1
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Islam J, Biswas SK, Warf BC, Christiani DC, Lemos B, Liang L, Cardenas A, Mazumdar M. Parental arsenic exposure and tissue-specific DNA methylation in Bangladeshi infants with spina bifida. Epigenetics 2024; 19:2416345. [PMID: 39425535 PMCID: PMC11492674 DOI: 10.1080/15592294.2024.2416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
An emerging hypothesis linking arsenic toxicity involves altered epigenetic mechanisms, such as DNA methylation. In this study, we examined the relationship between parents' arsenic exposure and DNA methylation in tissues obtained from 28 infants with spina bifida from Bangladesh. We analyzed arsenic in parents' toenails using inductively coupled plasma mass spectrometry (ICP-MS). DNA methylation was measured in infants' dural tissue, buccal swabs, and whole blood using the Illumina Infinium MethylationEPIC BeadChip. We performed epigenome-wide association analyses (EWAS) and tested differentially methylated regions (DMRs). In EWAS, DNA methylation at cg24039697 in dural tissue was positively associated (β = 0.59, p = 7.6 × 10-9) with father's toenail arsenic concentrations, adjusting for covariates. We did not identify any CpG sites related to father's arsenic exposure in the other tissues, or any CpG sites related to mother's arsenic exposure. Gene ontology analysis identified many biological pathways of interest, including the Wnt signaling pathways. We identified several DMRs across the tissues related to arsenic exposure that included probes mapping to genes that have previously been identified in studies of neural tube defects. This study emphasizes the potential impact of arsenic exposure in fathers, often understudied in epidemiological studies, on DNA methylation in a unique neurological tissue specific to spina bifida.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - DM Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS&H), Dhaka, Bangladesh
| | - Subrata Kumar Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
- Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Recio-Vega R, Facio-Campos RA, Hernández-González SI, Olivas-Calderón E. State of the Art of Genomic Technology in Toxicology: A Review. Int J Mol Sci 2023; 24:ijms24119618. [PMID: 37298568 DOI: 10.3390/ijms24119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid growth of genomics techniques has revolutionized and impacted, greatly and positively, the knowledge of toxicology, ushering it into a "new era": the era of genomic technology (GT). This great advance permits us to analyze the whole genome, to know the gene response to toxicants and environmental stressors, and to determine the specific profiles of gene expression, among many other approaches. The aim of this work was to compile and narrate the recent research on GT during the last 2 years (2020-2022). A literature search was managed using the PubMed and Medscape interfaces on the Medline database. Relevant articles published in peer-reviewed journals were retrieved and their main results and conclusions are mentioned briefly. It is quite important to form a multidisciplinary taskforce on GT with the aim of designing and implementing a comprehensive, collaborative, and a strategic work plan, prioritizing and assessing the most relevant diseases, so as to decrease human morbimortality due to exposure to environmental chemicals and stressors.
Collapse
Affiliation(s)
| | - Rolando Adair Facio-Campos
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Sandra Isabel Hernández-González
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Edgar Olivas-Calderón
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| |
Collapse
|
5
|
Saddiki H, Colicino E, Lesseur C. Assessing Differential Variability of High-Throughput DNA Methylation Data. Curr Environ Health Rep 2022; 9:625-630. [PMID: 36040576 DOI: 10.1007/s40572-022-00374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW DNA methylation (DNAm) is essential to human development and plays an important role as a biomarker due to its susceptibility to environmental exposures. This article reviews the current state of statistical methods developed for differential variability analysis focusing on DNAm data. RECENT FINDINGS With the advent of high-throughput technologies allowing for highly reliable and cost-effective measurements of DNAm, many epigenome studies have analyzed DNAm levels to uncover biological mechanisms underlying past environmental exposures and subsequent health outcomes. These studies typically focused on detecting sites or regions which differ in their mean DNAm levels among exposure groups. However, more recent studies highlighted the importance of identifying differentially variable sites or regions as biologically relevant features. Currently, the analysis of differentially variable DNAm sites has not yet gained widespread adoption in environmental studies; yet, it is important to examine the effects of environmental exposures on inter-individual epigenetic variability. In this article, we describe six of the most widely used statistical approaches for analyzing differential variability of DNAm levels and provide a discussion of their advantages and current limitations.
Collapse
Affiliation(s)
- Hachem Saddiki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022; 9:673-696. [PMID: 36282474 PMCID: PMC10082670 DOI: 10.1007/s40572-022-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent 3 years, we reviewed the human epidemiologic evidence (n = 26 studies) and the toxicologic animal model evidence (n = 18 studies) for associations between metals exposure and DNA methylation. RECENT FINDINGS In humans, the greatest number of studies focused on lead exposure, followed by studies examining cadmium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium. Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with prenatal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing will continue to advance the field.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Kim S, White SM, Radke EG, Dean JL. Harmonization of transcriptomic and methylomic analysis in environmental epidemiology studies for potential application in chemical risk assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107278. [PMID: 35537365 DOI: 10.1016/j.envint.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts have posited the utility of transcriptomic-based approaches to understand chemical-related perturbations in the context of human health risk assessment. Epigenetic modification (e.g., DNA methylation) can influence gene expression changes and is known to occur as a molecular response to some chemical exposures. Characterization of these methylation events is critical to understand the molecular consequences of chemical exposures. In this context, a novel workflow was developed to interrogate publicly available epidemiological transcriptomic and methylomic data to identify relevant pathway level changes in response to chemical exposure, using inorganic arsenic as a case study. Gene Set Enrichment Analysis (GSEA) was used to identify causal methylation events that result in concomitant downstream transcriptional deregulation. This analysis demonstrated an unequal distribution of differentially methylated regions across the human genome. After mapping these events to known genes, significant enrichment of a subset of these pathways suggested that arsenic-mediated methylation may be both specific and non-specific. Parallel GSEA performed on matched transcriptomic samples determined that a substantially reduced subset of these pathways are enriched and that not all chemically-induced methylation results in a downstream alteration in gene expression. The resulting pathways were found to be representative of well-established molecular events known to occur in response to arsenic exposure. The harmonization of enriched transcriptional patterns with those identified from the methylomic platform promoted the characterization of plausibly causal molecular signaling events. The workflow described here enables significant gene and methylation-specific pathways to be identified from whole blood samples of individuals exposed to environmentally relevant chemical levels. As future efforts solidify specific causal relationships between these molecular events and relevant apical endpoints, this novel workflow could aid risk assessments by identifying molecular targets serving as biomarkers of hazard, informing mechanistic understanding, and characterizing dose ranges that promote relevant molecular/epigenetic signaling events occuring in response to chemical exposures.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Shana M White
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| | - Elizabeth G Radke
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C., USA.
| | - Jeffry L Dean
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
10
|
Bozack AK, Boileau P, Hubbard AE, Sillé FCM, Ferreccio C, Steinmaus CM, Smith MT, Cardenas A. The impact of prenatal and early-life arsenic exposure on epigenetic age acceleration among adults in Northern Chile. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac014. [PMID: 35769198 PMCID: PMC9235373 DOI: 10.1093/eep/dvac014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Exposure to arsenic affects millions of people globally. Changes in the epigenome may be involved in pathways linking arsenic to health or serve as biomarkers of exposure. This study investigated associations between prenatal and early-life arsenic exposure and epigenetic age acceleration (EAA) in adults, a biomarker of morbidity and mortality. DNA methylation was measured in peripheral blood mononuclear cells (PBMCs) and buccal cells from 40 adults (median age = 49 years) in Chile with and without high prenatal and early-life arsenic exposure. EAA was calculated using the Horvath, Hannum, PhenoAge, skin and blood, GrimAge, and DNA methylation telomere length clocks. We evaluated associations between arsenic exposure and EAA using robust linear models. Participants classified as with and without arsenic exposure had a median drinking water arsenic concentration at birth of 555 and 2 μg/l, respectively. In PBMCs, adjusting for sex and smoking, exposure was associated with a 6-year PhenoAge acceleration [B (95% CI) = 6.01 (2.60, 9.42)]. After adjusting for cell-type composition, we found positive associations with Hannum EAA [B (95% CI) = 3.11 (0.13, 6.10)], skin and blood EAA [B (95% CI) = 1.77 (0.51, 3.03)], and extrinsic EAA [B (95% CI) = 4.90 (1.22, 8.57)]. The association with PhenoAge acceleration in buccal cells was positive but not statistically significant [B (95% CI) = 4.88 (-1.60, 11.36)]. Arsenic exposure limited to early-life stages may be associated with biological aging in adulthood. Future research may provide information on how EAA programmed in early life is related to health.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA
| | - Philippe Boileau
- Graduate Group in Biostatistics, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA
| | - Alan E Hubbard
- Graduate Group in Biostatistics, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Room E7527, Baltimore, MD 21205, USA
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Craig M Steinmaus
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA
| | - Andres Cardenas
- *Correspondence address. Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720, USA. Tel: +510-643-0965; E-mail:
| |
Collapse
|
11
|
Kalia V, Belsky DW, Baccarelli AA, Miller GW. An exposomic framework to uncover environmental drivers of aging. EXPOSOME 2022; 2:osac002. [PMID: 35295547 PMCID: PMC8917275 DOI: 10.1093/exposome/osac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/02/2023]
Abstract
The exposome, the environmental complement of the genome, is an omics level characterization of an individual's exposures. There is growing interest in uncovering the role of the environment in human health using an exposomic framework that provides a systematic and unbiased analysis of the non-genetic drivers of health and disease. Many environmental toxicants are associated with molecular hallmarks of aging. An exposomic framework has potential to advance understanding of these associations and how modifications to the environment can promote healthy aging in the population. However, few studies have used this framework to study biological aging. We provide an overview of approaches and challenges in using an exposomic framework to investigate environmental drivers of aging. While capturing exposures over a life course is a daunting and expensive task, the use of historical data can be a practical way to approach this research.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Daniel W Belsky
- Department of Epidemiology and Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the pollution sources and human health risks of metal elements in PM2.5, samples were collected by a large flow particulate matter sampler in the four seasons in 2013, 2015, and 2017 (January, April, July, and October). The mass concentrations of 10 metals (Ti, V, Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) were analyzed. The sources of heavy metals were identified by Unmix, and the potential non-carcinogenic/carcinogenic risk was evaluated. The influences of local and regional sources were also explored during the high-carcinogenic risk period (HCRP). The wind field and 72 h backward trajectories were performed to identify the potential local and regional sources in HCRP. The results showed that the average annual concentrations of PM2.5 in the urban area of Handan city were 105.14, 91.18, and 65.85 μg/m3 in 2013, 2015, and 2017, respectively. The average daily concentrations of the metals in PM2.5 in January were higher than that of April, July, and October. The average mass concentrations of the 10 heavy metal elements in PM2.5 were 698.26, 486.92, and 456.94 ng·m−3 in 2013, 2015, and 2017, respectively. The main sources of the metals in PM2.5 were soil dust sources, vehicular emissions, coal burning, and industrial activities. The carcinogenic risks of Cr and As were above 1 × 10−6 over the three years. Wind direction analysis showed that the potential local sources were heavy industry enterprises and the economic development zone. The backward trajectory analysis indicated that PM2.5 long transported from Shandong, Henan, and the surrounding cities of Handan had quite an impact on the heavy metals contained in the atmosphere of the studied area. The health risk assessment results demonstrated that the trend for non-carcinogenic risk declined, and there was no non-carcinogenic risk in 2017. However, the carcinogenic risk levels were high over the three years, particularly in January.
Collapse
|