1
|
Mayntz SP, Rosenbech KE, Mohamed RA, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Impact of air pollution and noise exposure on cardiovascular disease incidence and mortality: A systematic review. Heliyon 2024; 10:e39844. [PMID: 39524794 PMCID: PMC11550137 DOI: 10.1016/j.heliyon.2024.e39844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between environmental pollutants, specifically air pollution and noise, and cardiovascular disease is well-recognized. However, their combined effects on cardiovascular health are not fully explored. Objectives To review evidence on the correlation between air pollution and noise exposure and cardiovascular disease incidence and mortality. Methods Following the PRISMA 2020 guidelines, we identified relevant studies through multiple databases and snowballing. We focused on studies published between 2003 and 2024. Studies were selected based on a PEOS framework, with a focus on exposure to air pollution or noise and clinical cardiovascular outcomes and evaluated for bias using the ROBINS-E tool. Results A total of 140 studies met our inclusion criteria. Most studies suggested a consistent association between long-term exposure to air pollutants and an increased risk of cardiovascular diseases, notably ischemic heart disease and stroke. While air pollution was often studied in isolation, the interaction effects between air pollution and noise exposure were less commonly investigated, showing mixed results. The majority of these studies were conducted in Western countries, which may limit the generalizability of the findings to global populations. No studies were found to use time-updated confounders, despite the long durations over which participants were followed, which could influence the accuracy of the results. Moreover, none of the studies incorporated both residential and occupational addresses in exposure assessments, suggesting a need for future studies to include these multiple exposure points to improve measurement precision and accuracy. Conclusion Air pollution exposure is increasingly linked to cardiovascular disease risks. Although individual air pollution and noise exposures are recognized as significant risk factors, the combined interaction between these exposures needs further exploration. Registration PROSPERO (CRD42023460443).
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | | | - Roda Abdulkadir Mohamed
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmus Pyndt Diederichsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| |
Collapse
|
2
|
Li J, Shi Y, Li S, Xu H, Tao T, Wang Q, Gilbert KM. The impact of residential environment on stroke onset and its spatial heterogeneity: A multiscale exploration in Shanghai. Prev Med 2024; 186:108067. [PMID: 39009190 DOI: 10.1016/j.ypmed.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Stroke is a worldwide concern due to its high disability and mortality rates, especially in many countries entering ageing societies. This study aims to understand the spatial heterogeneity of stroke onset and residential environment influence scopes from multiscale. METHODS The 2013 to 2022 spatiotemporal distribution pattern of stroke onset was obtained via out-patient data from a hospital in Shanghai. Then nine residential environmental factors were selected to estimate the association of stroke onset by multiscale geographically weighted regression (MGWR), in three scenarios. RESULTS Accessibility to pubs/bars (PUB) and building density (BD) were the top two residential environmental factors both for the entire sample and by gender. Stress-related environmental factors have a greater impact on the onset of stroke in men but are limited in scope. The population of elderly people have relevance to environmental variables heterogeneity. The indicators relating to unhealthy food and alcohol suggest that habit-inducing environmental factors have a limited impact on stroke onset, but rather that pre-existing habits play a greater role. CONCLUSIONS MGWR analyses individual components across multiple bandwidths, revealing geographical disparities in the impact of elements that would otherwise be undetected on a global scale. Environmental factors have a limited impact on the onset of stroke. When society is faced with both heavy ageing and fiscal constraints, some of the blue-green space budgets can be scaled back to invest in more secure facilities.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | - Yishao Shi
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | - Shanzhu Li
- Tongji Hospital of Tongji University, Shanghai 200065, China.
| | - Hui Xu
- Tongji Hospital of Tongji University, Shanghai 200065, China.
| | - Tianhui Tao
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| | - Qianxu Wang
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | | |
Collapse
|
3
|
Jin T, Kosheleva A, Castro E, Qiu X, James P, Schwartz J. Long-term noise exposures and cardiovascular diseases mortality: A study in 5 U.S. states. ENVIRONMENTAL RESEARCH 2024; 245:118092. [PMID: 38163540 PMCID: PMC10923011 DOI: 10.1016/j.envres.2023.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous studies have linked noise exposure with adverse cardiovascular events. However, evidence remains inconsistent, and most previous studies only focused on traffic noise, excluding other anthropogenic sources like constructions, industrial process and commercial activities. Additionally, few studies have been conducted in the U.S. or evaluated the non-linear exposure-response relationships. METHODS We conducted a relative incidence analysis study using all cardiovascular diseases mortality as cases (n = 936,019) and external causes mortality (n = 232,491) as contrast outcomes. Mortality records geocoded at residential addresses were obtained from five U.S. states (Indiana, 2007; Kansas, 2007-2009, Missouri, 2010-2019, Ohio, 2007-2013, Texas, 2007-2016). Time-invariant long-term noise exposure was obtained from a validated model developed based on acoustical measurements across 2000-2014. Noises from both natural sources (natural activities, including animals, insects, winds, water flows, thunder, etc.) and anthropogenic sources (human activities, including transportation, industrial activities, community facilities & infrastructures, commercial activities, entertainments, etc.) were included. We used daytime and nighttime total anthropogenic noise & day-night average sound pressure level combining natural and anthropogenic sources as exposures. Logistic regression models were fit controlling for Census tract-level & individual-level characteristics. We examined potential modification by sex by interaction terms and potential non-linear associations by thin plate spline terms. RESULTS We observed positive associations for daytime anthropogenic L50 (sound level exceeded 50% of time) noise (10-dBA OR = 1.047, 95%CI 1.025-1.069), nighttime anthropogenic L50 noise (10-dBA OR = 1.061, 95%CI 1.033-1.091) in a two-exposure-term model, and overall Ldn (day-night average) sound pressure level (10-dBA OR = 1.064, 95%CI 1.040-1.089) in single-exposure-term model. Females were more susceptible to all three exposures. All exposures showed monotonic positive associations with cardiovascular mortality up to certain thresholds around 45-55 dBA, with a generally flattened or decreasing trend beyond those thresholds. CONCLUSIONS Both daytime anthropogenic and nighttime anthropogenic noises were associated with cardiovascular disease mortality, and associations were stronger in females.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Roscoe C, Grady ST, Hart JE, Iyer HS, Manson JE, Rexrode KM, Rimm EB, Laden F, James P. Association between Noise and Cardiovascular Disease in a Nationwide U.S. Prospective Cohort Study of Women Followed from 1988 to 2018. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127005. [PMID: 38048103 PMCID: PMC10695265 DOI: 10.1289/ehp12906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Long-term noise exposure is associated with cardiovascular disease (CVD), including acute cardiovascular events such as myocardial infarction and stroke. However, longitudinal cohort studies in the U.S. of long-term noise and CVD are almost exclusively from Europe and few modeled nighttime noise, when an individual is likely at home or asleep, separately from daytime noise. We aimed to examine the prospective association of outdoor long-term nighttime and daytime noise from anthropogenic sources with incident CVD using a U.S.-based, nationwide cohort of women. METHODS We linked L 50 nighttime and L 50 daytime anthropogenic modeled noise estimates from a U.S. National Parks Service model (L 50 : sound pressure levels exceeded 50 percent of the time) to geocoded residential addresses of 114,116 participants in the Nurses' Health Study. We used time-varying Cox proportional hazards models to estimate risk of incident CVD, coronary heart disease (CHD), and stroke associated with long-term average (14-y measurement period) noise exposure, adjusted for potential individual- and area-level confounders and CVD risk factors (1988-2018; biennial residential address updates; monthly CVD updates). We assessed effect modification by population density, region, air pollution, vegetation cover, and neighborhood socioeconomic status, and explored mediation by self-reported average nightly sleep duration. RESULTS Over 2,548,927 person-years, there were 10,331 incident CVD events. In fully adjusted models, the hazard ratios for each interquartile range increase in L 50 nighttime noise (3.67 dBA) and L 50 daytime noise (4.35 dBA), respectively, were 1.04 (95% CI: 1.02, 1.06) and 1.04 (95% CI: 1.02, 1.07). Associations for total energy-equivalent noise level (L eq ) measures were stronger than for the anthropogenic statistical L 50 noise measures. Similar associations were observed for CHD and stroke. Interaction analyses suggested that associations of L 50 nighttime and L 50 daytime noise with CVD did not differ by prespecified effect modifiers. We found no evidence that inadequate sleep (< 5 h/night) mediated associations of L 50 nighttime noise and CVD. DISCUSSION Outdoor L 50 anthropogenic nighttime and daytime noise at the residential address was associated with a small increase in CVD risk in a cohort of adult female nurses. https://doi.org/10.1289/EHP12906.
Collapse
Affiliation(s)
- Charlotte Roscoe
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Population Sciences, Dana Faber Cancer Institute, Boston, Massachusetts, USA
| | - Stephanie T. Grady
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jaime E. Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hari S. Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric B. Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Ghazihosseini S, De Rosa C, Trimarco V, Izzo R, Morisco C, Esposito G. The Environmental Pollution and Cardiovascular Risk: The Role of Health Surveillance and Legislative Interventions in Cardiovascular Prevention. High Blood Press Cardiovasc Prev 2023; 30:533-538. [PMID: 38070034 PMCID: PMC10721657 DOI: 10.1007/s40292-023-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Environmental pollution in considered an established determinant of non-communicable illness, including cardiovascular diseases (CVDs). Air pollution is the result of a complex combination of chemical, physical, and biological agents, and represents one of the main causes of mortality and morbidity in the world population. It is responsible for 7.6% of global mortality. In this regard, it has been documented that it increases the risk of CVDs and major adverse cardiovascular and cerebrovascular events. In northern regions of China, long-term exposures to the particulate matter < 2.5 µm (PM2.5) increase in the risk of ischemic heart disease by almost two-folds. Similarly, the additional risk for stroke, increases by almost 10% for long-term exposure to PM2.5. The detrimental effects of air pollution on cardiovascular system are particularly manifest in vulnerable subjects, such as the elderly, patients with heart disease, and obese individuals. Therefore, nowadays, cardiovascular prevention strategies, in addition to controlling traditional risk factors, should also include measures to improve the environment. This goal can be achieved by the implementation of the health surveillance in occupational medicine and by the extensive application of the national and international legislative measures. In fact, the health surveillance represents a crucial preventive measure for workers exposed to health risks (chemical, physical agents, etc.) that may lead to occupational diseases after long-term exposure. On the other hand, since environmental pollution does not recognize well-defined boundaries, only the implementation of regulations among large territorial areas can be useful to improve the quality of environment.
Collapse
Affiliation(s)
- Seyedali Ghazihosseini
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carlo De Rosa
- Medicina Legale Università della Tuscia, Viterbo, Italy
| | - Valentina Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Raffaele Izzo
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy.
| | - Giovanni Esposito
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, Napoli, Via S. Pansini, 80131, Naples, Italy
| |
Collapse
|
6
|
Eminson K, Cai YS, Chen Y, Blackmore C, Rodgers G, Jones N, Gulliver J, Fenech B, Hansell AL. Does air pollution confound associations between environmental noise and cardiovascular outcomes? - A systematic review. ENVIRONMENTAL RESEARCH 2023; 232:116075. [PMID: 37182833 DOI: 10.1016/j.envres.2023.116075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to environmental noise is associated with adverse health effects, but there is potential for confounding and interaction with air pollution, particularly where both exposures arise from the same source, such as transport. OBJECTIVES To review evidence on confounding and interaction of air pollution in relation to associations between environmental noise and cardiovascular outcomes. METHODS Papers were identified from similar reviews published in 2013 and 2015, from the systematic reviews supporting the WHO 2018 noise guidelines, and from a literature search covering the period 2016-2022 using Medline and PubMed databases. Additional papers were identified from colleagues. Study selection was according to PECO inclusion criteria. Studies were evaluated against the WHO checklist for risk of bias. RESULTS 52 publications, 36 published after 2015, were identified that assessed associations between transportation noise and cardiovascular outcomes, that also considered potential confounding (49 studies) or interaction (23 studies) by air pollution. Most, but not all studies, suggested that the associations between traffic noise and cardiovascular outcomes are independent of air pollution. NO2 or PM2.5 were the most commonly included air pollutants and we observed no clear differences across air pollutants in terms of the potential confounding role. Most papers did not appear to suggest an interaction between noise and air pollution. Eight studies found the largest noise effect estimates occurring within the higher noise and air pollution exposure categories, but were not often statistically significant. CONCLUSION Whilst air pollution does not appear to confound associations of noise and cardiovascular health, more studies on potential interactions are needed. Current methods to assess quality of evidence are not optimal when evaluating evidence on confounding or interaction.
Collapse
Affiliation(s)
- Katie Eminson
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Yutong Samuel Cai
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Claire Blackmore
- Centre for Environmental Health and Sustainability, University of Leicester, UK
| | - Georgia Rodgers
- Noise and Public Health Group, Environmental Hazards and Emergencies Department, UK Health Security Agency (UKHSA), UK
| | | | - John Gulliver
- Centre for Environmental Health and Sustainability, University of Leicester, UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK
| | - Benjamin Fenech
- Noise and Public Health Group, Environmental Hazards and Emergencies Department, UK Health Security Agency (UKHSA), UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK
| | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, UK; National Institute for Health Research (NIHR), Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, UK.
| |
Collapse
|
7
|
Gu T, Yang T, Wang J, Hu X, Xu Z, Wang Y, Jin J, Zhang J, He T, Li G, Huang J. Modification of green space on the associations between long-term road traffic noise exposure and incident intracerebral hemorrhage: A prospective cohort study. ENVIRONMENTAL RESEARCH 2023; 231:116189. [PMID: 37211178 DOI: 10.1016/j.envres.2023.116189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a subtype of stroke that would cause high mortality and disability. Environmental factors may play an important role in the incident risk of ICH. Evidence on how long-term road traffic noise exposure affects incident ICH is still scarce, and whether green space has a modification effect is unknown. We conducted a prospective analysis based on UK Biobank to assess the longitudinal association between road traffic noise exposure and incident ICH, and the potential modification of green space. METHODS Algorithms based on medical records and linkage were utilized to identify ICH incident cases in the UK Biobank. The Common Noise Assessment Methods in Europe noise model was used to calculate the road traffic noise exposure at the residential level. The relationship between weighted average 24-h road traffic noise level (Lden) and incident ICH was assessed using Cox proportional hazard models, and the modification effect of green space was examined using stratified analysis with interaction terms. RESULTS Over a median follow-up of 12.5 years, 1 459 incident ICH cases were ascertained in the 402 268 baseline individuals. After adjustment for potential confounders, Lden was significantly related to an elevated risk of incident ICH with a hazard ratio (HR) of 1.14 (95% CI: 1.01, 1.28) for a 10 dB [A] increment. The detrimental influence of Lden on ICH remained stable after adjustment for air pollution. Furthermore, green space modified the association between Lden exposure and incident ICH (Pinteraction = 0.035), and no association was found for higher green space. CONCLUSIONS Long-term residential road traffic noise exposure was associated with an increased risk of ICH, but only for those who live in areas with less green space, indicating that green space may alleviate the negative impacts of road traffic noise exposure on ICH.
Collapse
Affiliation(s)
- Tiantian Gu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Tianfeng He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China; Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China; Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, United Kingdom
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China; Institute for Global Health and Development, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Jin T, Di Q, Réquia WJ, Danesh Yazdi M, Castro E, Ma T, Wang Y, Zhang H, Shi L, Schwartz J. Associations between long-term air pollution exposure and the incidence of cardiovascular diseases among American older adults. ENVIRONMENT INTERNATIONAL 2022; 170:107594. [PMID: 36283157 PMCID: PMC9798657 DOI: 10.1016/j.envint.2022.107594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND & AIM Numerous studies have linked air pollution with cardiovascular diseases. Fewer studies examined the associations at low concentration levels or assessed potential modifiers. Some investigations only examined hospitalizations, which can miss incident cases. This study aims to address these gaps through a nationwide cohort study of Medicare enrollees. METHODS Our study cohort comprise all Medicare enrollees (≥65 years old) continuously enrolled in the fee-for-service program and both Medicare part A and B across the contiguous U.S. from 2000 to 2016. We examined the associations of population-weighted ZIP code-level annual average PM2.5, NO2, and warm-season O3 (May-October), with the first diagnoses of atrial fibrillation (AF), congestive heart failure (CHF), and stroke. We fit multi-pollutant Cox proportional hazards models adjusted for individual demographic characteristics and area-level covariates. We further examined these associations at low pollutant concentration levels and the potential effect modifications by race/ethnicity and comorbidities (diabetes, hypertension, hyperlipidemia). RESULTS Elevated PM2.5 and NO2 levels were associated with increased incidence of AF, CHF, and stroke. For each 1 μg/m3 increase in annual PM2.5, hazard ratios (HRs) were 1.0059 (95%CI: 1.0054-1.0064), 1.0260 (95%CI: 1.0256-1.0264), and 1.0279 (95%CI: 1.0274-1.0284), respectively. For each1 ppb increase in annual NO2, HRs are 1.0057 (95%CI: 1.0056-1.0059), 1.0112 (95%CI: 1.0110-1.0113), and 1.0095 (95%CI: 1.0093-1.0096), respectively. For warm-season O3, each 1 ppb increase was associated with increased incidence of CHF (HR=1.0035, 95%CI: 1.0033-1.0037) and stroke (HR=1.0026, 95%CI: 1.0023-1.0028). Larger magnitudes of HRs were observed when restricted to pollutants levels lower than NAAQS standards. Generally higher risks were observed for Black people and diabetics. CONCLUSIONS Long-term exposure to PM2.5, NO2, and warm-season O3 were associated with increased incidence of cardiovascular diseases, even at low pollutant concentration levels. Black people and people with diabetes were found to be vulnerable populations.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Réquia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, & Preventive Medicine, Stony Brook University, NY, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tszshan Ma
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yifan Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haisu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Fu W, Liu Y, Yan S, Wen J, Zhang J, Zhang P, Zou L. The association of noise exposure with stroke incidence and mortality: A systematic review and dose-response meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2022; 215:114249. [PMID: 36058275 DOI: 10.1016/j.envres.2022.114249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Noise exposure is a major public health challenge with important implications for cardiovascular health. However, the association between noise exposure and stroke risk remains controversial. Therefore, we aimed to evaluate the role of noise exposure on stroke incidence and mortality by conducting a dose-response meta-analysis of cohort studies. METHODS The relevant publications were retrieved via PubMed, Embase, Web of Science, and Scopus up to June 26, 2022. The potential linear and curve relationship between noise and stroke were fitted using the generalized least squares method and restricted cubic spline. We estimated the pooled relative risk (RR) with 95% confidence interval (CI) by random-effect models. The Grading of Recommendations Assessment Development and Evaluation (GRADE) approach was used to evaluate the strength of the results. RESULTS In total, 21 cohort studies with 16,075,204 participants and 311,878 cases were included in the analysis. The risk of stroke incidence increased up to 4% (95% CI:1.02-1.06) and stroke mortality increased up to 3% (95% CI:1.00-1.07), every 10 dB(A) increment in noise exposure. Moreover, each 10 dB(A) increment in noise exposure was associated with a 4% (95% CI:1.01-1.07) increase in ischemic stroke and a 2% (95% CI:1.00-1.04) increase in hemorrhagic stroke. According to GRADE criteria, the evidence level in this study was rated as moderate. CONCLUSIONS The current findings provide further evidence of a dose-response relationship between exposure to noise and the risk of stroke incidence and mortality. Additionally, we update and fill a knowledge gap that the statistically significant increase in stroke incidence when noise decibels are >65 dB(A).
Collapse
Affiliation(s)
- Wenning Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yifang Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shijiao Yan
- School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Jing Wen
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Zhang
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Pu Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Wang W, Zhang W, Li L, Huang J, Hu D, Liu S, Xu J, Cui L, Liu J, Wu S, Guo X, Deng F. Associations between personal noise exposure and heart rate variability were modified by obesity and PM 2.5: The study among obese and normal-weight adults (SONA). ENVIRONMENTAL RESEARCH 2022; 214:113888. [PMID: 35850294 DOI: 10.1016/j.envres.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Noise pollution has been documented to increase the risks of cardiovascular disorders, which can be predicted by heart rate variability (HRV), nevertheless, there has been limited evidence on the modifiers of noise pollution. Environmental fine particulate matter (PM2.5) and obesity status are both growing major concerns of cardiovascular disease burden. Our study aims to investigate whether these two factors may modify the associations between noise exposure and HRV indices. An investigation was performed on 97 (53 normal-weight and 44 obese) participants aged 18-26 years, with continuous 5-min personal exposure assessment and ambulatory electrocardiogram monitoring for 24 h. This study found that personal exposure to noise was associated with decreased HRV level and imbalanced cardiac autonomic function, as indicated by decreases in standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences of successive intervals (rMSSD), the percentage of R-R intervals that differ from each other by more than 50 ms (pNN50), low-frequency (LF) power, high-frequency (HF) power, and increases in LF-HF-Ratio. Stronger associations between personal noise exposure and HRV indices were observed among obese participants and participants with higher PM2.5 exposure levels compared to their counterparts. For SDNN, a 1 dB(A) increment in personal noise exposure at 3h-average was associated with a 1.25% (95%CI: -1.64%, -0.86%) decrease among obese participants, and a 0.11% (95%CI: -0.38%, 0.16%) decrease among normal-weight participants (P for subgroup difference<0.001); and a 0.87% (95%CI: -1.20%, -0.54%) decrease among participants with higher PM2.5 exposure levels, and a 0.22% (95%CI: -0.58%, 0.14%) decrease among participants with lower PM2.5 exposure levels (P for subgroup difference = 0.008). Obesity and PM2.5 may aggravate the adverse effects of noise on HRV, which has implications for targeted prevention of cardiovascular disease burden associated with noise pollution.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Bustaffa E, Curzio O, Donzelli G, Gorini F, Linzalone N, Redini M, Bianchi F, Minichilli F. Risk Associations between Vehicular Traffic Noise Exposure and Cardiovascular Diseases: A Residential Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610034. [PMID: 36011669 PMCID: PMC9408081 DOI: 10.3390/ijerph191610034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/28/2023]
Abstract
Environmental noise can induce detrimental health effects such as cardiovascular disease (CVD). The relationship between vehicular traffic noise pollution and CVD was investigated through a retrospective residential cohort study in the city of Pisa. Four exposure classes were defined for noise pollution, using noise propagation maps. The association between noise exposures and cause-specific mortality or hospitalization of the subjects of the cohort was calculated using the hazard ratio (HR) for night and day through a multiple time-dependent and sex-specific Cox regression adjusting for age, the socio-economic deprivation index, and traffic air pollution. Mortality excess for CVD and risk trends for a 1 decibel noise increment were observed among the most exposed women (mortality: HRnightclass4 1.15 (1.03-1.28); Trendnight 1.007 (1.002-1.012); HRdayclass4 1.14 (1.02-1.27); Trendday 1.008 (1.003-1.013)), particularly for ischaemic disease (mortality: Trendnight 1.008 (0.999-1.017); Trendday 1.009 (0.999-1.018)) and cerebrovascular disease (mortality: HRnightclass3 1.23 (1.02-1.48), HRdayclass3 1.24 (1.03-1.49)). Hospitalization analyses confirm mortality results. A decreased risk for hospitalization was also observed among the most exposed men (HRdayclass4 0.94 (0.88-1.01), particularly for ischaemic disease (HRnightclass4 0.90 (0.80-1.02); HRdayclass4 0.86 (0.77-0.97)) and cerebrovascular disease (HRnightclass4 0.89 (0.78-1.01)). Authors recommend the adoption of prevention measures aimed at mitigating noise and the activation of a monitoring of the risk profile in the Pisa population updating both the residential cohort and health data.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Olivia Curzio
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Donzelli
- Unit of Environmental Epidemiology and Biocomplexity Laboratory, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Gorini
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Nunzia Linzalone
- Unit of Environmental Epidemiology and Biocomplexity Laboratory, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marco Redini
- Municipality of Pisa, Via degli Uffizi 1, 56100 Pisa, Italy
| | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
12
|
Hahad O, Bayo Jimenez MT, Kuntic M, Frenis K, Steven S, Daiber A, Münzel T. Cerebral consequences of environmental noise exposure. ENVIRONMENT INTERNATIONAL 2022; 165:107306. [PMID: 35635962 DOI: 10.1016/j.envint.2022.107306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The importance of noise exposure as a major environmental determinant of public health is being increasingly recognized. While in recent years a large body evidence has emerged linking environmental noise exposure mainly to cardiovascular disease, much less is known concerning the adverse health effects of noise on the brain and associated neuropsychiatric outcomes. Despite being a relatively new area of investigation, indeed, mounting research and conclusive evidence demonstrate that exposure to noise, primarily from traffic sources, may affect the central nervous system and brain, thereby contributing to an increased risk of neuropsychiatric disorders such as stroke, dementia and cognitive decline, neurodevelopmental disorders, depression, and anxiety disorder. On a mechanistic level, a significant number of studies suggest the involvement of reactive oxygen species/oxidative stress and inflammatory pathways, among others, to fundamentally drive the adverse brain health effects of noise exposure. This in-depth review on the cerebral consequences of environmental noise exposure aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting adequate mitigation strategies and preventive measures to lower the societal consequences of unhealthy environments.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katie Frenis
- Boston Children's Hospital and Harvard Medical School, Department of Hematology/Oncology, Boston, MA, USA
| | - Sebastian Steven
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
13
|
Cole-Hunter T, So R, Amini H, Backalarz C, Brandt J, Bräuner EV, Hertel O, Jensen SS, Jørgensen JT, Ketzel M, Laursen JE, Lim YH, Loft S, Mehta A, Mortensen LH, Simonsen MK, Sisgaard T, Westendorp R, Andersen ZJ. Long-term exposure to road traffic noise and all-cause and cause-specific mortality: a Danish Nurse Cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153057. [PMID: 35031374 DOI: 10.1016/j.scitotenv.2022.153057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Long-term road traffic noise exposure is linked to cardio-metabolic disease morbidity, whereas evidence on mortality remains limited. OBJECTIVES We investigated association of long-term exposure to road traffic noise with all-cause and cause-specific mortality. METHODS We linked 22,858 females from the Danish Nurse Cohort (DNC), recruited into the Danish Register of Causes of Death up to 2014. Road traffic noise levels since 1970 were modelled by Nord2000 as the annual mean of a weighted 24 h average (Lden). Cox regression models examined the associations between Lden (5-year and 23-year means) and all-cause and cause-specific mortalities, adjusting for lifestyle and exposure to PM2.5 (particulate matter with diameter < 2.5 μm) and NO2 (nitrogen dioxide). RESULTS During follow-up (mean 17.4 years), 3902 nurses died: 1622 from cancer, 922 from CVDs (289 from stroke), 338 from respiratory diseases (186 from chronic obstructive pulmonary disease, 114 from lower respiratory tract infections [ALRIs]), 234 from dementia, 95 from psychiatric disorders, and 79 from diabetes. Hazard ratios (95% confidence intervals) for all-cause mortality from fully-adjusted models were 1.06 (1.01, 1.11) and 1.09 (1.03, 1.15) per 10 dB of 5-year and 23-year mean Lden, respectively, which attenuated slightly in our main model (fully-adjusted plus PM2.5: 1.04 [1.00, 1.10]; 1.08 [1.02, 1.13]). Main model estimates suggested the strongest associations between 5-year mean Lden and diabetes (1.14: 0.81, 1.61), ALRIs (1.13: 0.84, 1.54), dementia (1.12: 0.90, 1.38), and stroke (1.10: 0.91, 1.31), whereas associations with 23-year mean Lden were suggested for respiratory diseases (1.15: 0.95, 1.39), psychiatric disorders (1.11: 0.78, 1.59), and all cancers (1.08: 0.99, 1.17). DISCUSSION Among the female nurses from the DNC, we observed that long-term exposure to road traffic noise led to premature mortality, independently of air pollution, and its adverse effects may extend well beyond those on the cardio-metabolic system to include respiratory diseases, cancer, neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Tom Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Elvira Vaclavik Bräuner
- Juliane Marie Center, Department of Growth and Reproduction, Capital Region of Denmark, Rigshospitalet, Copenhagen, Denmark
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Denmark
| | | | | | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mette Kildevæld Simonsen
- Diakonissestiftelsen, Peter Bangsvej 1, 2000 Frederiksberg, Denmark; Research Unit for Dietary Studies, The Parker Institute Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Sisgaard
- Section of Environment, Occupation & Health Department of Public Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Rudi Westendorp
- Section of Epidemiology and Center for Healthy Ageing, Department of Public Health, University of Copenhagen
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Chen PC, Sung FC, Mou CH, Chen CW, Tsai SP, Hsieh DHP, Hsu CY. A cohort study evaluating the risk of stroke associated with long-term exposure to ambient fine particulate matter in Taiwan. Environ Health 2022; 21:43. [PMID: 35439956 PMCID: PMC9017007 DOI: 10.1186/s12940-022-00854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/11/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Evidences have shown that the stroke risk associated with long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) varies among people in North America, Europe and Asia, but studies in Asia rarely evaluated the association by stroke type. We examined whether long-term exposure to PM2.5 is associated with developing all strokes, ischemic stroke and hemorrhagic stroke. METHODS The retrospective cohort study consisted of 1,362,284 adults identified from beneficiaries of a universal health insurance program in 2011. We obtained data on air pollutants and meteorological measurements from air quality monitoring stations across Taiwan in 2010-2015. Annual mean levels of all environmental measurements in residing areas were calculated and assigned to cohort members. We used Cox proportional hazards models to estimate hazard ratio (HR) and 95% confidence interval (CI) of developing stroke associated with 1-year mean levels of PM2.5 at baseline in 2010, and yearly mean levels from 2010 to 2015 as the time-varying exposure, adjusting for age, sex, income and urbanization level. RESULTS During a median follow-up time of 6.0 years, 12,942 persons developed strokes, 9919 (76.6%) were ischemic. The adjusted HRs (95% CIs) per interquartile range increase in baseline 1-year mean PM2.5 were 1.03 (1.00-1.06) for all stroke, 1.06 (1.02-1.09) for ischemic stroke, and 0.95 (0.89-1.10) for hemorrhagic stroke. The concentration-response curves estimated in the models with and without additional adjustments for other environmental measurements showed a positively linear association between baseline 1-year mean PM2.5 and ischemic stroke at concentrations greater than 30 μg/m3, under which no evidence of association was observed. There was an indication of an inverse association between PM2.5 and hemorrhagic stroke, but the association no longer existed after controlling for nitrogen dioxide or ozone. We found similar shape of the concentration-response association in the Cox regression models with time-varying PM2.5 exposures. CONCLUSION Long-term exposure to PM2.5 might be associated with increased risk of developing ischemic stroke. The association with high PM2.5 concentrations remained significant after adjustment for other environmental factors.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Public Health, China Medical University College of Public Health, 100 Jingmao Rd Sec. 1, Taichung, 406040, Taiwan.
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, 100 Jingmao Rd Sec. 1, Taichung, 406040, Taiwan.
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan.
| | - Chih-Hsin Mou
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chao W Chen
- University of Maryland Global Campus, Adelphi, MD, USA
| | - Shan P Tsai
- School of Public Health, Texas A&M University, College Station, TX, USA
| | - Dennis H P Hsieh
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences, China Medical University College of Public Health, Taichung, Taiwan
| |
Collapse
|