1
|
Wang L, Liu J, Yin P, Gao Y, Jiang Y, Kan H, Zhou M, Ao H, Chen R. Mortality risk and burden of sudden cardiac arrest associated with hot nights, heatwaves, cold spells, and non-optimum temperatures in 0.88 million patients: An individual-level case-crossover study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175208. [PMID: 39097015 DOI: 10.1016/j.scitotenv.2024.175208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Sudden cardiac arrest (SCA) is a global health concern, imposing a substantial mortality burden. However, the understanding of the impact of various extreme temperature events, when accounting for the effect of daily average temperature on SCA, remains incomplete. Additionally, the assessment of SCA mortality burden associated with temperatures from an individual-level design is limited. This nationwide case-crossover study collected individual SCA death records across all (2844) county-level administrative units in the Chinese Mainland from 2013 to 2019. Four definitions for hot nights and ten for both cold spells and heatwaves were established using various temperature thresholds and durations. Conditional logistic regression models combined with distributed lag nonlinear models were employed to estimate the cumulative exposure-response relationships. Based on 887,662 SCA decedents, this analysis found that both hot nights [odds ratio (OR): 1.28; attributable fraction (AF): 1.32 %] and heatwaves (OR: 1.40; AF: 1.29 %) exhibited significant added effects on SCA mortality independent of daily average temperatures, while cold spells were not associated with an elevated SCA risk after accounting for effects of temperatures. Cold temperatures [below the minimum mortality temperature (MMT)] accounted for a larger mortality burden than high temperatures (above the MMT) [AF: 12.2 % vs. 1.5 %]. Higher temperature-related mortality risks and burdens were observed in patients who experienced out-of-hospital cardiac arrest compared to those with in-hospital cardiac arrest. This nationwide study presents the most compelling and comprehensive evidence of the elevated mortality risk and burden of SCA associated with extreme temperature events and ambient temperatures amid global warming.
Collapse
Affiliation(s)
- Lijun Wang
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangdong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yixuan Jiang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Hart JE, Hu CR, Yanosky JD, Holland I, Iyer HS, Borchert W, Laden F, Albert CM. Short-term exposures to temperature and risk of sudden cardiac death in women: A case-crossover analysis in the Nurses' Health Study. Environ Epidemiol 2024; 8:e322. [PMID: 38983881 PMCID: PMC11233109 DOI: 10.1097/ee9.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Background Sudden cardiac death (SCD) is a major source of mortality and is the first manifestation of heart disease for most cases. Thus, there is a definite need to identify risk factors for SCD that can be modified on the population level. Short-term exposures to temperature have been implicated as a potential risk factor. Our objective was to determine if short-term temperature exposures were associated with increased risk of SCD in a US-based time-stratified case-crossover study. Methods A total of 465 cases of SCD were identified among participants of the prospective Nurses' Health Study (NHS). Control days were selected from all other matching days of the week within the same month as the case day. Average ambient temperature on the current day (Lag0) and preceding 27 days (Lags1-27) was determined at the residence level using 800-m resolution estimates. Conditional logistic distributed lag nonlinear models (DLNMs) were used to assess the relative risk (RR) of the full range of temperature exposures over the lag period. Results Warmer exposures in the days before event and colder temperatures 21-28 days prior were associated with increased risks of SCD. These results were driven by associations in regions other than the Northeast and among married women. Conclusions Both warm and cold ambient temperatures are suggestively associated with risks of SCD among middle-aged and older women living across the United States.
Collapse
Affiliation(s)
- Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cindy R. Hu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeff D. Yanosky
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Isabel Holland
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hari S. Iyer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - William Borchert
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Christine M. Albert
- Divisions of Preventative Medicine and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
3
|
Bene Watts S, McDonagh E, Richardson W, Wilson N, Shi K. The rural CPR outreach project: Medical students teach bystander CPR to secondary school students. CANADIAN JOURNAL OF RURAL MEDICINE 2024; 29:103-108. [PMID: 39155632 DOI: 10.4103/cjrm.cjrm_45_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Prompt bystander cardiopulmonary resuscitation (CPR) can double the chance of cardiac arrest survival. Rural and remote communities experience longer emergency service wait times and have lower rates of bystander-CPR compared to their urban counterparts. Our study addresses this disparity. METHODS We designed a 1.5-h free hands-only CPR course tailored to secondary school students in rural and remote communities taught by medical students. We evaluated our course using pre-test and post-test surveys. RESULTS We taught over 300 secondary students in 5 days. Less than one-third of students had previously taken a CPR course. We found that brief CPR instruction taught by medical students was effective in both improving students' knowledge of CPR (t[528] = -26, P < 0.01) and perceived comfort in performing CPR (t[548] = -12, P < 0.01). CONCLUSION CPR courses taught by medical students are effective, low cost, and may help address regional health care disparities. Teaching CPR to rural/remote communities may have secondary benefits such as promoting health care careers to rural youth. We encourage other health professional programmes to consider engaging students in CPR outreach projects. INTRODUCTION Une réanimation cardio-pulmonaire rapide peut doubler les chances de survie en cas d'arrêt cardiaque. Les communautés rurales et éloignées connaissent des temps d'attente plus longs dans les services d'urgence et ont des taux plus faibles de RCP par rapport à leurs homologues urbains. Notre étude porte sur cette disparité. MTHODES Nous avons conçu un cours de RCP pratique et gratuit d'une heure et demie, adapté aux élèves du secondaire des communautés rurales et isolées et dispensé par des étudiants en médecine. Nous avons évalué notre cours à l'aide d'enquêtes pré-test et post-test. RSULTATS En 5 jours, nous avons enseigné à plus de 300 élèves du secondaire. Moins d'un tiers des élèves avaient déjà suivi un cours de RCP. Nous avons constaté qu'une brève formation à la RCP dispensée par des étudiants en médecine était efficace pour améliorer les connaissances des élèves en matière de RCP (t[528] = -26, P < 0,01) et la perception de leur aisance à pratiquer la RCP (t[548] = -12, P < 0,01). CONCLUSION Les cours de RCP dispensés par les étudiants en médecine sont efficaces, peu coûteux et peuvent contribuer à lutter contre les disparités régionales en matière de soins de santé. L'enseignement de la RCP aux communautés rurales/éloignées peut avoir des avantages secondaires tels que la promotion des carrières dans le domaine de la santé auprès des jeunes ruraux. Nous encourageons d'autres programmes professionnels de santé à envisager d'engager leurs étudiants dans des projets de sensibilisation à la RCP.
Collapse
|
4
|
De Vita A, Belmusto A, Di Perna F, Tremamunno S, De Matteis G, Franceschi F, Covino M. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases. J Clin Med 2024; 13:759. [PMID: 38337453 PMCID: PMC10856578 DOI: 10.3390/jcm13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is widely recognized as one of the most significant challenges facing our planet and human civilization. Human activities such as the burning of fossil fuels, deforestation, and industrial processes release greenhouse gases into the atmosphere, leading to a warming of the Earth's climate. The relationship between climate change and cardiovascular (CV) health, mediated by air pollution and increased ambient temperatures, is complex and very heterogeneous. The main mechanisms underlying the pathogenesis of CV disease at extreme temperatures involve several regulatory pathways, including temperature-sympathetic reactivity, the cold-activated renin-angiotensin system, dehydration, extreme temperature-induced electrolyte imbalances, and heat stroke-induced systemic inflammatory responses. The interplay of these mechanisms may vary based on individual factors, environmental conditions, and an overall health background. The net outcome is a significant increase in CV mortality and a higher incidence of hypertension, type II diabetes mellitus, acute myocardial infarction (AMI), heart failure, and cardiac arrhythmias. Patients with pre-existing CV disorders may be more vulnerable to the effects of global warming and extreme temperatures. There is an urgent need for a comprehensive intervention that spans from the individual level to a systemic or global approach to effectively address this existential problem. Future programs aimed at reducing CV and environmental burdens should require cross-disciplinary collaboration involving physicians, researchers, public health workers, political scientists, legislators, and national leaders to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Antonio De Vita
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Antonietta Belmusto
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Federico Di Perna
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Giuseppe De Matteis
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Francesco Franceschi
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Marcello Covino
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| |
Collapse
|
5
|
Nawaro J, Gianquintieri L, Pagliosa A, Sechi GM, Caiani EG. Heatwave Definition and Impact on Cardiovascular Health: A Systematic Review. Public Health Rev 2023; 44:1606266. [PMID: 37908198 PMCID: PMC10613660 DOI: 10.3389/phrs.2023.1606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Objectives: We aimed to analyze recent literature on heat effects on cardiovascular morbidity and mortality, focusing on the adopted heat definitions and their eventual impact on the results of the analysis. Methods: The search was performed on PubMed, ScienceDirect, and Scopus databases: 54 articles, published between January 2018 and September 2022, were selected as relevant. Results: In total, 21 different combinations of criteria were found for defining heat, 12 of which were based on air temperature, while the others combined it with other meteorological factors. By a simulation study, we showed how such complex indices could result in different values at reference conditions depending on temperature. Heat thresholds, mostly set using percentile or absolute values of the index, were applied to compare the risk of a cardiovascular health event in heat days with the respective risk in non-heat days. The larger threshold's deviation from the mean annual temperature, as well as higher temperature thresholds within the same study location, led to stronger negative effects. Conclusion: To better analyze trends in the characteristics of heatwaves, and their impact on cardiovascular health, an international harmonization effort to define a common standard is recommendable.
Collapse
Affiliation(s)
- Julia Nawaro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Lorenzo Gianquintieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | - Enrico Gianluca Caiani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
6
|
Requia WJ, Alahmad B, Schwartz JD, Koutrakis P. Association of low and high ambient temperature with mortality for cardiorespiratory diseases in Brazil. ENVIRONMENTAL RESEARCH 2023; 234:116532. [PMID: 37394170 DOI: 10.1016/j.envres.2023.116532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Extreme temperatures are a major public health concern, as they have been linked to an increased risk of mortality from circulatory and respiratory diseases. Brazil, a country with vast geographic and climatic variations, is particularly vulnerable to the health impacts of extreme temperatures. In this study, we examined the nationwide (considering 5572 municipalities) association of low and high ambient temperature (1st and 99th percentiles) with daily mortality for circulatory and respiratory diseases in Brazil between 2003 and 2017. We used an extension of the two-stage time-series design. First, we applied a case time series design in combination with distributed lag non-linear modeling (DLMN) framework to assess the association by Brazilian region. Here, the analyses were stratified by sex, age group (15-45, 46-65, and >65 years), and cause of death (respiratory and circulatory mortality). In the second stage, we performed a meta-analysis to estimate pooled effects across the Brazilian regions. Our study population included 1,071,090 death records due to cardiorespiratory diseases in Brazil over the study period. We found increased risk of respiratory and circulatory mortality associated with low and high ambient temperatures. The pooled national results for the whole population (all ages and sex) suggest a relative risk (RR) of 1.27 (95% CI: 1.16; 1.37) and 1.11 (95% CI: 1.01; 1.21) associated with circulatory mortality during cold and heat exposure, respectively. For respiratory mortality, we estimated a RR of 1.16 (95% CI: 1.08; 1.25) during cold exposure and a RR of 1.14 (95% CI: 0.99; 1.28) during heat exposure. The national meta-analysis indicated robust positive associations for circulatory mortality on cold days across several subgroups by sex and age, while only a few subgroups presented robust positive associations for circulatory mortality on warm days and respiratory mortality on both cold and warm days. These findings have important public health implications for Brazil and suggest the need for targeted interventions to mitigate the adverse effects of extreme temperatures on human health.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas Brasília, Brazil.
| | - Barrak Alahmad
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States
| | - Petros Koutrakis
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Xu Z, Watzek JT, Phung D, Oberai M, Rutherford S, Bach AJE. Heat, heatwaves, and ambulance service use: a systematic review and meta-analysis of epidemiological evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1523-1542. [PMID: 37495745 PMCID: PMC10457246 DOI: 10.1007/s00484-023-02525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Ambulance data has been reported to be a sensitive indicator of health service use during hot days, but there is no comprehensive summary of the quantitative association between heat and ambulance dispatches. We conducted a systematic review and meta-analysis to retrieve and synthesise evidence published up to 31 August 2022 about the association between heat, prolonged heat (i.e. heatwaves), and the risk of ambulance dispatches. We initially identified 3628 peer-reviewed papers and included 48 papers which satisfied the inclusion criteria. The meta-analyses showed that, for each 5 °C increase in mean temperature, the risk of ambulance dispatches for all causes and for cardiovascular diseases increased by 7% (95% confidence interval (CI): 5%, 10%) and 2% (95% CI: 1%, 3%), respectively, but not for respiratory diseases. The risk of ambulance dispatches increased by 6% (95% CI: 4%, 7%), 7% (95% CI: 5%, 9%), and 18% (95% CI: 12%, 23%) under low-intensity, severe, and extreme heatwaves, respectively. We observed two potential sources of bias in the existing literature: (1) bias in temperature exposure measurement; and (2) bias in the ascertainment of ambulance dispatch causes. This review suggests that heat exposure is associated with an increased risk of ambulance dispatches, and there is a dose-response relationship between heatwave intensity and the risk of ambulance dispatches. For future studies assessing the heat-ambulance association, we recommend that (1) using data on spatially refined gridded temperature that is either very well interpolated or derived from satellite imaging may be an alternative to reduce exposure measurement bias; and (2) linking ambulance data with hospital admission data can be useful to improve health outcome classification.
Collapse
Affiliation(s)
- Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia.
- Cities Research Institute, Griffith University, Gold Coast, Australia.
| | - Jessica T Watzek
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Mehak Oberai
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
- Cities Research Institute, Griffith University, Gold Coast, Australia
| | - Aaron J E Bach
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia.
- Cities Research Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
8
|
Yu G, Yang L, Liu M, Wang C, Shen X, Fan L, Zhang J. Extreme Temperature Exposure and Risks of Preterm Birth Subtypes Based on a Nationwide Survey in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87009. [PMID: 37585350 PMCID: PMC10431497 DOI: 10.1289/ehp10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Previous studies have reported that ambient temperature may affect perinatal outcomes. However, whether extreme temperature affects the risk of preterm birth (PTB) remains controversial. Studies on the associations of extreme temperature with PTB subtypes are lacking. OBJECTIVES We aimed to investigate the associations of extreme climate events with the risks of PTB and its subtypes, discerning possible modifiers. METHODS Data on all singleton deliveries were obtained from the China Labor and Delivery Survey (CLDS), a nationwide investigation implemented in 2015 and 2016. PTB was defined as gestational weeks < 37 and then categorized as early (24-34 wk) and late PTBs (35-36 wk), and clinical subtypes [spontaneous PTB, preterm premature rupture of the fetal membranes (PPROM), iatrogenic PTB]. Ambient temperature data were provided by the China National Weather Data Sharing System. Five heat indexes and five cold indexes were used to define heat waves and cold spells. Generalized linear mixed models with a random term by hospital unit were used to assess the associations of short-term prenatal extreme temperature exposure. The Cox proportional hazard regression model was applied to assess the nonlinear associations of low- or high-temperature exposure at the whole and different trimesters of pregnancy with the risk of PTB. Stratified analyses were conducted to assess the possible modification by geographic region and fetal sex. RESULTS A total of 70,818 singleton births from 96 hospitals in China were included, among which 4,965 (7.01%) were PTBs. Exposure to extreme cold events 1 wk before delivery was associated with an increased PTB risk, with an adjusted odds ratio (aOR) [95% confidence intervals (CIs)] of 1.07 (95% CI: 1.04, 1.10) and 1.06 (1.04, 1.09) for the total days when the daily average temperature below the fifth percentile (fifth-days) and the 10th percentile (10th-days), 1.18 (1.04, 1.34) for the cold spells when the daily average temperature below the fifth percentile for two consecutive days (fifth-2D), 1.09 (1.03, 1.16) and 1.12 (1.06, 1.19) for the cold spells when the daily average temperature below the 10th percentile for three and two consecutive days (10th-3D and 10th-2D), respectively. Results of extreme temperature exposure during 2 weeks before delivery showed similarly significant associations. The association between cold spells and PTB tended to be stronger for late PTB than for early PTB. Cold spells were mainly associated with spontaneous PTB and late PPROM. A stratified analysis indicated that pregnant women in western and northern regions tended to be more sensitive to cold spells, and pregnant women with a female fetus appeared to be at a higher risk of PTB when exposed to cold spells. Pregnant women in late pregnancy were more susceptible to extreme temperatures. No significant or stable association was found between heat waves and preterm birth. DISCUSSION Exposure to cold spells was associated with an increased risk of PTB, especially late, spontaneous PTB and PPROM. The associations appeared to be more pronounced in the north and west regions and in pregnancies with female fetuses. https://doi.org/10.1289/EHP10831.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education – Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yang
- Hainan Women and Children’s Medical Center, Hainan, China
| | - Ming Liu
- Department of Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuiping Wang
- Ministry of Education – Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Shen
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Lichun Fan
- Hainan Women and Children’s Medical Center, Hainan, China
| | - Jun Zhang
- Ministry of Education – Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| |
Collapse
|
9
|
Liu J, Lv C, Zheng J, Pan C, Zhang G, Tan H, Ma Y, Zhu Y, Han X, Li C, Yan S, Ma J, Zhang J, Wang C, Bian Y, Cheng K, Liu R, Hou Y, Chen Q, Zhang X, Chen Y, Chen R, Xu F. The impact of non-optimum temperatures, heatwaves and cold spells on out-of-hospital cardiac arrest onset in a changing climate in China: a multi-center, time-stratified, case-crossover study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 36:100778. [PMID: 37547045 PMCID: PMC10398603 DOI: 10.1016/j.lanwpc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 08/08/2023]
Abstract
Background Out-of-hospital cardiac arrest (OHCA) is a time-critical and fatal medical emergency that has been linked to non-optimal temperatures. However, the future burden of OHCA due to non-optimal temperatures, heatwaves, and cold spells under climate change has not been well evaluated. Methods We conducted a time-stratified case-crossover study in 15 Northern Chinese cities throughout 2020 to estimate the exposure-response relationships of non-optimal temperatures, heatwaves, and cold spells with hourly OHCA onset in hot and cold seasons. We obtained future daily average temperatures by using 20 general circulation models under two greenhouse gas emission scenarios: one with certain emission control and the other with relaxed control. Lastly, we projected the change of OHCA burden under these two climate scenarios. Findings We analyzed a total of 29,671 OHCA patients and found that high temperatures and heatwaves as well as low temperatures and cold spells were all significantly associated with an increased risk of OHCA onset. Under the scenario of uncontrolled emissions, the attributable fraction (AF) of OHCA due to high temperatures and heatwaves would increase by 4.94% and 6.99% from the 2010s to 2090s, respectively. The AF due to low temperatures would decrease by 1.27% by the 2090s and the effects of cold spells were projected to be marginal after the 2050s. Under a medium emission control scenario, the upward trend of heat-related OHCA burden would become flat, and the decline in cold-related OHCA burden would also slow down. Interpretation Our study provides evidence of significant morbidity risk and burden of OHCA associated with global warming across Northern China. Our findings indicate that the increase in OHCA burden attributable to heat could not be offset by the decrements attributable to cold, emphasizing the importance of mitigation policies for limiting global warming and reducing the associated risks of OHCA onset. Funding National Science & Technology Fundamental Resources Investigation Project (2018FY100600, 2018FY100602), National Key R&D Program of China (2020YFC1512700, 2020YFC1512705, 2020YFC1512703), Key R&D Program of Shandong Province (2021ZLGX02, 2021SFGC0503), Natural Science Foundation of Shandong Province (ZR2021MH231), Taishan Pandeng Scholar Program of Shandong Province (tspd20181220), the Interdisciplinary Young Researcher Groups Program of Shandong University (2020QNQT004), ECCM Program of Clinical Research Center of Shandong University (2021SDUCRCA001, 2021SDUCRCA002), foundation from Clinical Research Center of Shandong University (2020SDUCRCB003), National Natural Science Foundation of China (82272240).
Collapse
Affiliation(s)
- Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chuanzhu Lv
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Jiaqi Zheng
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huiqiong Tan
- Emergency and Intensive Care Center, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Ma
- Department of Intensive Care Unit, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Yimin Zhu
- Department of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital/The First Affiliated Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Xiaotong Han
- Department of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital/The First Affiliated Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Chaoqian Li
- Department of Emergency, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengtao Yan
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jingjing Ma
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Zhang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunyi Wang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Bian
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kai Cheng
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rugang Liu
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaping Hou
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiran Chen
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Zhang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Feng Xu
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Fang W, Li Z, Gao J, Meng R, He G, Hou Z, Zhu S, Zhou M, Zhou C, Xiao Y, Yu M, Huang B, Xu X, Lin L, Xiao J, Jin D, Qin M, Yin P, Xu Y, Hu J, Liu T, Huang C, Ma W. The joint and interaction effect of high temperature and humidity on mortality in China. ENVIRONMENT INTERNATIONAL 2023; 171:107669. [PMID: 36508749 DOI: 10.1016/j.envint.2022.107669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although many studies have reported the mortality effect of temperature, there were few studies on the mortality risk of humidity, let alone the joint effect of temperature and humidity. This study aimed to investigate the joint and interaction effect of high temperature and relative humidity on mortality in China, which will deepen understanding the health risk of mixture climate exposure. METHODS The mortality and meteorological data were collected from 353 locations in China (2013-2017 in Jilin, Hunan, Guangdong and Yunnan provinces, 2009-2017 in Zhejiang province, and 2006-2011 in other Provinces). We defined location-specific daily mean temperature ≥ 75th percentile of distribution as high temperature, while minimum mortality relative humidity as the threshold of high relative humidity. A time-series model with a distributed lag non-linear model was first employed to estimate the location-specific associations between humid-hot events and mortality, then we conducted meta-analysis to pool the mortality effect of humid-hot events. Finally, an additive interaction model was used to examine the interactive effect between high temperature and relative humidity. RESULTS The excess rate (ER) of non-accidental mortality attributed to dry-hot events was 10.18% (95% confidence interval (CI): 8.93%, 11.45%), which was higher than that of wet-hot events (ER = 3.21%, 95% CI: 0.59%, 5.89%). The attributable fraction (AF) of mortality attributed to dry-hot events was 10.00% (95% CI: 9.50%, 10.72%) with higher burden for females, older people, central China, cardiovascular diseases and urban city. While for wet-hot events, AF was much lower (3.31%, 95% CI: 2.60%, 4.30%). We also found that high temperature and low relative humidity had synergistic additive interaction on mortality risk. CONCLUSION Dry-hot events may have a higher risk of mortality than wet-hot events, and the joint effect of high temperature and low relative humidity may be greater than the sum of their individual effects.
Collapse
Affiliation(s)
- Wen Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhixing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinghua Gao
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Dai M, Chen S, Huang S, Hu J, Jingesi M, Chen Z, Su Y, Yan W, Ji J, Fang D, Yin P, Cheng J, Wang P. Increased emergency cases for out-of-hospital cardiac arrest due to cold spells in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1774-1784. [PMID: 35921008 DOI: 10.1007/s11356-022-22332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Cold spells have been associated with specific diseases. However, there is insufficient scientific evidence on the effects of cold spells on out-of-hospital cardiac arrest (OHCA). Data on OHCA cases and on meteorological factors and air pollutants were collected between 2013 and 2020. We adopted a quasi-Poisson generalized additive model with a distributed lag nonlinear model (DLNM) to estimate the effect of cold spells on daily OHCA incidence. Backward attributable risk within the DLNM framework was calculated to quantify the disease burden. We compared the effects and OHCA burden of cold spells using nine definitions. The risks of different cold spells on OHCA increased at higher intensities and longer durations. Based on Akaike's information criterion for the quasi-Poisson regression model and the attributable risk, the optimal cold spell was defined as a period in the cold month when the daily mean temperature was below the 10th percentile of the temperature distribution in the study period for at least 2 days. The single-day effect of the optimal cold spell on OHCA occurred immediately and lasted for approximately 1 week. The maximum single-day effect was 1.052 (95% CI: 1.018-1.087) at lag0, while the maximum cumulative effect was 1.433 (95% CI:1.148-1.788) after a 14-day lag. Men were more susceptible to cold spells. Young and middle-aged people were affected by cold spells similar to the elderly. Cold spells can increase the risk of OHCA with an approximately 1-week lag effect. Health regulators should take more targeted measures to protect susceptible populations during cold weather.
Collapse
Affiliation(s)
- Mengyi Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siyi Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Maidina Jingesi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youpeng Su
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiqi Yan
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiajia Ji
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Daokui Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Wang Y, Wei Y, Li K, Jiang X, Li C, Yue Q, Zee BCY, Chong KC. Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis. ENVIRONMENT INTERNATIONAL 2022; 169:107518. [PMID: 36155913 DOI: 10.1016/j.envint.2022.107518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The rapid spread of dengue fever (DF) infection has posed severe threats to global health. Environmental factors, such as weather conditions, are believed to regulate DF spread. While previous research reported inconsistent change of DF risk with varying weather conditions, few of them evaluated the impact of extreme weather conditions on DF infection risk. This study aims to examine the short-term associations between extreme temperatures, extreme rainfall, and DF infection risk in South and Southeast Asia. A total of 35 locations in Singapore, Malaysia, Sri Lanka, and Thailand were included, and weekly DF data, as well as the daily meteorological data from 2012 to 2020 were collected. A two-stage meta-analysis was used to estimate the overall effect of extreme weather conditions on the DF infection risk. Location-specific associations were obtained by the distributed lag nonlinear models. The DF infection risk appeared to increase within 1-3 weeks after extremely high temperature (e.g. lag week 2: RR = 1.074, 95 % CI: 1.022-1.129, p = 0.005). Compared with no rainfall, extreme rainfall was associated with a declined DF risk (RR = 0.748, 95 % CI: 0.620-0.903, p = 0.003), and most of the impact was across 0-3 weeks lag. In addition, the DF risk was found to be associated with more intensive extreme weathers (e.g. seven extreme rainfall days per week: RR = 0.338, 95 % CI: 0.120-0.947, p = 0.039). This study provides more evidence in support of the impact of extreme weather conditions on DF infection and suggests better preparation of DF control measures according to climate change.
Collapse
Affiliation(s)
- Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kehang Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Qianying Yue
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Benny Chung-Ying Zee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Hayashida K, Takegawa R, Nishikimi M, Aoki T, Emoto R, Shinozaki K, Miyara SJ, Rolston DM, Li T, Shoaib M, Fukuda T, Molmenti EP, Suzuki M, Sasaki J, Matsui S, Becker LB. The interplay between bystander cardiopulmonary resuscitation and ambient temperature on neurological outcome after cardiac arrest: A nationwide observational cohort study. Resuscitation 2021; 164:46-53. [PMID: 34023426 DOI: 10.1016/j.resuscitation.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND At lower ambient temperature, patients with out-of-hospital cardiac arrest (OHCA) easily experience hypothermia. Hypothermia has shown to improve the rate of successful return of spontaneous circulation (ROSC) in animal models. We hypothesized that lower temperature affects the impact of bystander cardiopulmonary resuscitation (CPR) on the increased odds of a favorable neurological outcome post-OHCA. METHODS This study used information collected by the prospective, nationwide, Utstein registry to examine data from 352,689 adult patients who experienced OHCA from 2012 to 2016 in Japan. The primary outcome was a 1-month favorable neurological outcomes. Multivariable logistic regression analyses were conducted to test the impact of bystander CPR according to the temperature on the favorable outcome. RESULTS A total of 201,111 patients with OHCA were included in the complete case analysis. The lower temperature group had lower proportions of receiving bystander CPR (46.5 vs. 47.9%) and having favorable outcome (2.1 vs 2.8%) than those in the higher group. Multivariable analysis revealed that bystander CPR at lower temperatures was significantly associated with favorable outcomes (adjusted odds ratio, 1.22; 95% CI, 1.09-1.37), whereas bystander CPR at higher temperatures was not associated with favorable outcomes (1.02; 0.92-1.13). The nonlinear relationship using a spline curve in the multivariable model revealed that odds ratio of favorable neurological outcomes associated with bystander CPR increased as the temperature decreased. CONCLUSION Bystander CPR was associated with favorable neurological outcomes at lower temperatures. The odds of a favorable outcome associated with bystander CPR increased as the temperature decreased.
Collapse
Affiliation(s)
- Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
| | - Ryo Emoto
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Timmy Li
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ernesto P Molmenti
- Department of Surgery, Medicine, and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA; Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Masaru Suzuki
- Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|