovery. AIMS This systematic review aims to evaluate the application of metabolomics and proteomics in occupational health. METHODS Following the PRISMA guidelines, we conducted a comprehensive search on PubMed, Scopus, and Web of Science for original human studies that use metabolomics or proteomics to assess occupational exposure biomarkers. The risk of bias was assessed by adapting the Cochrane Collaboration tool and the Newcastle-Ottawa Quality Assessment Scale. RESULTS Of 2311 initially identified articles, 85 met the eligibility criteria. These studies were mainly conducted in China, Europe, and the United States of America, covering a wide range of occupational exposures. The findings revealed that metabolomics and proteomics approaches effectively identified biomarkers related to chemical, physical, biomechanical, and psychosocial hazards. Analytical methods varied, with mass spectrometry-based techniques emerging as the most prevalent. The risk of bias was generally low to moderate, with specific concerns about exposure measurement and confounding factors. CONCLUSIONS Integrating metabolomics and proteomics in occupational health biomonitoring significantly advances our understanding of exposure effects and facilitates the development of personalized preventive interventions. However, challenges remain regarding the complexity of data analysis, biomarker specificity, and the translation of findings into preventive measures. Future research should focus on longitudinal studies and biomarker validation across diverse populations to improve the reliability and applicability of occupational health interventions.
Collapse
Affiliation(s)
- Carlos Ochoa-Leite
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Occupational Medicine Office and Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
| | - Sara Rodrigues
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto - Rua do Campo Alegre, Porto, 823, 4150-180, Portugal
| | - Ana Sofia Ramos
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Flávio Ribeiro
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - João Barbosa
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - Carmen Jerónimo
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Porto, 4050-313, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal.
- FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, no. 33-A, Lisbon, 1400-136, Portugal.
| | - José Torres Costa
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
2
|
Ying M, Yang Y, Huo Q, Sun J, Hong X, Yang F, Fang Y, Lu L, Mao T, Xiao P, Tao G. Nrf-2/HO-1 activation protects against oxidative stress and inflammation induced by metal welding fume UFPs in 16HBE cells. Sci Rep 2024; 14:24057. [PMID: 39402078 PMCID: PMC11473639 DOI: 10.1038/s41598-024-74599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
As one of the main occupational hazards, welding fumes can cause oxidative damage and induce series of diseases, such as COPD or asthma. To clarify the effects of the metal fume ultrafine particulates (MF-UFPs) of welding fumes on oxidative damage, UFPs were collected by melt inert gas (MIG) and manual metal arc (MMA) welding, and the composition was confirmed. Human bronchial epithelial 16HBE cells were treated with 0-1000 µg/cm2 MF-UFPs to analyse the cytotoxicity, oxidative stress and cytokines. The protein and mRNA expression of Keap1-Nrf-2/antioxidant response elements (AREs) signalling pathway components were also analysed. After 4 h of treatment, the cell viability decreased 25% after 33.85 and 32.81 µg/cm2 MIG/MMA-UFPs treated. The intracellular ATP concentrations were also decreased significantly, while LDH leakage was increased. The decreased mitochondrial membrane potential and increased ROS suggested the occurrence of oxidative damage, and the results of proteome profiling arrays also showed a significant increase in IL-6 and IL-8. The expression of AREs which related to antioxidant and anti-inflammatory were also increased. These results indicate that the MF-UFPs can cause oxidative stress in 16HBE cells and activate the Nrf-2/ARE signalling pathway to against oxidative damage.
Collapse
Affiliation(s)
- Mengchao Ying
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Yun Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Qian Huo
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Jingqiu Sun
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Xinyu Hong
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Feng Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
| | - Yamin Fang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Tingfeng Mao
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| |
Collapse
|
3
|
Kiss DS, Toth I, Bartha T, Jerzsele A, Zsarnovszky A, Pasztine Gere E, Ondrasovicova S, Varro P, Kovago C. Effects of metal oxide inhalation on the transcription of some hormone receptors in the brain, examined in an in vivo mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51834-51843. [PMID: 39134792 PMCID: PMC11374873 DOI: 10.1007/s11356-024-34425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024]
Abstract
Respirable metal oxide nanoparticles in welding fumes pose significant health risks upon inhalation, potentially leading to neurodegenerative diseases. While the exact mechanisms remain unclear, it is evident that metal oxide nanoparticles can disrupt cellular functions, including metabolism and inflammatory responses after crossing the blood-brain barrier (BBB). Our study investigates the impact of manual metal arc welding fumes on hormone receptor transcription in an in vivo mouse model. After collecting samples from six different brain regions at 24 and 96 h upon exposure, we focused on expression levels of estrogen receptors (ERs), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) due to their roles in modulating neuroprotective responses and neuroinflammatory processes. Analysis revealed differential susceptibility of brain regions to hormonal disruption induced by welding fumes, with the hypothalamus (HT) and olfactory bulb (OB) showing prominent changes in receptor expression. Considering ERs, 24 h sampling showed an elevation in OB, with later increases in both ERα and ERβ. HT showed significant ERβ change only by 96 h. TRs mirrored ER patterns, with notable changes in OB and less in HT. PPARγ followed TR trends, with early upregulation in HT and downregulation elsewhere. These findings suggest a compensatory response within the CNS aimed at mitigating neuroinflammatory effects, as evidenced by the upregulation of ERβ, TRα, and PPARγ. The coordinated increase in ERs, TRs, and PPARs in the hypothalamus and olfactory bulb also highlights their potential neuroprotective roles in response to welding fume exposure. Our results also support the theory of metal oxide penetration to the CNS via the lungs-blood-BBB pathway, making HT and OB more vulnerable to welding fume exposure.
Collapse
Affiliation(s)
- David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Istvan Toth
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Akos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Animal Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Erzsebet Pasztine Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Petra Varro
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Nwogueze BC, Ofili MI, Anachuna KK, Mbah AO. Serum zinc levels and body composition variability as trajectory for hyperlipidemic and dyslipidemic effect among welders exposed to welding fumes and smoking: A biomarker for cardiovascular health. Toxicol Rep 2024; 12:607-613. [PMID: 38845746 PMCID: PMC11154125 DOI: 10.1016/j.toxrep.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Welding is a common method for joining metals by heating them to the welding temperature. Exposure to welding fumes has a serious effect on the health of welders. This study examined serum zinc variability and body composition as route for hyperlipidemia and dyslipidemia in welders exposed to welding fumes and smoking, exploring the possibilities for the risk of possible cardiovascular disease. The experimental case control design was adopted in the study. Forty apparently healthy adult males were randomly selected comprising of twenty control group (non-smokers and smokers without welding experience) and twenty experimental group (non-smokers and smokers with welding experience) welders. Data obtained were represented as Mean ± SEM while comparison of means across group was done by one-way ANOVA followed by Tukey's multiple comparison for post hoc test at p-value < 0.05 level of significance using Graph Pad prism version 8. The data obtained showed that the body mass index (BMI) of smokers (non-welders and welders) were slightly reduced while that of non-smoking welders was increased compared to the control. The serum zinc level increased among the smoking welders, while the smoking non-welders and non-smoking welders decreased when compared to the control group (p < 0.05). Exposure to welding fumes has been shown to increase total cholesterol levels compared to the control. Weld fumes significantly (p < 0.05) increased high-density lipoproteins (HDL) levels among smoking non-welders compared to the control group, while, HDL was reduced in non-smoking welders and smoking welders, respectively (p < 0.05). Triglyceride levels significantly (p < 0.05) increased in all experimental groups compared to control levels (p < 0.05). Exposure to welding fumes and smoking caused significant changes in serum zinc, HDL and triglycerides levels with implications for the formation of plaques around the arteries interfering with the effective flow of blood through the vascular system, with implications of hyperlipidemia and dyslipidemia. This study recommends that further studies should be done using biomarkers from urine or toe nails.
Collapse
Affiliation(s)
| | - Mary Isioma Ofili
- Nursing Science Department, Delta State University, Abraka, Delta State, Nigeria
| | | | | |
Collapse
|
5
|
Gupta S. Risk of lung cancer among welders and flame cutters: A systematic review and meta-analysis of case controlled studies. Bull Cancer 2023; 110:1279-1287. [PMID: 37802714 DOI: 10.1016/j.bulcan.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES The process of flame-cutting and welding is believed to be highly hazardous for workers involved in related industries. The study aims to provide a comprehensive quantitative effect of the risk of lung cancer due to exposure to welding fumes. METHODS A systematic review was conducted to extract published estimates of Odd's Ratio (OR) of the association of lung cancer and exposure to welding fumes, till 2022. Studies were extracted from the PubMed and Cochrane database and Google Scholar. Studies from all parts of the world were considered. Through a meta-analysis conducted with random effects model, a forest plot was created, and publication bias was checked using a funnel plot. RESULTS The meta-analysis yielded an OR of 1.28 (95% CI 1.055-1.55), with a moderately high heterogeneity between the studies [I2=72%; T2=0.0524;Q=36.12(P<0.001)]. The sensitivity and influence analysis confirmed the absence of highly influential studies that may have led to potentially distorted outcomes. The funnel plot showed no evidence of publication bias among the studies included in this analysis. CONCLUSION As the association between lung cancer and occupational hazards from exposure to welding fumes is certain, there is a need to control and regulate industrial activities that involve welding and flame cutting. Already, restrictions on safe levels of fume in the workplace are in operation.
Collapse
Affiliation(s)
- Saptorshi Gupta
- International Institute for Population Sciences, Deonar, Mumbai 400088, India.
| |
Collapse
|
6
|
Zha B, Xu H, Liu Y, Zha X. Association between mixed urinary metal exposure and liver function: analysis of NHANES data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112564-112574. [PMID: 37833592 DOI: 10.1007/s11356-023-30242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Metals have been reported to affect liver functions; however, the association between mixed metal exposure in the urine and liver functions remains unclear. The present study analyzed data from the National Health and Nutrition Examination Survey (NHANES) program collected in 2005-2018. Weighted multiple linear regression and Bayesian kernel machine regression (BKMR) were used to explore the relationship between mixed urinary metal contents and liver function tests (LFTs). A total of 8158 participants were analyzed in this study. Multiple methods suggested that cadmium (Cd) was significantly positively related to LFTs, while cobalt (Co) was negatively related to LFTs. Meanwhile, some other metals showed a significant relationship with some indicators of LFTs. Urine metal is related to LFTs, with Cd and Co content changes being closely related to LFTs. The metal in urine may represent a marker for predicting liver dysfunction. Further studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Bowen Zha
- Department of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Huanchang Xu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, 101149, Beijing, People's Republic of China
| | - Yuqi Liu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, 101149, Beijing, People's Republic of China
| | - Xiaqin Zha
- Department of Blood Purification, University Affiliated Second Hospital, 333000, Nanchang, People's Republic of China.
| |
Collapse
|
7
|
Peng F, Yu L, Zhang C, Liu Q, Yan K, Zhang K, Zheng Y, Liu W, Li Y, Fan J, Ding C. Analysis of serum metabolome of laborers exposure to welding fume. Int Arch Occup Environ Health 2023; 96:1029-1037. [PMID: 37243737 DOI: 10.1007/s00420-023-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Welding fume exposure is inevitable of welding workers and poses a severe hazard to their health since welding is a necessary industrial process. Thus, preclinical diagnostic symptoms of worker exposure are of great importance. The aim of this study was to screen serum differential metabolites of welding fume exposure based on UPLC-QTOF-MS/MS. METHODS In 2019, 49 participants were recruited at a machinery manufacturing factory. The non-target metabolomics technique was used to clarify serum metabolic signatures in people exposed to welding fume. Differential metabolites were screened by OPLS-DA analysis and Student's t-test. The receiver operating characteristic curve evaluated the discriminatory power of differential metabolites. And the correlations between differential metabolites and metal concentrations in urine and whole blood were analyzed utilizing Pearson correlation analysis. RESULTS Thirty metabolites were increased significantly, and 5 metabolites were decreased. The differential metabolites are mainly enriched in the metabolism of arachidonic acid, glycero phospholipid, linoleic acid, and thiamine. These results observed that lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol(PGF1α/16:0) had a tremendous anticipating power with relatively increased AUC values (AUC > 0.9), and they also presented a significant correlation of Mo concentrations in whole blood and Cu concentrations in urine, respectively. CONCLUSION The serum metabolism was changed significantly after exposure to welding fume. Lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol (PGF1α/16:0) may be a potential biological mediator and biomarker for laborers exposure to welding fume.
Collapse
Affiliation(s)
- Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Chunmin Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Qicai Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kai Yan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kangfu Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yuqiao Zheng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Wubin Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yan Li
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Jingguang Fan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
8
|
Araujo ANM, Leroux IN, Furtado DZS, Ferreira APSDS, Batista BL, Silva HDT, Handakas E, Assunção NA, Olympio KPK. Integration of proteomic and metabolomic analyses: New insights for mapping informal workers exposed to potentially toxic elements. Front Public Health 2023; 10:899638. [PMID: 36761330 PMCID: PMC9905639 DOI: 10.3389/fpubh.2022.899638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Occupational exposure to potentially toxic elements (PTEs) is a concerning reality of informal workers engaged in the jewelry production chain that can lead to adverse health effects. In this study, untargeted proteomic and metabolomic analyses were employed to assess the impact of these exposures on informal workers' exposome in Limeira city, São Paulo state, Brazil. PTE levels (Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb) were determined in blood, proteomic analyses were performed for saliva samples (n = 26), and metabolomic analyses in plasma (n = 145) using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole-time-of-flight (Q-TOF) mass spectrometry. Blood PTE levels of workers, controls, and their family members were determined by inductively coupled plasma-mass spectrometry (ICP-MS). High concentration levels of Sn and Cu were detected in welders' blood (p < 0.001). Statistical analyses were performed using MetaboAnalyst 4.0. The results showed that 26 proteins were upregulated, and 14 proteins downregulated on the welder group, and thirty of these proteins were also correlated with blood Pb, Cu, Sb, and Sn blood levels in the welder group (p < 0.05). Using gene ontology analysis of these 40 proteins revealed the biological processes related to the upregulated proteins were translational initiation, SRP-dependent co-translational protein targeting to membrane, and viral transcription. A Metabolome-Wide Association Study (MWAS) was performed to search for associations between blood metabolites and exposure groups. A pathway enrichment analysis of significant features from the MWAS was then conducted with Mummichog. A total of 73 metabolomic compounds and 40 proteins up or down-regulated in welders were used to perform a multi-omics analysis, disclosing seven metabolic pathways potentially disturbed by the informal work: valine leucine and isoleucine biosynthesis, valine leucine and isoleucine degradation, arginine and proline metabolism, ABC transporters, central carbon metabolism in cancer, arachidonic acid metabolism and cysteine and methionine metabolism. The majority of the proteins found to be statistically up or downregulated in welders also correlated with at least one blood PTE level, providing insights into the biological responses to PTE exposures in the informal work exposure scenario. These findings shed new light on the effects of occupational activity on workers' exposome, underscoring the harmful effects of PTE.
Collapse
Affiliation(s)
- Alda Neis Miranda Araujo
- Graduate Program in Translational Medicine, Paulista School of Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Isabelle Nogueira Leroux
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil
| | - Danielle Zildeana Sousa Furtado
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Technology School of Teresina, Teresina, Piauí, Brazil
| | | | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Heron Dominguez Torres Silva
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Evangelos Handakas
- Department of Medicine, Computation and Medicine, Imperial College London, London, United Kingdom
| | - Nilson Antônio Assunção
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Nilson Antônio Assunção ✉
| | - Kelly Polido Kaneshiro Olympio
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil,*Correspondence: Kelly Polido Kaneshiro Olympio ✉
| |
Collapse
|
9
|
Zhou S, Wang Y, Yu C, Ding C, He J, Liu Y, Wang H, Ni C. Metal Exposure-Related Welder's Pneumoconiosis and Lung Function: A Cross-Sectional Study in a Container Factory of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16809. [PMID: 36554689 PMCID: PMC9779211 DOI: 10.3390/ijerph192416809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Long-term inhalation of welding fume at high exposure can cause welder's pneumoconiosis, and metals in welding dust are associated with respiratory dysfunction. This cross-sectional study, which contains 384 Chinese male workers who were or had been working in a container factory, aimed to assess the potential risk of haemal and urinary metal content in welder's pneumoconiosis. Further, we investigated their effects on lung function parameters. Metal content and lung function were measured using inductively coupled plasma-mass spectrometry (ICP-MS) and spirometer, respectively. The concentration and metal content of respirable dust as well as total dust were collected at this container factory. Lung function of cases with welder's pneumoconiosis was significantly worse, as indicated by lower values of FVC, FVC% predicted, FEV1, FEV1% predicted, MEF25% predicted, and MMEF% predicted (p < 0.05). Results of logistic regression models showed that haemal Cr and Zn were risk factors of welder's pneumoconiosis (OR = 4.98, 95%CI: 1.73-21.20, p = 0.009 for Cr; OR = 5.23, 95%CI: 1.56-41.08, p = 0.033 for Zn) after adjusted with age, BMI, working years, welding dust exposure years, and smoking status. Multiple linear regression models showed that several metals (haemal Cd and Pb; urinary Cd and Fe) were significantly associated with different lung function indices in the welder's pneumoconiosis group. Compared to non-welders, welders were exposed to considerably higher levels of respirable dust, total dust, and six kinds of metals (p < 0.05). In conclusion, haemal Cr and Zn are positively related to welder's pneumoconiosis. Meanwhile, Cd and Pb might worsen lung function in welder's pneumoconiosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Yu
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing 102300, China
| | - Jiayu He
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Huanqiang Wang
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Li G, Jiang J, Liao Y, Wan S, Yao Y, Luo Y, Chen X, Qian H, Dai X, Yin W, Min Z, Yi G, Tan X. Risk for lung-related diseases associated with welding fumes in an occupational population: Evidence from a Cox model. Front Public Health 2022; 10:990547. [PMID: 36091502 PMCID: PMC9455702 DOI: 10.3389/fpubh.2022.990547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
Background Welding fumes are a risk factor for welder pneumoconiosis. However, there is a lack of population information on the occurrence of welding fume-induced lung cancer, and little is known about the welding fume pathogenesis. Methods Welding fume and metal ion concentrations were assessed in a vehicle factory in Wuhan. A Cox regression model estimated lung-related disease risk in workers by independent and combined factors. Results Workers' exposures were divided into four grades; the highest exposure was among the welders in the maintenance workshop, the highest Mn and Fe exposure was 4 grades, and the highest Cr exposure was 3 grades. Subgroup analysis found that the risk of lung-related disease was 2.17 (95% CI: 1.31-3.57, p < 0.05) in welders compared with non-welders, and the risk of pulmonary disease in male welders was 2.24 (95% CI: 1.34-3.73, p < 0.05) compared to non-welders. Smoking welders had a 2.44 (95% CI: 1.32-4.51, p < 0.01) higher incidence of lung-related diseases than non-welders. Total years of work as an independent protective factor for lung-related disease risk was 0.72 (95% CI: 0.66-0.78, p < 0.01). As an independent risk factor, high-high and high-low exposure had a 5.39 (95% CI: 2.52-11.52, p < 0.001) and 2.17 (95% CI: 1.07-4.41, p < 0.05) higher risk for lung-related diseases, respectively. Conclusions High welding fume exposure is a significant risk factor for lung-related disease in workers.
Collapse
Affiliation(s)
- Guangming Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Jinfeng Jiang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yonggang Liao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Siyu Wan
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yong Yao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yongbin Luo
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Xuyu Chen
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Huiling Qian
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Zhiteng Min
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China,Guilin Yi
| | - Xiaodong Tan
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China,School of Health and Nurse, Wuchang University of Technology, Wuhan, China,*Correspondence: Xiaodong Tan
| |
Collapse
|
11
|
Lai CH, Ho SC, Pan CH, Chen WL, Wang CC, Liang CW, Chien CY, Riediker M, Chuang KJ, Chuang HC. Chronic exposure to metal fume PM 2.5 on inflammation and stress hormone cortisol in shipyard workers: A repeat measurement study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112144. [PMID: 33743405 DOI: 10.1016/j.ecoenv.2021.112144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this study was to investigate associations of chronic exposure to metal fume PM2.5 in shipyard workers with health outcomes. A longitudinal study was conducted to determine the effects of metal fume PM2.5 on FeNO, urinary metals, urinary oxidative stress, inflammation, and stress hormones in workers. There were 20 office workers and 49 welding workers enrolled in this study who were followed-up for a second year. We observed that Fe, Zn, and Mn were abundant in PM2.5 to which welding workers were personally exposed, whereas PM2.5 to which office workers were personally exposed was dominated by Pb, Cu, and Zn. We observed in the first and/or second visits that urinary 8-iso-prostaglandin F2-α (PGF2α) and 8-hydroxy-2'-deoxy guanosine (8-OHdG) were significantly increased by exposure. An increase in urinary interleukin (IL)-6 and decreases in urinary serotonin and cortisol were observed in the first and/or second visits after exposure. PM2.5 was associated with decreases in urinary 8-OHdG and cortisol among workers. Next, we observed that urinary Ni, Co, and Fe had significantly increased among workers after a year of exposure. Urinary metals were associated with decreases in urinary 8-iso-PGF2α and cortisol among workers. Urinary Ni, Cu, and Fe levels were associated with an increase in urinary IL-6 and a decrease in urinary cortisol among workers. In conclusion, chronic exposure to metal fume PM2.5 was associated with inflammation and a cortisol deficiency in shipyard workers, which could associate with adrenal glands dysfunction.
Collapse
Affiliation(s)
- Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hong Pan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan.
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Che-Wi Liang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Yu Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
12
|
Carter KA, Simpson CD, Raftery D, Baker MG. Short Report: Using Targeted Urine Metabolomics to Distinguish Between Manganese Exposed and Unexposed Workers in a Small Occupational Cohort. Front Public Health 2021; 9:666787. [PMID: 34095069 PMCID: PMC8172780 DOI: 10.3389/fpubh.2021.666787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Despite the widespread use of manganese (Mn) in industrial settings and its association with adverse neurological outcomes, a validated and reliable biomarker for Mn exposure is still elusive. Here, we utilize targeted metabolomics to investigate metabolic differences between Mn-exposed and -unexposed workers, which could inform a putative biomarker for Mn and lead to increased understanding of Mn toxicity. Methods: End of shift spot urine samples collected from Mn exposed (n = 17) and unexposed (n = 15) workers underwent a targeted assay of 362 metabolites using LC-MS/MS; 224 were quantified and retained for analysis. Differences in metabolite abundances between exposed and unexposed workers were tested with a Benjamini-Hochberg adjusted Wilcoxon Rank-Sum test. We explored perturbed pathways related to exposure using a pathway analysis. Results: Seven metabolites were significantly differentially abundant between exposed and unexposed workers (FDR ≤ 0.1), including n-isobutyrylglycine, cholic acid, anserine, beta-alanine, methionine, n-isovalerylglycine, and threonine. Three pathways were significantly perturbed in exposed workers and had an impact score >0.5: beta-alanine metabolism, histidine metabolism, and glycine, serine, and threonine metabolism. Conclusion: This is one of few studies utilizing targeted metabolomics to explore differences between Mn-exposed and -unexposed workers. Metabolite and pathway analysis showed amino acid metabolism was perturbed in these Mn-exposed workers. Amino acids have also been shown to be perturbed in other occupational cohorts exposed to Mn. Additional research is needed to characterize the biological importance of amino acids in the Mn exposure-disease continuum, and to determine how to appropriately utilize and interpret metabolomics data collected from occupational cohorts.
Collapse
Affiliation(s)
- Kayla A Carter
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, United States
| | - Marissa G Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Gao S, Zhuo Z, Hutchinson J, Su L, Christiani DC. Metabolomic profiling identifies plasma sphingosine 1-phosphate levels associated with welding exposures. Occup Environ Med 2021; 78:255-261. [PMID: 33106349 PMCID: PMC7958087 DOI: 10.1136/oemed-2020-106918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite a number of known health hazards of welding fume exposure, it is unclear how exposure affects the human metabolome. OBJECTIVE We assessed the metabolic profiles of welders before and after a 6-hour welding shift, controlling for circadian rhythm of metabolism on a non-welding day. METHODS Welders were recruited from a training centre in Quincy, Massachusetts, in 2006 and 2010-2012 and donated blood samples on a welding shift day before and after work, as well as on a non-welding day spent in an adjacent classroom. In total, we collected 509 samples from 74 participants. Liquid chromatography-mass spectrometry quantified 665 metabolites from thawed plasmas. Metabolites with significant time (afternoon compared with morning) and day (welding/classroom) interactions were identified by two-way analysis of variance, and the overnight changes were evaluated. RESULTS Sphingosine 1-phosphate (S1P) and sphingasine 1-phosphate (SA1P) exhibited significant interaction effects between day and time with false discovery rate-adjusted p values of 0.03 and <0.01, respectively. S1P, SA1P and sphingosine shared similar trends over time: high relative levels in the morning of a non-welding day declining by afternoon, but with lower starting levels on a welding day and no decline. There was no obvious pattern related to current smoking status. CONCLUSION S1P and SA1P profiles were different between welding day and classroom day. The S1P pathway was disrupted on the day of welding exposure. The levels of S1P, SA1P and sphingosine were highly correlated over time. S1P is a signalling lipid with many vital roles; thus, the underlying mechanism and clinical implications of this alteration need further investigation.
Collapse
Affiliation(s)
- Shangzhi Gao
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Zhu Zhuo
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - John Hutchinson
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Li Su
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum. Curr Environ Health Rep 2021; 8:7-22. [PMID: 33420964 DOI: 10.1007/s40572-020-00298-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the application of untargeted metabolomics to identify the perturbation of metabolites or metabolic pathways associated with air pollutant exposures. RECENT FINDINGS Twenty-three studies were included in this review, in adults, children, or pregnant women. The most commonly measured air pollutant is particulate matter smaller than 2.5 μm. Size-fractioned particles, particle chemical species, gas pollutants, or organic compounds were also investigated. The reviewed studies used a wide range of air pollution measurement techniques and metabolomics analyses. Identified metabolites were primarily related to oxidative stress and inflammatory responses, and a few were related to the alterations of steroid metabolic pathways. The observed metabolic perturbations can differ by disease status, sex, and age. Air pollution-related metabolic changes were also associated with health outcomes in some studies. Our review shows that air pollutant exposures are associated with metabolic pathways primarily related to oxidative stress, inflammation, as assessed through untargeted metabolomics in 23 studies. More metabolomic studies with larger sample sizes are needed to identify air pollution components most responsible for adverse health effects, elaborate on mechanisms for subpopulation susceptibility, and link air pollution exposure to specific adverse health effects.
Collapse
|
15
|
Boyce GR, Shoeb M, Kodali V, Meighan TG, Roach KA, McKinney W, Stone S, Powell MJ, Roberts JR, Zeidler-Erdely PC, Erdely A, Antonini JM. Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver. Toxicol Rep 2020; 7:1350-1355. [PMID: 33102138 PMCID: PMC7569188 DOI: 10.1016/j.toxrep.2020.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occupational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation.
Collapse
Affiliation(s)
- Greg R. Boyce
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Corresponding author.
| | - Mohammad Shoeb
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence G. Meighan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samuel Stone
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Aaron Erdely
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
16
|
Samulin Erdem J, Arnoldussen YJ, Tajik S, Ellingsen DG, Zienolddiny S. Effects of mild steel welding fume particles on pulmonary epithelial inflammation and endothelial activation. Toxicol Ind Health 2020; 36:995-1001. [PMID: 33025859 PMCID: PMC7756071 DOI: 10.1177/0748233720962685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Welders have an increased risk for cardiovascular disease (CVD) following exposure to welding fumes. The underlying mechanisms are largely unknown; however, oxidative stress, systemic inflammation, and endothelial dysfunction have been suggested as contributing factors to particle-induced CVD. We investigated effects of mild steel welding fume (MSWF) on three target cell types: macrophages, pulmonary epithelial, and vascular endothelial cells. Cells were exposed to MSWF at nontoxic doses for 6 h/day, for five consecutive days. The expression of 40 genes involved in inflammation, fibrosis, and endothelial activation was analyzed. Moreover, changes in the reactive oxygen species production and migration capacity of cells were assessed. The expression of matrix metallopeptidase 1 (MMP1) was induced in both epithelial and endothelial cells following repeated exposure to MSWF. Although MMP1 is important in inflammatory responses in vivo, this effect was not concurrent with changes in the inflammatory status, cell proliferation, and migration capacities, nor did it induce oxidative stress in the cells. Thus, repeated exposure with low doses of MSWF was sufficient neither for inducing inflammatory stress in epithelial cells and macrophages nor for endothelial activation, and higher concentrations of MSWF or the nonparticle fraction of MSWF may be critical in causing the increased risk of CVD observed among welders.
Collapse
Affiliation(s)
| | | | - Sepideh Tajik
- National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
17
|
Knobloch J, Casjens S, Lehnert M, Yanik SD, Körber S, Lotz A, Rupp J, Raulf M, Zschiesche W, Weiss T, Kronsbein J, Koch A, Brüning T, Pesch B. Exposure to welding fumes suppresses the activity of T-helper cells. ENVIRONMENTAL RESEARCH 2020; 189:109913. [PMID: 32980007 DOI: 10.1016/j.envres.2020.109913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Welders have an increased susceptibility to airway infections with non-typeable Haemophilus influenzae (NTHi), which implicates immune defects and might promote pneumonia and chronic obstructive pulmonary disease (COPD). We hypothesized that welding-fume exposure suppresses Th1-lymphocyte activity. Non-effector CD4+ T-cells from blood of 45 welders (n = 23 gas metal arc welders, GMAW; n = 16 tungsten inert gas welders, TIG; n = 6 others) and 25 non-welders were ex vivo activated towards Th1 via polyclonal T-cell receptor stimulation and IL-12 (first activation step) and then stimulated with NTHi extract or lipopolysaccharide (LPS) (second activation step). IFNγ and IL-2 were measured by ELISA. In the first activation step, IFNγ was reduced in welders compared to non-welders and in the GMAW welders with higher concentrations of respirable particles compared to the lower exposed TIG welders. IFNγ was not influenced by tobacco smoking and correlated negatively with welding-fume exposure, respirable manganese, and iron. In the second activation step, NTHi and LPS induced additional IFNγ, which was reduced in current smokers compared to never smokers in welders as well as in non-welders. Analyzing both activation steps together, IFNγ production was lowest in smoking welders and highest in never smoking non-welders. IL-2 was not associated with any of these parameters. Welding-fume exposure might suppress Th1-based immune responses due to effects of particulate matter, which mainly consists of iron and manganese. For responses to NTHi this is strongest in smoking welders because welding fume suppresses T-cell activation towards Th1 and cigarette smoke suppresses the subsequent Th1-response to NTHi via LPS. Both effects are independent from IL-2-regulated T-cell proliferation. This might explain the increased susceptibility to infections and might promote COPD development.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Martin Lehnert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sarah D Yanik
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sandra Körber
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Anne Lotz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Wolfgang Zschiesche
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Tobias Weiss
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andrea Koch
- Zürcher RehaZentren Davos, Klinikstrasse 6, 7272 Davos-Clavadel, Switzerland; Ludwig-Maximilians-University of Munich (LMU) and DZL (German Center of Lung Science), 81377 Munich, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
18
|
Kodali V, Shoeb M, Meighan TG, Eye T, Friend SA, Hubczak J, Kashon ML, Zeidler-Erdely PC, Antonini JM, Erdely A. Bioactivity of Circulatory Factors After Pulmonary Exposure to Mild or Stainless Steel Welding Fumes. Toxicol Sci 2020; 177:108-120. [PMID: 32514565 DOI: 10.1093/toxsci/kfaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies suggest that alterations in circulating factors are a driver of pulmonary-induced cardiovascular dysfunction. To evaluate, if circulating factors effect endothelial function after a pulmonary exposure to welding fumes, an exposure known to induce cardiovascular dysfunction, serum collected from Sprague Dawley rats 24 h after an intratracheal instillation exposure to 2 mg/rat of 2 compositionally distinct metal-rich welding fume particulates (manual metal arc welding using stainless steel electrodes [MMA-SS] or gas metal arc welding using mild steel electrodes [GMA-MS]) or saline was used to test molecular and functional effects of in vitro cultures of primary cardiac microvascular endothelial cells (PCMEs) or ex vivo organ cultures. The welding fumes elicited significant pulmonary injury and inflammation with only minor changes in measured serum antioxidant and cytokine levels. PCME cells were challenged for 4 h with serum collected from exposed rats, and 84 genes related to endothelial function were analyzed. Changes in relative mRNA patterns indicated that serum from rats exposed to MMA-SS, and not GMA-MS or PBS, could influence several functional aspects related to endothelial cells, including cell migration, angiogenesis, inflammation, and vascular function. The predictions were confirmed using a functional in vitro assay (scratch assay) as well as an ex vivo multicellular environment (aortic ring angiogenesis assay), validating the concept that endothelial cells can be used as an effective screening tool of exposed workers for determining bioactivity of altered circulatory factors. Overall, the results indicate that pulmonary MMA-SS fume exposure can cause altered endothelial function systemically via altered circulating factors.
Collapse
Affiliation(s)
- Vamsi Kodali
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Mohammad Shoeb
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Terence G Meighan
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Tracy Eye
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Sherri A Friend
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - John Hubczak
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Michael L Kashon
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | | | - James M Antonini
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Aaron Erdely
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| |
Collapse
|
19
|
Inhalation of welding fumes reduced sperm counts and high fat diet reduced testosterone levels; differential effects in Sprague Dawley and Brown Norway rats. Part Fibre Toxicol 2020; 17:2. [PMID: 31924220 PMCID: PMC6954601 DOI: 10.1186/s12989-019-0334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Background Previous studies have shown that inhalation of welding fumes may induce pulmonary and systemic inflammation and organ accumulation of metal, to which spermatogenesis and endocrine function may be sensitive. Also obesity may induce low-grade systemic inflammation. This study aimed to investigate the effects on sperm production of inhaled metal nanoparticles from stainless steel welding, and the potential exacerbation by intake of a high fat diet. Both the inbred Brown Norway and the outbred Sprague Dawley rat strains were included to study the influence of strain on the detection of toxicity. Rats were fed regular or high fat (HF) diet for 24 weeks and were exposed to 20 mg/m3 of gas metal arc-stainless steel (GMA-SS) welding fumes or filtered air for 3 h/day, 4 days/week for 5 weeks, during weeks 7–12. Outcomes were assessed upon termination of exposure (week 12) and after recovery (week 24). Results At week 12, the GMA-SS exposure induced pulmonary inflammation in both strains, without consistent changes in markers of systemic inflammation (CRP, MCP-1, IL-6 and TNFα). GMA-SS exposure lowered daily sperm production compared to air controls in Sprague Dawley rats, but only in GMA-SS Brown Norway rats also fed the HF diet. Overall, HF diet rats had lower serum testosterone levels compared to rats on regular diet. Metal content in the testes was assessed in a limited number of samples in Brown Norway rats, but no increase was obsedrved. At week 24, bronchoalveolar lavage cell counts had returned to background levels for GMA-SS exposed Sprague Dawley rats but remained elevated in Brown Norway rats. GMA-SS did not affect daily sperm production statistically significantly at this time point, but testicular weights were lowered in GMA-SS Sprague Dawley rats. Serum testosterone remained lowered in Sprague Dawley rats fed the HF diet. Conclusion Exposure to GMA-SS welding fumes lowered sperm production in two strains of rats, whereas high fat diet lowered serum testosterone. The effect on sperm counts was likely not mediated by inflammation or lowered testosterone levels. The studied reproductive outcomes seemed more prone to disruption in the Sprague Dawley compared to the Brown Norway strain.
Collapse
|
20
|
Zaghlool SB, Kühnel B, Elhadad MA, Kader S, Halama A, Thareja G, Engelke R, Sarwath H, Al-Dous EK, Mohamoud YA, Meitinger T, Wilson R, Strauch K, Peters A, Mook-Kanamori DO, Graumann J, Malek JA, Gieger C, Waldenberger M, Suhre K. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun 2020; 11:15. [PMID: 31900413 PMCID: PMC6941977 DOI: 10.1038/s41467-019-13831-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer Engineering Department, Virginia Tech, Blacksburg, VA, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Mohamed A Elhadad
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sara Kader
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Eman K Al-Dous
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Thomas Meitinger
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-Main, Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Joel A Malek
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
21
|
Gliga AR, Taj T, Hedmer M, Assarsson E, Rylander L, Albin M, Broberg K. Mild steel welding is associated with alterations in circulating levels of cancer-related proteins. Arch Toxicol 2019; 93:3535-3547. [PMID: 31641807 DOI: 10.1007/s00204-019-02594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 01/04/2023]
Abstract
Welding fumes were recently classified as carcinogenic to humans and worldwide millions work as welders or perform welding operations. The purpose of this study was to identify new biomarkers of welding-induced carcinogenesis. We evaluated a panel of 91 putative cancer-related proteins in serum in a cohort of welders working with mild steel (n = 77) and controls (n = 94) from southern Sweden sampled on two occasions 6-year apart using a longitudinal analysis (linear mixed models). The significant results from the longitudinal analysis were tested for reproducibility in welders (n = 88) and controls (n = 69) sampled once during the same sampling period as timepoint 1 or timepoint 2 (linear regression models), i.e., in a cross-sectional setting. The models were adjusted for age, body-mass index, and use of snus. All study participants were non-smokers at recruitment. Exposure to welding fumes was assessed using questionnaires and respirable dust measurement in the breathing zone that was adjusted for personal respiratory protection equipment. The median respirable dust in welders was 0.7 (0.2-4.2) and 0.5 (0.1-1.9) mg/m3 at the first and second timepoints, respectively. We identified 14 cancer-related proteins that were differentially expressed in welders versus controls in the longitudinal analysis, out of which three were also differentially expressed in the cross-sectional analysis (cross-sectional group). Namely, syndecan 1 (SDC1), folate receptor 1 (FOLR1), and secreted protein acidic and cysteine rich (SPARC) were downregulated, in welders compared with controls. In addition, FOLR1 was negatively associated with years welding. Disease and function analysis indicated that the top proteins are related to lung cancer as well as cell invasion and migration. Our study indicates that moderate exposure to welding fumes is associated with changes in circulating levels of putative cancer-related proteins, out of which FOLR1 showed a clear dose-response relationship. It is, however, unclear to which extent these changes are adaptive or potential early biomarkers of cancer.
Collapse
Affiliation(s)
- Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tahir Taj
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. .,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Chen CHS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, Chan CC. Metabolomics of Children and Adolescents Exposed to Industrial Carcinogenic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5454-5465. [PMID: 30971086 DOI: 10.1021/acs.est.9b00392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Studies on metabolomes of carcinogenic pollutants among children and adolescents are limited. We aim to identify metabolic perturbations in 107 children and adolescents (aged 9-15) exposed to multiple carcinogens in a polluted area surrounding the largest petrochemical complex in Taiwan. We measured urinary concentrations of eight carcinogen exposure biomarkers (heavy metals and polycyclic aromatic hydrocarbons (PAHs) represented by 1-hydroxypyrene), and urinary oxidative stress biomarkers and serum acylcarnitines as biomarkers of early health effects. Serum metabolomics was analyzed using a liquid chromatography mass spectrometry-based method. Pathway analysis and "meet-in-the-middle" approach were applied to identify potential metabolites and biological mechanisms linking carcinogens exposure with early health effects. We found 10 potential metabolites possibly linking increased exposure to IARC group 1 carcinogens (As, Cd, Cr, Ni) and group 2 carcinogens (V, Hg, PAHs) with elevated oxidative stress and deregulated serum acylcarnitines, including inosine monophosphate and adenosine monophosphate (purine metabolism), malic acid and oxoglutaric acid (citrate cycle), carnitine (fatty acid metabolism), and pyroglutamic acid (glutathione metabolism). Purine metabolism was identified as the possible mechanism affected by children and adolescents' exposure to carcinogens. These findings contribute to understanding the health effects of childhood and adolescence exposure to multiple industrial carcinogens during critical periods of development.
Collapse
Affiliation(s)
- Chi-Hsin S Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science , National Taiwan University ., No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , No. 33, Linsen S. Road , Taipei 10055 , Taiwan
| | - Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| |
Collapse
|
23
|
Leffers HCB, Lange T, Collins C, Ulff-Møller CJ, Jacobsen S. The study of interactions between genome and exposome in the development of systemic lupus erythematosus. Autoimmun Rev 2019; 18:382-392. [PMID: 30772495 DOI: 10.1016/j.autrev.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic inflammatory autoimmune disease characterized by a broad spectrum of clinical and serological manifestations. This may reflect a complex and multifactorial etiology involving several identified genetic and environmental factors, though not explaining the full risk of SLE. Established SLE risk genotypes are either very rare or with modest effect sizes and twin studies indicate that other factors besides genetics must be operative in SLE etiology. The exposome comprises the cumulative environmental influences on an individual and associated biological responses through the lifespan. It has been demonstrated that exposure to silica, smoking and exogenous hormones candidate as environmental risk factors in SLE, while alcohol consumption seems to be protective. Very few studies have investigated potential gene-environment interactions to determine if some of the unexplained SLE risk is attributable hereto. Even less have focused on interactions between specific risk genotypes and environmental exposures relevant to SLE pathogenesis. Cohort and case-control studies may provide data to suggest such biological interactions and various statistical measures of interaction can indicate the magnitude of such. However, such studies do often have very large sample-size requirements and we suggest that the rarity of SLE to some extent can be compensated by increasing the ratio of controls. This review summarizes the current body of knowledge on gene-environment interactions in SLE. We argue for the prioritization of studies that comprise the increasing details available of the genome and exposome relevant to SLE as they have the potential to disclose new aspects of SLE pathogenesis including phenotype heterogeneity.
Collapse
Affiliation(s)
- Henrik Christian Bidstrup Leffers
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Theis Lange
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Denmark; Center for Statistical Science, Peking University, Beijing, China
| | - Christopher Collins
- Department of Rheumatology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Constance Jensina Ulff-Møller
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark..
| |
Collapse
|