1
|
Cheng FJ, Huang CE, Chen PS, Tseng YL, Yuan CS, Lai CS. New evidence on the nephrotoxicity of fine particulate matter: Potential toxic components from different emission sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117808. [PMID: 39904257 DOI: 10.1016/j.ecoenv.2025.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Associations exist between fine particulate matter (PM2.5) exposure and impaired kidney function. However, the specific mechanisms and components causing renal damage remain unclear. PM2.5 was collected from an industrial and a rural area. Mice were categorized according to exposure, and biochemical, western blotting, histological, and immunohistochemical analyses were performed to evaluate the impact of PM2.5 constituents on their kidneys. To assess the impact of different PM2.5 components on inflammatory responses, a study was conducted by exposing the murine macrophage cell line (RAW 264.7). The study used a chelating resin to remove the influence of heavy metals from the water extract and employed a Toll-like receptor 4 (TLR4) antagonist to eliminate the effects of endotoxin, thereby evaluating the cellular inflammatory responses induced by various PM2.5 components. The major metallic elements at the industrial site were Fe, Mg, Zn, and Ca, whereas those at site Rural were Ca, K, and Mg. PM2.5 water extracts from both sites induced inflammatory cytokine upregulation in the lungs and kidneys, and inflammatory cell infiltration, antioxidant activity downregulation, and elevated levels of kidney injury molecule 1 in the kidneys. Exposure to PM2.5 water extract increased the mRNA levels of tumor necrosis factor-α, interleukin-6, and nitrite production in RAW264.7 macrophages. The inflammatory response and nitrite production induced by the industrial-site PM2.5 water extract were significantly suppressed after treatment with a chelating resin, whereas those from the rural area were suppressed by the Toll-like receptor 4 (TLR4) antagonist. These results suggest that heavy metals are crucial factors in PM2.5-induced cellular inflammatory responses in industrial areas, whereas endotoxin receptor--TLR4 mediated inflammatory pathways are the primary factor responsible for this response in rural areas. Furthermore, at equivalent dosages, the renal toxicity induced by the water-soluble components of rural-site PM2.5 may exceed that from industrial areas.
Collapse
Affiliation(s)
- Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung City 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan, ROC
| | - Chien-Er Huang
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung City 833, Taiwan, ROC; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung City 833, Taiwan, ROC
| | - Pei-Shih Chen
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung City 804, Taiwan, ROC.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC.
| |
Collapse
|
2
|
Lin CH, Liu WS, Wan C, Wang HH. Induction of GPX4-regulated ferroptotic stress promotes epithelial-to-mesenchymal transition in renal tubule cells induced by PM2.5. Toxicol Appl Pharmacol 2025; 495:117184. [PMID: 39631540 DOI: 10.1016/j.taap.2024.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence links exposure to fine particulate matter (PM2.5) with an elevated risk of kidney disease. In this study, we investigated the effect of PM2.5 exposure on human proximal tubular epithelial (HK-2) cells and found that it elevated ferroptotic stress markers, including increased iron, reactive oxygen species (ROS), and malondialdehyde (MDA), along with reducing glutathione (GSH) levels. PM2.5 promotes the epithelial-to-mesenchymal transition (EMT) in these cells, which is associated with the loss of epithelial morphology, lowered expression of E-cadherin, and elevated expression of α-smooth muscle actin (α-SMA). Notably, a reduction in PM2.5-induced EMT characteristics was observed using either a ferroptosis-specific inhibitor (Fer-1) or a mitochondrial ROS scavenger (Mito-Tempo). Moreover, Fer-1 effectively counteracted ferroptotic stress and restored glutathione peroxidase 4 (GPX4) expression in PM2.5-exposed cells, which may explain its efficacy in inhibiting EMT induced by PM2.5. In contrast, GPX4 knockdown exacerbated EMT features in PM2.5-treated cells. Further studies showed that GPX4 overexpression alleviated EMT markers in mouse tubular cells following PM2.5 exposure, indicating the role of GPX4 in reducing ferroptotic stress and may prevent tubular injury caused by PM2.5 exposure. Our study highlights that PM2.5 may induce GPX4-regulated ferroptotic stress in tubular cells, potentially triggering the EMT process and contributing to kidney injury.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Wen-Sheng Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan; Division of Nephrology, Department of Medicine, Taipei City Hospital Zhongxing Branch, Taipei, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Lu M, Zhan Z, Li D, Chen H, Li A, Hu J, Huang Z, Yi B. Protective role of vitamin D receptor against mitochondrial calcium overload from PM 2.5-Induced injury in renal tubular cells. Redox Biol 2025; 80:103518. [PMID: 39891958 DOI: 10.1016/j.redox.2025.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE This research explores the consequences of being exposed to PM2.5 contribute to renal injury while also evaluating the protective role of Vitamin D-VDR signaling in alleviating mitochondrial calcium imbalance and oxidative stress in renal tubular cells. METHODS Animal models of chronic PM2.5 exposure were used to simulate environmental conditions in wild type and VDR-overexpressing mice specific to renal tubules. In parallel, HK-2 cell lines were treated with PM2.5 in vitro. Mitochondrial function, calcium concentration, and oxidative stress markers were assessed. VDR activation, achieved through genetic overexpression and paricalcitol, was induced to examine its effect on mitochondrial calcium uniporter (MCU) expression and mitochondrial calcium regulation. RESULTS PM2.5 exposure caused significant mitochondrial damage in renal tubular cells, including mitochondrial calcium overload, increased oxidative stress, reduced membrane potential, and diminished ATP production. Elevated MCU expressions were a key contributor to these disruptions. VDR activation effectively reversed these effects by downregulating MCU, restoring mitochondrial calcium balance, reducing oxidative stress, and improving renal function. CONCLUSION This study shows that activating Vitamin D-VDR signaling shields the kidneys from PM2.5-induced damage by reestablishing mitochondrial calcium balance and lowering oxidative stress via inhibition of the MCU. These results unveil a new protective role of VDR in defending against environmental pollutants and suggest that targeting the MCU could offer a potential therapeutic strategy for treating chronic kidney disease linked to pollution exposure.
Collapse
Affiliation(s)
- Mengqiu Lu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Hengbing Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Jing Hu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China.
| |
Collapse
|
4
|
Baldriche-Acosta J, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier OC, Aztatzi-Aguilar OG. Urinary oxidative stress biomarkers in nephrotoxicity induced by PM 2.5 in a rat model. Inhal Toxicol 2025:1-10. [PMID: 39801041 DOI: 10.1080/08958378.2025.2450393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE The present study evaluated urinary oxidative stress (OxS) biomarkers to explain the extrapulmonary effect of renal function decline due to subchronic inhalation exposure to particles smaller than 2.5 μm, as well as the correlation of the biomarkers with the particles' endotoxin content. MATERIALS AND METHODS Adult male Sprague-Dawley rats were exposed to subchronic inhalation of particles smaller than 2.5 μm (8 weeks, 4 days/week, 5 h/day). The control group was exposed to filtered air. MiniVol and HiVol samplers were used to estimate the concentration and collected particles, respectively. Biomarkers were assessed in weekly urine samples harvested by the metabolic cage. The OxS biomarkers assessed were methylglyoxal, non-esterified fatty acids, malondialdehyde, advanced oxidative protein products, arginase, myeloperoxidase, glutathione S-transferase, and gamma-glutamyl transferase, all of which were evaluated by colorimetric assays. Creatinine was evaluated by the Jaffe reaction, and cystatin-C (Cys-C) and neutrophil gelatinase-associated lipocalin-2 were quantified using Luminex technology. Endotoxin content was analyzed with the Limulus Amebocyte Lysate Pyrochrome Chromogenic Test Kit. RESULTS AND DISCUSSION Subchronic exposure to PM2.5 increased OxS biomarkers in urine. Endotoxin content showed a positive correlation with the urinary OxS biomarkers evaluated. Additionally, urinary OxS biomarkers correlated with creatinine and the early kidney damage biomarkers Cys-C and neutrophil gelatinase-associated lipocalin-2, where the strongest and positive correlations were observed with the latter two biomarkers. CONCLUSIONS Inhalation of environmental airborne particles smaller than 2.5 μm increased urinary OxS biomarkers, correlated with endotoxin content and early kidney damage biomarkers. This finding corroborates the extrapulmonary nephrotoxic effect of inhaled particles.
Collapse
Affiliation(s)
- Jessica Baldriche-Acosta
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrea De Vizcaya-Ruiz
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Abdellatif DA. Social and humanitarian issues in nephrology and hypertension. Curr Opin Nephrol Hypertens 2024:00041552-990000000-00186. [PMID: 39258991 DOI: 10.1097/mnh.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease and hypertension, two widely prevalent conditions worldwide, present an urgent and pressing need for immediate action. The review describes how social conditions and humanitarian issues can influence hypertension and kidney disease. RECENT FINDINGS Undoubtedly, social determinants of health (SDoH) are key influencers in the development of many noncommunicable diseases, including hypertension and kidney disease. Healthcare professionals, including public health workers, play a crucial role in addressing these issues. Poverty, low education level, poor nutrition, housing, exposure to environmental hazards, and stress-related disorders are all factors that can be addressed, either directly or indirectly, through improved awareness and access to proper healthcare services. Besides personal factors, national, regional, or global factors cause serious apprehension. Disasters, whether natural or man-made, can lead to significant aftermaths on the healthy person and certainly on kidney disease and hypertensive patients. A Global Overview Report, 2023 turned out to be one of the most violent years since the end of the Cold War. In 2023, 59 state-based conflicts were recorded in 34 countries, the highest number registered since 1946. The wars in Ukraine and Gaza were the primary contributors with a significant impact on the kidney population, especially people living on dialysis and transplantation patients. They also yielded many refugees or displaced persons with ongoing suffering. SUMMARY It is crucial to recognize that social and humanitarian conditions can quickly exacerbate the health of vulnerable populations, particularly those with noncommunicable diseases like hypertension and chronic kidney disease. These patients, who often require continuous follow-up, especially those on dialysis, are particularly vulnerable during difficult times. Their lives depend on uninterrupted access to dialysis or transplantation medications, making the need for special attention and care more pressing. Further research and advocacy are needed to address these issues and ensure the health and well being of these populations.
Collapse
|
6
|
Kilbo Edlund K, Xu Y, Andersson EM, Christensson A, Dehlin M, Forsblad-d'Elia H, Harari F, Ljunggren S, Molnár P, Oudin A, Svartengren M, Ljungman P, Stockfelt L. Long-term ambient air pollution exposure and renal function and biomarkers of renal disease. Environ Health 2024; 23:67. [PMID: 39123230 PMCID: PMC11313149 DOI: 10.1186/s12940-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Despite accumulating evidence of an association between air pollution and renal disease, studies on the association between long-term exposure to air pollution and renal function are still contradictory. This study aimed to investigate this association in a large population with relatively low exposure and with improved estimation of renal function as well as renal injury biomarkers. METHODS We performed a cross-sectional analysis in the middle-aged general population participating in the Swedish CardioPulmonary bioImaging Study (SCAPIS; n = 30 154). Individual 10-year exposure to total and locally emitted fine particulate matter (PM2.5), inhalable particulate matter (PM10), and nitrogen oxides (NOx) were modelled using high-resolution dispersion models. Linear regression models were used to estimate associations between exposures and estimated glomerular filtration rate (eGFR, combined creatinine and cystatin C) and serum levels of renal injury biomarkers (KIM-1, MCP-1, IL-6, IL-18, MMP-2, MMP-7, MMP-9, FGF-23, and uric acid), with consideration of potential confounders. RESULTS Median long-term PM2.5 exposure was 6.2 µg/m3. Almost all participants had a normal renal function and median eGFR was 99.2 mL/min/1.73 m2. PM2.5 exposure was associated with 1.3% (95% CI 0.6, 2.0) higher eGFR per 2.03 µg/m3 (interquartile range, IQR). PM2.5 exposure was also associated with elevated serum matrix metalloproteinase 2 (MMP-2) concentration, with 7.2% (95% CI 1.9, 12.8) higher MMP-2 per 2.03 µg/m3. There was a tendency towards an association between PM10 and higher levels of uric acid, but no associations were found with the other biomarkers. Associations with other air pollutants were null or inconsistent. CONCLUSION In this large general population sample at low exposure levels, we found a surprising association between PM2.5 exposure and a higher renal filtration. It seems unlikely that particle function would improve renal function. However, increased filtration is an early sign of renal injury and may be related to the relatively healthy population at comparatively low exposure levels. Furthermore, PM2.5 exposure was associated with higher serum concentrations of MMP-2, an early indicator of renal and cardiovascular pathology.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden.
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Christensson
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mats Dehlin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, and, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental MedicineDepartment of Laboratory MedicineFaculty of Medicine, Lund University, Lund, Sweden
- Division for Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Magnus Svartengren
- Department of Medical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Hu A, Li R, Chen G, Chen S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int J Mol Sci 2024; 25:7654. [PMID: 39062897 PMCID: PMC11277548 DOI: 10.3390/ijms25147654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory dust of different particle sizes in the environment causes diverse health effects when entering the human body and makes acute or chronic damage through multiple systems and organs. However, the precise toxic effects and potential mechanisms induced by dust of different particle sizes have not been systematically summarized. In this study, we described the sources and characteristics of three different particle sizes of dust: PM2.5 (<2.5 μm), silica (<5 μm), and nanosilica (<100 nm). Based on their respective characteristics, we further explored the main toxicity induced by silica, PM2.5, and nanosilica in vivo and in vitro. Furthermore, we evaluated the health implications of respiratory dust on the human body, and especially proposed potential synergistic effects, considering current studies. In summary, this review summarized the health hazards and toxic mechanisms associated with respiratory dust of different particle sizes. It could provide new insights for investigating the synergistic effects of co-exposure to respiratory dust of different particle sizes in mixed environments.
Collapse
Affiliation(s)
| | | | | | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China; (A.H.); (R.L.); (G.C.)
| |
Collapse
|
8
|
Liang W, Li R, Chen G, Ma H, Han A, Hu Q, Xie N, Wei J, Shen H, Wang X, Xiang H. Long-term exposure to ambient particulate matter is associated with prognosis in people living with HIV/AIDS: Evidence from a longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172453. [PMID: 38641108 DOI: 10.1016/j.scitotenv.2024.172453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/24/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Evidence on the association between particulate matter (PM) exposure and prognosis in people living with HIV/AIDS (PWHA) is scarce. We aim to investigate the associations of long-term exposure to PM with AIDS-related deaths and complications. METHODS We collected follow-up information on 7444 PWHAs from 2000 to 2021 from the HIV/AIDS Comprehensive Response Information Management System of the Wuhan Center for Disease Control and Prevention. The AIDS-related deaths and complications were assessed by physicians every 3 to 6 months, and the monthly average PM concentrations for each PWHA were extracted from the China High Air Pollutants dataset. We employed time-varying Cox regression models to evaluate the associations of the average cumulative PM exposure concentrations with AIDS-related deaths and complications, as well as the mediating effects of AIDS-related complications in PM-induced AIDS-related deaths. RESULTS For each 1 μg/m3 increase in PM1, PM2.5, and PM10, the adjusted hazard ratios (HRs) for AIDS-related deaths were 1.021 (1.009, 1.033), 1.012 (1.005, 1.020), and 1.010 (1.005, 1.015), respectively; and the HRs for AIDS-related complications were 1.049 (1.034, 1.064), 1.029 (1.020, 1.038), and 1.031 (1.024, 1.037), respectively. AIDS-related complications mediated 18.38 % and 18.68 % of the association of exposure to PM1 and PM2.5 with AIDS-related deaths, respectively. The association of PM exposure with AIDS-related deaths was more significant in older PWHA. Meanwhile, the association between PM exposure and AIDS-related complications was stronger in PWHA with a BMI ≥ 24 kg/m2. CONCLUSION Long-term exposure to PM is positively associated with AIDS-related deaths and complications, and AIDS-related complications have mediating effects in PM-induced AIDS-related deaths. Our evidence emphasizes that enhanced protection against PM exposure for PWHAs is an additional mitigation strategy to reduce AIDS-related deaths and complications.
Collapse
Affiliation(s)
- Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Ruihan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Aojing Han
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Qilin Hu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, United States
| | - Huanfeng Shen
- School of Resource and Environmental Science, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
9
|
Kilbo Edlund K, Andersson EM, Andersson M, Barregard L, Christensson A, Johannesson S, Harari F, Murgia N, Torén K, Stockfelt L. Occupational particle exposure and chronic kidney disease: a cohort study in Swedish construction workers. Occup Environ Med 2024; 81:238-243. [PMID: 38811167 PMCID: PMC11187372 DOI: 10.1136/oemed-2023-109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Increasing epidemiological and experimental evidence suggests that particle exposure is an environmental risk factor for chronic kidney disease (CKD). However, only a few case-control studies have investigated this association in an occupational setting. Hence, our objective was to investigate associations between particle exposure and CKD in a large cohort of Swedish construction workers. METHODS We performed a retrospective cohort study in the Swedish Construction Workers' Cohort, recruited 1971-1993 (n=286 089). A job-exposure matrix was used to identify workers exposed to nine different particulate exposures, which were combined into three main categories (inorganic dust and fumes, wood dust and fibres). Incident CKD and start of renal replacement therapy (RRT) were obtained from validated national registries until 2021 and analysed using adjusted Cox proportional hazards models. RESULTS Exposure to inorganic dust and fumes was associated with an increased risk of CKD and RRT during working age (adjusted HR for CKD at age <65 years 1.15, 95% CI 1.05 to 1.26). The elevated risk did not persist after retirement age. Exposure to cement dust, concrete dust and diesel exhaust was associated with CKD. Elevated HRs were also found for quartz dust and welding fumes. CONCLUSIONS Workers exposed to inorganic particles seem to be at elevated risk of CKD and RRT. Our results are in line with previous evidence of renal effects of ambient air pollution and warrant further efforts to reduce occupational and ambient particle exposure.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Martin Andersson
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Lars Barregard
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Anders Christensson
- Department of Nephrology, Lund University, Lund, Sweden
- Department of Nephrology, Skåne University Hospital Nephrology, Malmö, Sweden
| | - Sandra Johannesson
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Kjell Torén
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Leo Stockfelt
- School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| |
Collapse
|
10
|
Stem AD, Gibb M, Roncal-Jimenez CA, Johnson RJ, Brown JM. Health burden of sugarcane burning on agricultural workers and nearby communities. Inhal Toxicol 2024; 36:327-342. [PMID: 38349733 PMCID: PMC11260540 DOI: 10.1080/08958378.2024.2316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.
Collapse
Affiliation(s)
- Arthur D. Stem
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew Gibb
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Carlos A. Roncal-Jimenez
- Division of Renal Diseases and Hypertension,University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension,University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Zhang Y, Shen Z, Pei H, Wang G, Wang Z, Wei X, Yu J, Wang C, Hua J, He B. Impact of particulate-matter air pollution on 25-hydroxyvitamin D levels: a mendelian randomisation study. Public Health 2024; 230:190-197. [PMID: 38565065 DOI: 10.1016/j.puhe.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES In observational studies, the 25-hydroxyvitamin D (25(OH)D) level in body has been found to be closely related to particulate matter (PM) air pollution. In this study, we used the two-sample mendelian randomisation (MR) method to investigate and discuss the potential causal relationship and mode of influence. STUDY DESIGN MR study. METHODS PM data (PM10, PM2.5-10, PM2.5, PM2.5 absorbance) came from the UK Biobank database, and 25(OH)D data came from European Bioinformatics Institute (EBI) database. The analysis was conducted utilising three prominent methods (inverse-variance-weighted [IVW], MR-Egger, weighted median, weighted mode, and simple mode). The primary emphasis was placed on IVW, accompanied by heterogeneity and horizontal pleiotropy tests. Furthermore, sensitivity analysis was undertaken. RESULTS The MR analysis revealed a significant association between exposure to PM10 and a decrease in levels of 25(OH)D (odds ratio [OR]: 0.878, 95% confidence interval [CI]: 0.789-0.977). However, no significant relationship was observed between PM2.5 exposure and 25(OH)D (OR: 0.943, 95%CI: 0.858-1.037). Further analysis indicated that the main contributor to the decline in 25(OH)D levels is linked to PM2.5-10 exposure (OR: 0.840, 95%CI: 0.751-0.940) and PM2.5 absorbance (OR: 0.875, 95%CI: 0.824-0.929). No heterogeneity and horizontal pleiotropy existed. CONCLUSIONS The MR results suggest that PM (PM10, PM2.5-10 and PM2.5 absorbance) exposure lowers vitamin D (VD) levels, but PM2.5 was not found to have a significant effect on VD in humans.
Collapse
Affiliation(s)
- Yi Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zan Shen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hang Pei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guanyin Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziyue Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinshi Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinsheng Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Wang
- Anji County Hospital of Chinese Medicine, Zhejiang, China
| | - Jiang Hua
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Bangjian He
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
12
|
Angel S, Eades LJ, Sim G, Czopek A, Dhaun N, Krystek P, Miller MR. New insights into the association of air pollution and kidney diseases by tracing gold nanoparticles with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2024; 416:2683-2689. [PMID: 38206347 PMCID: PMC11009748 DOI: 10.1007/s00216-023-05105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Exposure to particles from air pollution has been associated with kidney disease; however, the underlying biological mechanisms are incompletely understood. Inhaled particles can gain access to the circulation and, depending on their size, pass into urine, raising the possibility that particles may also sequester in the kidney and directly alter renal function. This study optimised an inductively coupled plasma mass spectrometry (ICP-MS) method to investigate the size dependency of particle accumulation in the kidneys of mice following pulmonary instillation (0.8 mg in total over 4 weeks) to gold nanoparticles (2, 3-4, 7-8, 14 or 40 nm or saline control). Due to the smallest particle sizes being below the limit of detection in single particle mode, ICP-MS was operated in total quantification mode. Gold was detected in all matrices of interest (blood, urine and kidney) from animals treated with all sizes of gold nanoparticles, at orders of magnitude higher than the methodological limit of detection in biological matrices (0.013 ng/mL). A size-dependent effect was observed, with smaller particles leading to greater levels of accumulation in tissues. This study highlights the value of a robust and reliable method by ICP-MS to detect extremely low levels of gold in biological samples for indirect particle tracing. The finding that nano-sized particles translocate from the lung to the kidney may provide a biological explanation for the associations between air pollution and kidney disease.
Collapse
Affiliation(s)
- Souzana Angel
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Lorna J Eades
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Gavin Sim
- School of Geoscience, The University of Edinburgh, Edinburgh, UK
| | - Alicja Czopek
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Petra Krystek
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Deltares, Utrecht, Netherlands
| | - Mark R Miller
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
13
|
Dillon D, Ward-Caviness C, Kshirsagar AV, Moyer J, Schwartz J, Di Q, Weaver A. Associations between long-term exposure to air pollution and kidney function utilizing electronic healthcare records: a cross-sectional study. Environ Health 2024; 23:43. [PMID: 38654228 PMCID: PMC11036746 DOI: 10.1186/s12940-024-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.
Collapse
Affiliation(s)
- David Dillon
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Abhijit V Kshirsagar
- Division of Nephrology and Hypertension, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua Moyer
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joel Schwartz
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Qian Di
- Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Yang C, Wang W, Wang F, Wang Y, Zhang F, Liang Z, Liang C, Wang J, Ma L, Li P, Li S, Zhang L. Ambient PM 2.5 components and prevalence of chronic kidney disease: a nationwide cross-sectional survey in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:70. [PMID: 38353840 DOI: 10.1007/s10653-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a global public health concern, and accumulating evidence has indicated that air pollution increases the odds of CKD. However, a limited number of studies have examined the long-term effects of ambient fine particulate matter (PM2.5) components on the risk of CKD among general population; thus, major knowledge gaps remain. METHODS Using data from a nationwide representative cross-sectional survey in China and a validated PM2.5 composition dataset, we established generalized linear models to quantify the association between five major components of PM2.5 and CKD prevalence. RESULTS There were significant associations between long-term exposure to three PM2.5 components [including black carbon (BC), sulfate (SO42-), organic matter (OM)] and increased odds of CKD prevalence. Along with an interquartile range (IQR) increment in BC (3.3 μg/m3), SO42- (9.7 μg/m3), and OM (16.2 μg/m3) at a 4-year moving average, the odds ratios (ORs) for CKD prevalence were 1.28 (95% CI 1.07, 1.54), 1.23 (95% CI 1.03, 1.45), and 1.23 (95% CI 1.02, 1.47), respectively. We did not detect any significant association of the other two PM2.5 components [nitrate (NO3-) or ammonium (NH4+)] with CKD prevalence. Stratified analyses revealed no differences (P ≥ 0.05) in the effect estimates of subgroups based on administrative region, sex, age, and other demographic characteristics. For instance, along with an IQR increment in BC at a 4-year moving average, the ORs of CKD prevalence among males and females were 1.30 (95% CI 0.98, 1.73) and 1.29 (95% CI 1.01, 1.65), respectively. The odds of CKD were generally higher with increasing PM2.5 composition concentration. CONCLUSIONS Our study demonstrated that long-term exposure to specific PM2.5 components including BC, SO42-, and OM increased CKD risk in the general population. This study could provide new insights into source-directed PM2.5 control and CKD prevention.
Collapse
Affiliation(s)
- Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yueyao Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Feifei Zhang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ze Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenyu Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
| | - Lin Ma
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Shuangcheng Li
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China.
- National Institute of Health Data Science at Peking University, Beijing, 100191, China.
| |
Collapse
|
15
|
Alvarez-Elias AC, Brenner BM, Luyckx VA. Climate change and its influence in nephron mass. Curr Opin Nephrol Hypertens 2024; 33:102-109. [PMID: 37800660 PMCID: PMC10715706 DOI: 10.1097/mnh.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW The consequences of climate change, including heat and extreme weather events impact kidney function in adults and children. The impacts of climate change on kidney development during gestation and thereby on kidney function later in life have been poorly described. Clinical evidence is summarized to highlight possible associations between climate change and nephron mass. RECENT FINDINGS Pregnant women are vulnerable to the effects of climate change, being less able to thermoregulate, more sensitive to the effects of dehydration, and more susceptible to infections. Exposure to heat, wildfire smoke, drought, floods and climate-related infections are associated with low birth weight, preterm birth and preeclampsia. These factors are associated with reduced nephron numbers, kidney dysfunction and higher blood pressures in offspring in later life. Exposure to air pollution is associated with higher blood pressures in children and has variable effects on estimated glomerular filtration rate. SUMMARY Climate change has important impacts on pregnant women and their unborn children. Being born too small or too soon is associated with life-time risk of kidney disease. Climate change may therefore have a dual effect of impacting fetal kidney development and contributing to cumulative postnatal kidney injury. The impact on population kidney health of future generations may be significant.
Collapse
Affiliation(s)
- Ana Catalina Alvarez-Elias
- Renal Research Institute, New York City, New York, USA
- Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
- University of Toronto, IHPME & Sick Kids Research Institute, Toronto, Canada
| | - Barry M. Brenner
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie A. Luyckx
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Peng S, Chen B, Li Z, Sun J, Liu F, Yin X, Zhou Y, Shen H, Xiang H. Ambient ozone pollution impairs glucose homeostasis and contributes to renal function decline: Population-based evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115803. [PMID: 38091674 PMCID: PMC10790241 DOI: 10.1016/j.ecoenv.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Particulate matter pollution could increase the risk of kidney disease, while evidence for ozone exposure is less well-established. Here, we aimed to evaluate the effect of ozone pollution on renal function and explore mechanisms. We first conducted a cross-sectional study based on Wuhan Chronic Disease Cohort Study baseline information. We recruited 2699 eligible participants, estimated their residential ozone concentrations, collected fasting peripheral blood samples for biochemical analysis and calculated the estimated glomerular filtration rate (eGFR). The linear regression model was applied to evaluate the long-term association between ozone pollution and eGFR. Then, we recruited another 70 volunteers as a panel with 8 rounds follow-up visits. We calculated the eGFR and measured fasting blood glucose and lipid levels. The linear mixed-effect model along with mediation analysis were performed to confirm the short-term association and explore potential mechanisms, respectively. For the long-term association, a 10.95 μg/m3 increment of 3-year ozone exposure was associated with 2.96 mL/min/1.73 m2 decrease in eGFR (95%CI: -4.85, -1.06). Furthermore, the drinkers exhibited a pronounced declination of eGFR (-7.46 mL/min/1.73 m2, 95%CI: -11.84, -3.08) compared to non-drinkers in relation to ozone exposure. Additionally, a 19.02 μg/m3 increase in 3-day ozone concentrations was related to 2.51 mL/min/1.73 m2 decrease in eGFR (95%CI: -3.78, -1.26). Hyperglycemia and insulin resistance mediated 12.2% and 16.5% of the aforementioned association, respectively. Our findings indicated that higher ozone pollution could affect renal function, and the hyperglycemia and insulin resistance linked to ozone might be the underlying mechanisms.
Collapse
Affiliation(s)
- Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Bingbing Chen
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Zhaoyuan Li
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Jinhui Sun
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Xiaoyi Yin
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Yi Zhou
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China
| | - Huanfeng Shen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, Hubei, PR China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, PR China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
17
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Short-term exposure to PM 2.5 and 1.5 million deaths: a time-stratified case-crossover analysis in the Mexico City Metropolitan Area. Environ Health 2023; 22:70. [PMID: 37848890 PMCID: PMC10580614 DOI: 10.1186/s12940-023-01024-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in low and middle income countries. We aimed to explore the association between short-term exposure to PM2.5 with broad-category and cause-specific mortality outcomes in the Mexico City Metropolitan Area (MCMA), and potential effect modification by age, sex, and SES characteristics in such associations. METHODS We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from the MCMA for the period of 2004-2019. Daily 1 × 1 km PM2.5 (median = 23.4 μg/m3; IQR = 13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Odds ratios were converted into percent increase for ease of interpretation. RESULTS PM2.5 exposure was associated with broad-category mortality outcomes, including all non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between age, sex and SES strata. CONCLUSIONS Exposure to PM2.5 was associated with non-accidental, broad-category and cause-specific mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indication of effect modification by individual-level characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social, Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Li Y, Wang Y, Fan M, Li W, Meng X, Zhou H, Zhang S, Dou Q. Association of short-term nitrogen dioxide exposure with hospitalization for urolithiasis in Xinxiang, China: a time series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93697-93707. [PMID: 37515621 PMCID: PMC10468926 DOI: 10.1007/s11356-023-28539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Urolithiasis accounts for the highest incidence of all urologic-associated hospitalizations. However, few studies have explored the effect of nitrogen dioxide (NO2) on hospitalizations for urolithiasis. We included 5956 patients with urolithiasis, collected daily meteorological and air pollution data between 2016 and 2021, and analyzed the associations between air pollutants and hospitalization, length of the hospital stay, and hospitalization costs attributable to urolithiasis. NO2 exposure was associated with an increased risk of hospitalization for urinary tract stones. For each 10-μg/m3 increase and 1-day lag of NO2, the maximum daily effect on the risk of hospitalization for urolithiasis was 1.020 (95% confidence interval [CI]: 1.001-1.039), and the cumulative effect peaked on lag day 4 (relative risk [RR]: 1.061; 95% CI: 1.003-1.122). Attribution scores and quantitative analysis revealed that the mean number of hospital days and mean hospital costs were 16 days and 21,164.39 RMB, respectively. Up to 5.75% of all urolithiasis hospitalizations were estimated to be attributable to NO2, and the cost of NO2-related urolithiasis hospitalizations reached approximately 3,430,000 RMB. Stratified analysis showed that NO2 had a more sensitive impact on urolithiasis hospitalizations in women and in those aged ≥65 years. Notably, men and those younger than 65 years of age (exclude people aged 65) incurred more costs for urolithiasis hospitalizations. In the population level, the association between NO2 and risk of urolithiasis hospitalization was more pronounced during the warm season. NO2 can increase hospitalizations for urolithiasis for Xinxiang City residents, and there is a cumulative lag effect. Focusing on air pollution may have practical significance in terms of the prevention and control of urolithiasis.
Collapse
Affiliation(s)
- Yangdong Li
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China
| | - Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Maochuan Fan
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China
| | - Weisheng Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, People's Republic of China
| | - Xiangzhen Meng
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China
| | - Hao Zhou
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China
| | - Shaohua Zhang
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China
| | - Qifeng Dou
- The First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Weihui, Xinxiang, Henan Province, 453100, People's Republic of China.
| |
Collapse
|
19
|
Rasking L, Koshy P, Bongaerts E, Bové H, Ameloot M, Plusquin M, De Vusser K, Nawrot TS. Ambient black carbon reaches the kidneys. ENVIRONMENT INTERNATIONAL 2023; 177:107997. [PMID: 37269720 DOI: 10.1016/j.envint.2023.107997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Ultrafine particles, including black carbon (BC), can reach the systemic circulation and therefore may distribute to distant organs upon inhalation. The kidneys may be particularly vulnerable to the adverse effects of BC exposure due to their filtration function. OBJECTIVES We hypothesized that BC particles reach the kidneys via the systemic circulation, where the particles may reside in structural components of kidney tissue and impair kidney function. METHODS In kidney biopsies from 25 transplant patients, we visualized BC particles using white light generation under femtosecond-pulsed illumination. The presence of urinary kidney injury molecule-1 (KIM-1) and cystatin c (CysC) were evaluated with ELISA. We assessed the association between internal and external exposure matrices and urinary biomarkers using Pearson correlation and linear regression models. RESULTS BC particles could be identified in all biopsy samples with a geometric mean (5th, 95th percentile) of 1.80 × 103 (3.65 × 102, 7.50 × 103) particles/mm3 kidney tissue, predominantly observed in the interstitium (100 %) and tubules (80 %), followed by the blood vessels and capillaries (40 %), and the glomerulus (24 %). Independent from covariates and potential confounders, we found that each 10 % higher tissue BC load resulted in 8.24 % (p = 0.03) higher urinary KIM-1. In addition, residential proximity to a major road was inversely associated with urinary CysC (+10 % distance: -4.68 %; p = 0.01) and KIM-1 (+10 % distance: -3.99 %; p < 0.01). Other urinary biomarkers, e.g., the estimated glomerular filtration rate or creatinine clearance showed no significant associations. DISCUSSION AND CONCLUSION Our findings that BC particles accumulate near different structural components of the kidney represent a potential mechanism explaining the detrimental effects of particle air pollution exposure on kidney function. Furthermore, urinary KIM-1 and CysC show potential as air pollution-induced kidney injury biomarkers for taking a first step in addressing the adverse effects BC might exert on kidney function.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Priyanka Koshy
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hannelore Bové
- Department of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien De Vusser
- Nephrology and Kidney Transplantation, University Hospital Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Leuven University, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, Leuven, Belgium.
| |
Collapse
|
20
|
Chu L, Chen K, Di Q, Crowley S, Dubrow R. Associations between short-term exposure to PM 2.5, NO 2 and O 3 pollution and kidney-related conditions and the role of temperature-adjustment specification: A case-crossover study in New York state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121629. [PMID: 37054868 DOI: 10.1016/j.envpol.2023.121629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Epidemiologic evidence on the relationship between air pollution and kidney disease remains inconclusive. We evaluated associations between short-term exposure to PM2.5, NO2 and O3 and unplanned hospital visits for seven kidney-related conditions (acute kidney failure [AKF], urolithiasis, glomerular diseases [GD], renal tubulo-interstitial diseases, chronic kidney disease, dysnatremia, and volume depletion; n = 1,209,934) in New York State (2007-2016). We applied a case-crossover design with conditional logistic regression, controlling for temperature, dew point temperature, wind speed, and solar radiation. We used a three-pollutant model at lag 0-5 days of exposure as our main model. We also assessed the influence of model adjustment using different specifications of temperature by comparing seven temperature metrics (e.g., dry-bulb temperature, heat index) and five intraday temperature measures (e.g., daily mean, daily minimum, nighttime mean), according to model performance and association magnitudes between air pollutants and kidney-related conditions. In our main models, we adjusted for daytime mean outdoor wet-bulb globe temperature, which showed good model performance across all kidney-related conditions. We observed the odds ratios (ORs) for 5 μg/m3 increase in daily mean PM2.5 to be 1.013 (95% confidence interval [CI]: 1.001, 1.025) for AKF, 1.107 (95% CI: 1.018, 1.203) for GD, and 1.027 (95% CI: 1.015, 1.038) for volume depletion; and the OR for 5 ppb increase in daily 1-hour maximum NO2 to be 1.014 (95% CI; 1.008, 1.021) for AKF. We observed no associations with daily 8-hour maximum O3 exposure. Association estimates varied by adjustment for different intraday temperature measures: estimates adjusted for measures with poorer model performance resulted in the greatest deviation from estimates adjusted for daytime mean, especially for AKF and volume depletion. Our findings indicate that short-term exposure to PM2.5 and NO2 is a risk factor for specific kidney-related conditions and underscore the need for careful adjustment of temperature in air pollution epidemiologic studies.
Collapse
Affiliation(s)
- Lingzhi Chu
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Susan Crowley
- Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, CT, 06520, USA; Veterans Administration Health Care System of Connecticut, West Haven, CT, 06516, USA
| | - Robert Dubrow
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| |
Collapse
|
21
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
22
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Daily exposure to PM 2.5 and 1.5 million deaths: A time-stratified case-crossover analysis in the Mexico City Metropolitan Area. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.15.23284576. [PMID: 36711599 PMCID: PMC9882435 DOI: 10.1101/2023.01.15.23284576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in Latin America. Methods We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from Mexico City Metropolitan Area for the period of 2004-2019. Daily 1×1 km PM2.5 (median=23.4 μg/m3; IQR=13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Results PM2.5 exposure was associated with higher total non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between SES strata. Conclusions Exposure to PM2.5 was associated with mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indications of effect modification by individual SES-related characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social. Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Kshirsagar AV, Zeitler EM, Weaver A, Franceschini N, Engel LS. Environmental Exposures and Kidney Disease. KIDNEY360 2022; 3:2174-2182. [PMID: 36591345 PMCID: PMC9802544 DOI: 10.34067/kid.0007962021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022]
Abstract
Accumulating evidence underscores the large role played by the environment in the health of communities and individuals. We review the currently known contribution of environmental exposures and pollutants on kidney disease and its associated morbidity. We review air pollutants, such as particulate matter; water pollutants, such as trace elements, per- and polyfluoroalkyl substances, and pesticides; and extreme weather events and natural disasters. We also discuss gaps in the evidence that presently relies heavily on observational studies and animal models, and propose using recently developed analytic methods to help bridge the gaps. With the expected increase in the intensity and frequency of many environmental exposures in the decades to come, an improved understanding of their potential effect on kidney disease is crucial to mitigate potential morbidity and mortality.
Collapse
Affiliation(s)
- Abhijit V. Kshirsagar
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Evan M. Zeitler
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Luo J, Liu H, Hua S, Song L. The Correlation of PM2.5 Exposure with Acute Attack and Steroid Sensitivity in Asthma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2756147. [PMID: 36033576 PMCID: PMC9410784 DOI: 10.1155/2022/2756147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Bronchial asthma is a common chronic inflammatory disease of the respiratory system. Asthma primarily manifests in reversible airflow limitation and airway inflammation, airway remodeling, and persistent airway hyperresponsiveness. PM2.5, also known as fine particulate matter, is the main component of air pollution and refers to particulate matter with an aerodynamic diameter of ≤2.5 μm. PM2.5 can be suspended in the air for an extensive time and, in addition, can contain or adsorb heavy metals, toxic gases, polycyclic aromatic hydrocarbons, bacterial viruses, and other harmful substances. Epidemiological studies have demonstrated that, in addition to increasing the incidence of asthma, PM2.5 exposure results in a significant increase in the incidence of hospital visits and deaths due to acute asthma attacks. Furthermore, PM2.5 was reported to induce glucocorticoid resistance in asthmatic individuals. Although various countries have implemented strict control measures, due to the wide range of PM2.5 sources, complex components, and unknown pathogenic mechanisms involving the atmosphere, environment, chemistry, and toxicology, PM2.5 damage to human health still cannot be effectively controlled. In this present review, we summarized the current knowledge base regarding the relationship between PM2.5 toxicity and the onset, acute attack prevalence, and steroid sensitivity in asthma.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Han Liu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|