1
|
Li W, Huang X, Han X, Zhang J, Gao L, Chen H. IL-17A in gastric carcinogenesis: good or bad? Front Immunol 2024; 15:1501293. [PMID: 39676857 PMCID: PMC11638189 DOI: 10.3389/fimmu.2024.1501293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Cytokines, which are important to the tumor microenvironment (TME), play critical roles in tumor development, metastasis, and immune responses. Interleukin-17(IL-17) has emerged as a key biomarker in many malignancies; however, its precise involvement in gastric cancer is less fully understood. Elevated levels of IL-17 have been observed in stomach diseases such as Helicobacter pylori infection and autoimmune gastritis, indicating that a sustained Th17 response may precede the development of gastric cancer. While IL-17 is related to inflammatory processes that may lead to cancer, its specific influence on gastric cancer development and therapy needs to be completely understood. Specifically, the release of IL-17A by diverse immune cells has been associated with both tumor development and inhibition in gastric cancer. It may impact tumor development through mechanisms such as boosting cell proliferation, inducing angiogenesis, and enabling immune cell recruitment or, conversely, suppressing tumor growth via the activation of anti-tumor immune responses. The dual role of IL-17 in cancer, along with its various effects depending on the TME and immune cell composition, highlights the complexity of its activity. Current research reveals that although IL-17 might serve as a target for immunotherapy, its therapeutic potential is hindered by its various activities. Some studies have shown that anti-IL-17 drugs may be helpful, especially when paired with immune checkpoint inhibitors, whereas others point to concerns about the validity of IL-17 in gastric cancer therapy. The lack of clinical trials and the heterogeneity of human tumors underscore the necessity for individualized treatment approaches. Further studies are needed to identify the specific mechanisms of IL-17 in gastric cancer and to design targeted therapeutics appropriately.
Collapse
Affiliation(s)
- Weidong Li
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaodong Huang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowen Han
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiayi Zhang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Shamis SA, Savioli F, Ammar A, Al-Badran SS, Hatthakarnkul P, Leslie H, Mallon EE, Jamieson NB, McMillan DC, Edwards J. Spatial transcriptomic analysis of tumour with high and low CAIX expression in TNBC tissue samples using GeoMx™ RNA assay. Histol Histopathol 2024; 39:177-200. [PMID: 37681672 DOI: 10.14670/hh-18-655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE Prognostic significance and gene signatures associated with carbonic anhydrase IX (CAIX) was investigated in triple negative breast cancer (TNBC) patients. METHODS Immunohistochemistry (IHC) for CAIX was performed in tissue microarrays (TMAs) of 136 TNBC patients. In a subset of 52 patients Digital Spatial Profiler (DSP) was performed in tumour (pan-cytokeratin+) and stroma (pan-cytokeratin-). Differentially expressed genes (DEGs) with P<0.05 and and log2 fold change (FC)>(±0.25 and ±0.3, for tumour and stromal compartment, respectively) were identified. Four genes were validated at the protein level. RESULT Cytoplasmic CAIX expression was independently associated with poor recurrence free survival in TNBC patients [hazard ratio (HR)=6.59, 95% confidence interval (CI): 1.47-29.58, P=0.014]. DEG analysis identified 4 up-regulated genes (CD68, HIF1A, pan-melanocyte, and VSIR) in the tumour region and 9 down-regulated genes in the stromal region (CD86, CD3E, MS4A1, BCL2, CCL5, NKG7, PTPRC, CD27, and FAS) when low versus high CAIX expression was explored. Employing IHC, high CD68 and HIF-1α was associated with poorer prognosis and high BCL2 and CD3 was associated with good prognosis. CONCLUSIONS DSP technology identified DEGs in TNBC. Selected genes validated by IHC showed involvement of CD3 and BCL2 expression within stroma and HIF-1α, and CD68 expression within tumour. However, further functional analysis is warranted.
Collapse
Affiliation(s)
- Suad Ak Shamis
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Francesca Savioli
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
| | - Aula Ammar
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Sara Sf Al-Badran
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Phimmada Hatthakarnkul
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Holly Leslie
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Elizabeth Ea Mallon
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Nigel B Jamieson
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
| | - Joanne Edwards
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
3
|
Xing C, Zhu S, Yan W, zhu H, Huang Z, Zhao Y, Guo W, Zhang H, Yin L, Ruan X, Deng Z, Wang P, Cheng Z, Wang Z, Peng H. Identification and validation of 5-methylcytosine-associated genes in diffuse large B-cell lymphoma. Heliyon 2023; 9:e22209. [PMID: 38045198 PMCID: PMC10689887 DOI: 10.1016/j.heliyon.2023.e22209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
5-methylcytosine modifications play a significant role in carcinogenesis; however, studies exploring 5-methylcytosine-related genes in diffuse large B-cell lymphoma patients are lacking. In this study, we aimed to understand the potential role and clinical prognostic impact of 5-methylcytosine regulators in diffuse large B-cell lymphoma and identify a prognostic biomarker based on 5-methylcytosine-associated genes. Gene expression profiles and corresponding clinical information of diffuse large B-cell lymphoma patients and normal controls were obtained from The Cancer Genome Atlas, Gene Expression Omnibus, and Genotype-Tissue Expression databases. Diffuse large B-cell lymphoma was divided into three clusters according to the 5-methylcytosine regulators, and differentially expressed genes were screened among the three clusters. Univariate Cox and Lasso-Cox regression analyses were used to screen prognostic genes and construct a prognostic risk model. Kaplan-Meier curve analysis, univariate and multivariate Cox regression analyses, and time-dependent receiver operator characteristic curve analysis were used to evaluate prognostic factors. GSVA was used to enrich potential pathways associated with 5-methylcytosine modification patterns. SsGSEA and CIBERSORT were used to assess immune cell infiltration. Six 5-methylcytosine-related genes (TUBB4A, CD3E, ZNF681, HAP1, IL22RA2, and POSTN) were used to construct a prognostic risk model, which was proved to have a good predictive effect. In addition, univariate and multivariate Cox regression risk scores were independent prognostic factors for diffuse large B-cell lymphoma. Further analysis showed that the 5-methylcytosine risk score was significantly correlated with immune cell infiltration and immune checkpoint of diffuse large B-cell lymphoma. Our study reveals for the first time a potential role for 5-methylcytosine modifications in diffuse large B-cell lymphoma, provides novel insights for future studies on diffuse large B-cell lymphoma, and offers potential prognostic biomarkers and therapeutic targets for patients with diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Hongkai zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Wancheng Guo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Zeyue Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Peilong Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Han S, Liu X, Ju S, Mu W, Abulikemu G, Zhen Q, Yang J, Zhang J, Li Y, Liu H, Chen Q, Cui B, Wu S, Zhang Y. New mechanisms and biomarkers of lymph node metastasis in cervical cancer: reflections from plasma proteomics. Clin Proteomics 2023; 20:35. [PMID: 37689639 PMCID: PMC10492398 DOI: 10.1186/s12014-023-09427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Lymph node metastasis (LNM) and lymphatic vasculature space infiltration (LVSI) in cervical cancer patients indicate a poor prognosis, but satisfactory methods for diagnosing these phenotypes are lacking. This study aimed to find new effective plasma biomarkers of LNM and LVSI as well as possible mechanisms underlying LNM and LVSI through data-independent acquisition (DIA) proteome sequencing. METHODS A total of 20 cervical cancer plasma samples, including 7 LNM-/LVSI-(NC), 4 LNM-/LVSI + (LVSI) and 9 LNM + /LVSI + (LNM) samples from a cohort, were subjected to DIA to identify differentially expressed proteins (DEPs) for LVSI and LNM. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for DEP functional annotation. Protein-protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to detect new effective plasma biomarkers and possible mechanisms. RESULTS A total of 79 DEPs were identified in the cohort. GO and KEGG analyses showed that DEPs were mainly enriched in the complement and coagulation pathway, lipid and atherosclerosis pathway, HIF-1 signal transduction pathway and phagosome and autophagy. WGCNA showed that the enrichment of the green module differed greatly between groups. Six interesting core DEPs (SPARC, HPX, VCAM1, TFRC, ERN1 and APMAP) were confirmed to be potential plasma diagnostic markers for LVSI and LNM in cervical cancer patients. CONCLUSION Proteomic signatures developed in this study reflected the potential plasma diagnostic markers and new possible pathogenesis mechanisms in the LVSI and LNM of cervical cancer.
Collapse
Affiliation(s)
- Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuang Ju
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wendi Mu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Gulijinaiti Abulikemu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qianwei Zhen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiaqi Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuxia Wu
- Department of Obstetrics and Gynecology, the Fifth People's Hospital of Jinan, Jinan, Shandong, 250012, People's Republic of China.
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
5
|
Karamveer, Tiwary BK. Genomic coevolution of papillomavirus and immune system in placental mammals indicates the role of IFN-γ in the emergence of new variants. Carcinogenesis 2023:bgad007. [PMID: 36827464 DOI: 10.1093/carcin/bgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/26/2023] Open
Abstract
Papillomaviruses (PVs) are causative agents for warts and cancers in different parts of the body in the mammalian lineage. Therefore, these viruses are proposed as model organisms to study host immune responses to pathogens causing chronic infections. The virus-associated cancer progression depends on two integral processes namely angiogenesis and immune response (AIR). The angiogenesis process aids in tumour progression through vessel formation and maturation but the host immune response, in contrast, makes every attempt to eliminate pathogens and thereby maintain healthy tissues. However, the evolutionary contribution of individual viral genes and host AIR genes in carcinogenesis is yet to be explored. Here, we applied the evolutionary genomics approach to find correlated evolution between six PV genes and 23 host AIR-related genes. We estimated that IFN-γ is the only host gene evolving in a correlated manner with all six PV genes under study. Furthermore, three papillomavirus genes, L2, E6, and E7, are found to interact with two third of host AIR-related genes. Moreover, a combined differential gene expression analysis and network analysis showed that inflammatory cytokine IFN-γ is the key regulator of hub genes in the PPI network of the differentially expressed genes. Functional enrichment of these hub genes is consistent with their established role in different cancers and viral infections. Overall, we conclude that IFN-γ maintains selective pressure on mammalian PV genes and seems to be a potential biomarker for PV-related cancers. This study demonstrates the evolutionary importance of IFN-γ in deciding the fate of carcinogenic PV variants.
Collapse
Affiliation(s)
- Karamveer
- Department of Bioinformatics, School of Life Sciences Pondicherry University Pondicherry-605 014 India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences Pondicherry University Pondicherry-605 014 India
| |
Collapse
|
6
|
Gan Q, Mao L, Shi R, Chang L, Wang G, Cheng J, Chen R. Prognostic Value and Immune Infiltration of HPV-Related Genes in the Immune Microenvironment of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Cancers (Basel) 2023; 15:1419. [PMID: 36900213 PMCID: PMC10000937 DOI: 10.3390/cancers15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Mounting evidence has highlighted the immune environment as a critical feature in the development of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, the relationship between the clinical characteristics of the immune environment and CESC remain unclear. Therefore, the aim of this study was to further characterize the relationship between the tumor and immune microenvironment and the clinical features of CESC using a variety of bioinformatic methods. Expression profiles (303 CESCs and three control samples) and relevant clinical data were obtained from The Cancer Genome Atlas. We divided CESC cases into different subtypes and performed a differential gene expression analysis. In addition, gene ontology (GO) and gene set enrichment analysis (GSEA) were performed to identify potential molecular mechanisms. Furthermore, data from 115 CESC patients from East Hospital were used to help identify the relationship between the protein expressions of key genes and disease-free survival using tissue microarray technology. Cases of CESC (n = 303) were divided into five subtypes (C1-C5) based on their expression profiles. A total of 69 cross-validated differentially expressed immune-related genes were identified. Subtype C4 demonstrated a downregulation of the immune profile, lower tumor immune/stroma scores, and worse prognosis. In contrast, the C1 subtype showed an upregulation of the immune profile, higher tumor immune/stroma scores, and better prognosis. A GO analysis suggested that changes in CESC were primarily enriched nuclear division, chromatin binding, and condensed chromosomes. In addition, GSEA demonstrated that cellular senescence, the p53 signaling pathway, and viral carcinogenesis are critical features of CESC. Moreover, high FOXO3 and low IGF-1 protein expression were closely correlated with decreased clinical prognosis. In summary, our findings provide novel insight into the relationship between the immune microenvironment and CESC. As such, our results may provide guidance for developing potential immunotherapeutic targets and biomarkers for CESC.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Linlin Chang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Guozeng Wang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rui Chen
- Department of Gynecology, Shanghai United Family Hospital, Shanghai 200120, China
| |
Collapse
|
7
|
Liu M, Wei D, Nie Q, Peng L, He L, Cui Y, Ye Y. Uncovering of potential molecular markers for cervical squamous cell carcinoma (CESC) based on analysis of methylated-differentially expressed genes. Taiwan J Obstet Gynecol 2022; 61:663-671. [PMID: 35779918 DOI: 10.1016/j.tjog.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Cervical squamous cell carcinoma (CESC) is a cancer with high mortality caused by human papillomavirus. The aim of this study was to uncover potential CESC biomarkers to help early diagnosis and treatment. MATERIALS AND METHODS The mRNA transcriptome data and DNA methylation data were downloaded from database for the identification of differentially expressed mRNAs (DEmRNAs) and DNA methylation analysis. Functional analysis was used to reveal the molecular functions. Then, the association between differential methylation and DEmRNA was analyzed. Protein-protein interaction (PPI) network analysis was performed on the selected differentially methylated genes (DEGs). Subsequently, we analyzed the prognosis and constructed a prognostic risk model. We also performed diagnostic analyses of risk model genes. In addition, we verified the protein expression level of identified DEGs. RESULTS 1438 DEmRNAs, 1669 differentially methylated sites (DMSs), 46 differentially methylated CpG islands and 53 differential methylation genes (DMGs) were obtained. In PPI, the highest interaction scores were MX2 and IRF8, and their interaction score was 0.928. Interestingly, 5 DMGs were found to be associated with CESC prognosis. In addition, our results demonstrated that high risk score was associated with poor prognosis of CESC. Furthermore, it was found that ZIK1, ZNRF2, HHEX, VCAM1 could be diagnostic molecular markers for CESC. CONCLUSION Analysis of methylated-differentially expressed genes may contribute to the identification of early diagnosis and therapeutic targets of CESC. In addition, a prognostic model based on 5 DMGs can be used to predict the prognosis of CESC.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Medical Imaging, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, China; The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Dong Wei
- Department of Urology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Qian Nie
- China Physical Examination Center of Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Lili Peng
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Liya He
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Yujie Cui
- The Fifth Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Yuquan Ye
- Department of Medical Imaging, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, China; Department of Ultrasound, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China.
| |
Collapse
|
8
|
Gebremicael G, Gebreegziabxier A, Kassa D. Low transcriptomic of PTPRCv1 and CD3E is an independent predictor of mortality in HIV and tuberculosis co-infected patient. Sci Rep 2022; 12:10133. [PMID: 35710869 PMCID: PMC9203579 DOI: 10.1038/s41598-022-14305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
A comprehensive assessment of immunological profiles during HIV-TB co-infection is essential to predict mortality, and facilitate the development of effective diagnostic assays, therapeutic agents, and vaccines. Expression levels of 105 immune-related genes were measured at enrolment and 6th month follow-up from 9 deceased HIV and TB coinfected patients who died between 3 and 7th months follow-up and at enrolment, 6th and 18th month from 18 survived matched controls groups for 2 years. Focused gene expression profiling was assessed from peripheral whole blood using a dual-color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification assay. Eleven of the 105 selected genes were differentially expressed between deceased individuals and survivor-matched controls at baseline. At baseline, IL4δ2 was significantly more highly expressed in the deceased group than survivor matched controls, whereas CD3E, IL7R, PTPRCv1, CCL4, GNLY, BCL2, CCL5, NOD1, TLR3, and NLRP13 had significantly lower expression levels in the deceased group compared to survivor matched controls. At baseline, a non-parametric receiver operator characteristic curve was conducted to determine the prediction of mortality of single genes identified CCL5, PTPRCv1, CD3E, and IL7R with Area under the Curve of 0.86, 0.86, 0.86, and 0.85 respectively. The expression of these genes in the survived control was increased at the end of TB treatment from that at baseline, while decreased in the deceased group. The expression of PTPRCv1, CD3E, CCL5, and IL7R host genes in peripheral blood of patients with TB-HIV coinfected can potentially be used as a predictor of mortality in the Ethiopian setting. Anti-TB treatment might be less likely to restore gene expression in the level expression of the deceased group. Therefore, other new therapeutics that can restore these genes (PTPRCv1, CD3E, IL7R, and CCL5) in the deceased groups at baseline might be needed to save lives.
Collapse
Affiliation(s)
| | | | - Desta Kassa
- Ethiopian Public Health Institute (EPHI), P.O.Box: 1242, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Guo F, Kong WN, Li DW, Zhao G, Wu HL, Anwar M, Shang XQ, Sun QN, Ma CL, Ma XM. Low Tumor Infiltrating Mast Cell Density Reveals Prognostic Benefit in Cervical Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221106530. [PMID: 35730194 PMCID: PMC9228650 DOI: 10.1177/15330338221106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives: Research on the role of mast cells (MCs) in cervical tumor immunity is more limited. Therefore, our study aimed to evaluate the prognostic value of MCs and their correlation with the immune microenvironment of cervical carcinoma (CC). Methods: The Cancer Genome Atlas (TCGA) data was utilized to obtain the degree of immune infiltration of MCs in CC. Meanwhile, this study retrospectively collected patient clinical characteristic data and tissue specimens to further verify the relevant conclusions. Mast cell density (MCD) was measured by the CIBERSORT algorithm in TCGA data and immunohistochemical staining of tryptase in CC tissues. Finally, differentially expressed genes (DEGs) of TCGA data were performed using "limma" packages and key gene modules were identified using the MCODE application in Cytoscape. Results: The results showed MCs were diffusely distributed in CC tissues. Moreover, we found that low tumor-infiltrating MCD was beneficial for overall survival (OS) in the TCGA cohort. Consistent conclusions were also obtained in a clinical cohort. In addition, a total of 305 DEGs were analyzed between the high tumor-infiltrating MCD and low tumor-infiltrating MCD group. Seven key modules, a total of 34 genes, were screened through the MCODE plug-in, which was mainly related to inflammatory response and immune response and closely correlated with cytokines including CSF2, CCL20, IL1A, IL1B, and CXCL8. Conclusion: In short, high tumor-infiltration MCs in CC tissue was associated with worse OS in patients. Furthermore, MCs were closely related to cytokines in the tumor microenvironment, suggesting that they collectively played a role in the immune response of the tumor. Therefore, MCD may be a potential prognostic indicator and immunotherapy target of CC.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Wei-Na Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - De-Wei Li
- 91593Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui-Li Wu
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Xiao-Qian Shang
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Qian-Nan Sun
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Cai-Ling Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Xiu-Min Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Deng Y, Song Z, Huang L, Guo Z, Tong B, Sun M, Zhao J, Zhang H, Zhang Z, Li G. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer. Aging (Albany NY) 2021; 13:24768-24785. [PMID: 34844217 PMCID: PMC8660621 DOI: 10.18632/aging.203714] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023]
Abstract
Background: Tumor purity plays a vital role in the biological process of solid tumors, but its function in gynecologic cancers remains unclear. This study explored the correlation between tumor purity and immune function of gynecological cancers and its reliability as a prognostic indicator of immunotherapy. Methods: Gynecological cancer-related datasets were downloaded from The Cancer Genome Atlas (TCGA). Tumor purity was calculated by the ESTIMATE algorithm. A LASSO Cox regression analysis was performed to construct the risk score model. A Kaplan–Meier Plotter was used to explore the relationships between tumor purity and cancer prognosis. We performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) to explore the pathways in the subgroups. A nomogram was used to quantitatively assess the cancer prognosis. Results: Tumor purity was negatively correlated with B cell infiltration in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Approximately 420 genes were positively associated with B cell infiltration and CESC prognosis and were enriched in immune-related signaling pathways. There were 11 key genes used to construct a risk score model. The low-risk group had a higher immune score and better prognosis than the high-risk group. A nomogram based on risk score, T stage, and clinical-stage had good predictive value in quantitatively evaluating CESC prognosis. Conclusions: This study is the first to reveal the correlation between tumor purity and immunity in CESC and suggests that low-risk patients may be more sensitive to immunotherapy. This provides a theoretical basis for the clinical treatment of CESC.
Collapse
Affiliation(s)
- Yali Deng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jin Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huina Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Song Y, Nie L, Zhang YT. LncRNAs specifically overexpressed in endocervical adenocarcinoma are associated with an unfavorable recurrence prognosis and the immune response. PeerJ 2021; 9:e12116. [PMID: 34616607 PMCID: PMC8462375 DOI: 10.7717/peerj.12116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cervical cancer is the fourth most common gynecological tumor in terms of both the incidence and mortality of females worldwide. Cervical squamous cell carcinoma (CSCC) accounts for 70–80% of cervical cancers, and endocervical adenocarcinoma (EAC) accounts for 20–25%. Unlike CSCC, EAC has worse clinical outcomes and prognosis. In this study, we explored the relationship between various types of long noncoding RNAs (lncRNAs) and pathological types of cervical cancer. Methods RNA sequencing (RNA-Seq) and clinical data from The Cancer Genome Atlas (TCGA) were used in this study. A single-sample gene set enrichment analysis (ssGSEA) and the ESTIMATE package were used to assess lncRNA activity and immune responses, respectively. RT-qPCR was performed to verify our findings. Results We explored the relationship between various types of lncRNAs and pathological types of cervical cancer. A series of long intergenic noncoding RNAs (lincRNAs) and antisense RNAs, which are the major types of lncRNAs, were identified to be specifically expressed in EAC and associated with a poor recurrence prognosis in patients with cervical cancer, suggesting that they might serve as independent prognostic markers of recurrence in patients with cervical cancer. RT-qPCR was performed to verify the 10 EAC-specific lncRNAs in cervical cancer samples we collected. Furthermore, the overexpression of these lncRNAs was positively correlated with EAC pathology levels but negatively correlated with immune responses in the microenvironment of cervical cancer. Conclusions These lncRNAs potentially represent new biomarkers for the prediction of the recurrence prognosis and help obtain deeper insights into potential immunotherapeutic approaches for treating cervical cancer.
Collapse
Affiliation(s)
- Yong Song
- Department of Public Health, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Long Nie
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Yu-Ting Zhang
- School of Nursing, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Paşcalău AV, Cheregi CD, Mureşan MŞ, Şandor MI, Huniadi CA, Nikin Z, Judea Pusta CT, Bodog FD, Ionescu C, Pop OL. CD4+ CD25+ regulatory T-cells role in tumor microenvironment of the squamous cell carcinoma. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:249-253. [PMID: 34609428 PMCID: PMC8597358 DOI: 10.47162/rjme.62.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction: Squamous cell carcinoma (SCC) is the most common skin cancer with a high rate of death. Different lymphocyte populations play an important role in modulating the immune response in the tumor microenvironment. The increase in the proportion of cluster of differentiation (CD)4+ CD25+ regulatory T-cell (Treg) lymphocytes is associated, in different studies, with the increase of the cell multiplication rate. Aim: To analyze the Treg lymphocyte subpopulations and to correlate the results with the presence of the CD8+ cytotoxic T-cell (Tc) lymphocyte population. Materials and Methods: Sixty primary skin SCC specimens were incubated with anti-CD8 (clone SP57) rabbit monoclonal antibody and anti-CD25 (clone 4C9) mouse monoclonal antibody. Results: The ratio of the intratumoral/peritumoral CD4+ CD25+ forkhead box protein p3 (Foxp3) lymphocytes was 0.46, emphasizing that at tumor margins, where tumor aggressiveness is higher, these lymphocytes subpopulations facilitate tumor progression. The comparative analysis of the tumor microenvironment profile revealed that in the case of intratumoral immune response, the number of Tc-type lymphocytes (CD8+) was 3.34 times higher compared to Treg lymphocytes (p<0001). In the peritumoral area, the number of Tc lymphocytes was 5.05 times higher compared to Treg lymphocytes (p<0001). Conclusions: Treg lymphocytes inhibition may cause the suppression of the antitumoral cell immune response in the tumor environment. We believe that Treg lymphocytes should represent a focus of interest for a new personalized therapy. New studies are needed to better understand the immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrei Vasile Paşcalău
- Department of Surgical Disciplines, Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania; ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
14
|
Xu F, Shen J, Xu S. Multi-Omics Data Analyses Construct a Six Immune-Related Genes Prognostic Model for Cervical Cancer in Tumor Microenvironment. Front Genet 2021; 12:663617. [PMID: 34108992 PMCID: PMC8181403 DOI: 10.3389/fgene.2021.663617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
The cross-talk between tumor cells and the tumor microenvironment (TME) is an important factor in determining the tumorigenesis and progression of cervical cancer (CC). However, clarifying the potential mechanisms which trigger the above biological processes remains a challenge. The present study focused on immune-relevant differences at the transcriptome and somatic mutation levels through an integrative multi-omics analysis based on The Cancer Genome Atlas database. The objective of the study was to recognize the specific immune-related prognostic factors predicting the survival and response to immunotherapy of patients with CC. Firstly, eight hub immune-related prognostic genes were ultimately identified through construction of a protein–protein interaction network and Cox regression analysis. Secondly, 32 differentially mutated genes were simultaneously identified based on the different levels of immune infiltration. As a result, an immune gene-related prognostic model (IGRPM), including six factors (chemokine receptor 7 [CCR7], CD3d molecule [CD3D], CD3e molecule [CD3E], and integrin subunit beta 2 [ITGB2], family with sequence similarity 133 member A [FAM133A], and tumor protein p53 [TP53]), was finally constructed to forecast clinical outcomes of CC. Its predictive capability was further assessed and validated using the Gene Expression Omnibus validation set. In conclusion, IGRPM may be a promising prognostic signature to predict the prognoses and responses to immunotherapy of patients with CC. Moreover, the multi-omics study showed that IGRPM could be a novel therapeutic target for CC, which is a promising biomarker for indicating the immune-dominant status of the TME and revealing the potential mechanisms responsible for the tumorigenesis and progression of CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Shen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Huo X, Sun H, Liu S, Liang B, Bai H, Wang S, Li S. Identification of a Prognostic Signature for Ovarian Cancer Based on the Microenvironment Genes. Front Genet 2021; 12:680413. [PMID: 34054929 PMCID: PMC8155613 DOI: 10.3389/fgene.2021.680413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Ovarian cancer is highly malignant and has a poor prognosis in the advanced stage. Studies have shown that infiltration of tumor microenvironment cells, immune cells and stromal cells has an important impact on the prognosis of cancers. However, the relationship between tumor microenvironment genes and the prognosis of ovarian cancer has not been studied. Methods: Gene expression profiles and SNP data of ovarian cancer were downloaded from the TCGA database. Cluster analysis, WGCNA analysis and univariate survival analysis were used to identify immune microenvironment genes as prognostic signatures for predicting the survival of ovarian cancer patients. External data were used to evaluate the signature. Moreover, the top five significantly correlated genes were evaluated by immunohistochemical staining of ovarian cancer tissues. Results: We systematically analyzed the relationship between ovarian cancer and immune metagenes. Immune metagenes expression were associated with prognosis. In total, we identified 10 genes related to both immunity and prognosis in ovarian cancer according to the expression of immune metagenes. These data reveal that high expression of ETV7 (OS, HR = 1.540, 95% CI 1.023–2.390, p = 0.041), GBP4 (OS, HR = 1.834, 95% CI 1.242–3.055, p = 0.004), CXCL9 (OS, HR = 1.613, 95% CI 1.080 –2.471, p = 0.021), CD3E (OS, HR = 1.590, 95% CI 1.049 –2.459, p = 0.031), and TAP1 (OS, HR = 1.766, 95% CI 1.163 –2.723, p = 0.009) are associated with better prognosis in patients with ovarian cancer. Conclusion: Our study identified 10 immune microenvironment genes related to the prognosis of ovarian cancer. The list of tumor microenvironment-related genes provides new insights into the underlying biological mechanisms driving the tumorigenesis of ovarian cancer.
Collapse
Affiliation(s)
- Xiao Huo
- Peking University Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuangwu Liu
- School of Medicine, ShanDong University, Jinan, China
| | - Bing Liang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuhong Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Liu Y, Wu Y, Zhang P, Xu C, Liu Z, He C, Liu Y, Kang Z. CXCL12 and CD3E as Indicators for Tumor Microenvironment Modulation in Bladder Cancer and Their Correlations With Immune Infiltration and Molecular Subtypes. Front Oncol 2021; 11:636870. [PMID: 33747959 PMCID: PMC7971116 DOI: 10.3389/fonc.2021.636870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) represents the ninth most common malignant tumor in the world and is characterized by high recurrence risk. Tumor microenvironment (TME) plays an important role in regulating the progression of BLCA. Immunotherapy, including Bacillus Calmette-Guerin (BCG) and programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), is closely associated with TME and is widely used for treating BLCA. But parts of BLCA patients have no response to these treatment ways, thus a better understanding of the complex TME of BLCA is still needed. We downloaded the gene expression profile and corresponding clinical information of 414 BLCA patients from the TCGA database. Via the ESTIMATE and CIBERSORT algorithm, we identified the two hub genes (CXCL12 and CD3E) and explored their correlations with immune infiltration. We found that BLCA patients with higher expression of CXCL12 and lower expression of CD3E had prolonged survival. Gene set enrichment analysis (GSEA) revealed that both CXCL12 and CD3E were enriched in immune-related pathways. We also discovered that stromal score and the level of CXCL12 were higher in luminal subtype, and immune score and the level of CD3E were higher in the basal subtype. Furtherly, we found that CXCL12 was associated with naive B cells, resting mast cell, M2 macrophages, follicular helper T cells, and dendritic cells. CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and macrophages were correlated with CD3E. In conclusions, we found that CXCL12 and CD3E might serve as indicators of TME modulation in BLCA. Therapy targeting CXCL12 and CD3E had the potential as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YuCai Wu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie Xu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZeSen Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie He
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YiMing Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZhengJun Kang
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Cui K, Yao S, Zhang H, Zhou M, Liu B, Cao Y, Fei B, Huang S, Huang Z. Identification of an immune overdrive high-risk subpopulation with aberrant expression of FOXP3 and CTLA4 in colorectal cancer. Oncogene 2021; 40:2130-2145. [PMID: 33627780 DOI: 10.1038/s41388-021-01677-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023]
Abstract
Colorectal cancer (CRC) is characterized by a heterogeneous tumor microenvironment (TME) that regulates cancer progression and therapeutic response. Overexpression of FOXP3 and CTLA4 is associated with immunosuppressive TME and poor prognosis in many cancer types. However, opposite results were reported in CRC. Thus, we performed comprehensive analyses to evaluate the exact prognostic value of FOXP3 and CTLA4 in CRC. Here, the expression levels of FOXP3 and CTLA4 were used to construct a subtyping system based on >1200 CRC patients from multiple independent public datasets. We revealed that, in CRC patients with relatively high expression of FOXP3, there exist two different subpopulations with opposite survival patterns according to CLTA4 expression. We further established a method for evaluating all cohorts and identified a novel FOXP3HighCTLA4High* CRC risk subpopulation that accounts for 5-10% of CRC patients. Moreover, different methods of functional enrichment and immune evaluation were used to analyze the TME characteristics of different FOXP3/CTLA4 subtypes. The FOXP3HighCTLA4High* CRC risk subpopulation was characterized by an immune overdrive TME phenotype, including high immune cell infiltration, low tumor purity, high immune checkpoint levels, and TGF-β activation. Finally, the constructed FOXP3/CTLA4 subtyping system was further validated by quantitative RT-PCR, immunochemistry staining, and multicolor immunofluorescence in an independent CRC cohort we collected. This high-risk subpopulation was also observed in kidney cancers and low-grade glioma patients by a Pan-cancer analysis. Together, our study revealed that the established FOXP3/CTLA4 molecular subtyping system could be used to select treatment and management strategies for CRC and other cancers.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Han Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bojian Fei
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China. .,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
18
|
Identification of Prognosis-Related Genes in Bladder Cancer Microenvironment across TCGA Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9143695. [PMID: 33204728 PMCID: PMC7658688 DOI: 10.1155/2020/9143695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Background Bladder cancer (BCa) is a common urothelial malignancy. The Cancer Genome Atlas (TCGA) database allows for an opportunity to analyze the relationship between gene expression and clinical outcomes in bladder cancer patients. This study is aimed at identifying prognosis-related genes in the bladder cancer microenvironment. Methods Immune scores and stromal scores were calculated by applying the ESTIMATE algorithm. We divided bladder cancer patients into high and low groups based on their immune/stromal scores. Then, differentially expressed genes (DEGs) were identified in bladder cancer patients based on the TCGA database. We evaluated the correlation between immune/stromal scores and clinical characteristics as well as prognosis. Finally, we validated identified genes associated with bladder cancer prognosis through a cohort study in the Gene Expression Omnibus (GEO) database. Results A higher stromal score was associated with female (vs. malep = 0.037), age > 65 (vs.age ≤ 65 p = 0.015), T3/4 (vs. T1/2,p < 0.001), N status(p = 0.016), and pathological high grade (vs. low gradeP < 0.001). By analyzing DEGs, there were 1125 genes commonly upregulated, and 209 genes were commonly downregulated. Protein-protein interaction networks further showed the important protein that may be involved in the biological behavior and prognosis of BCa, such as FN1, CXCL12, CD3E, LCK, and ZAP70. A total of 14 DEGs were found to be associated with overall survival of bladder cancer. After validation by a cohort of 165 BCa cases with detailed follow-up information from GSE13507, 10 immune-associated DEGs were demonstrated to be predictive of prognosis in BCa. Among them, 5 genes have not been reported previously associated with the prognosis of BCa, including BTBD16, OLFML2B, PRRX1, SPINK4, and SPON2. Conclusions Our study elucidated tight associations between stromal score and clinical characteristics as well as prognosis in BCa. Moreover, we obtained a group of genes closely related to the prognosis of BCa in the tumor microenvironment.
Collapse
|
19
|
Nishikawa R, Osaki M, Sasaki R, Ishikawa M, Yumioka T, Yamaguchi N, Iwamoto H, Honda M, Kabuta T, Takenaka A, Okada F. Splice variants of lysosome‑associated membrane proteins 2A and 2B are involved in sunitinib resistance in human renal cell carcinoma cells. Oncol Rep 2020; 44:1810-1820. [PMID: 32901843 PMCID: PMC7551029 DOI: 10.3892/or.2020.7752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Sunitinib, a tyrosine kinase inhibitor, is among the first-line treatments for metastatic or advanced stage renal cell carcinoma (RCC). However, patients with RCC develop resistance to sunitinib. We have previously demonstrated that lysosome-associated membrane protein 2 (LAMP-2), which has three splice variants with different functions (LAMP-2A, LAMP-2B, and LAMP-2C), is involved in RCC. In the present study, we examined which splice variants of LAMP-2 contributed to sunitinib resistance in RCC cells. In vitro analysis using ACHN, human RCC cell line, revealed that the IC50 of sunitinib was significantly increased by overexpression of LAMP-2A and LAMP-2B, but not LAMP-2C (P<0.01). Kaplan-Meier survival analysis using clinical samples revealed an association between shorter survival and high expression of LAMP-2A and LAMP-2B, but not LAMP-2C, in patients with RCC treated with sunitinib (P=0.01). Furthermore, high expression of LAMP-2A and LAMP-2B in RCC revealed a weak to moderate inverse correlation with the tumor shrinkage rate and progression-free survival, respectively. Thus, high expression of LAMP-2A and LAMP-2B contributed to the acquisition of sunitinib resistance, indicating that the expression of these two variants can predict the efficacy of sunitinib treatment in patients with RCC.
Collapse
Affiliation(s)
- Ryoma Nishikawa
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Ryo Sasaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Mizuho Ishikawa
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Tetsuya Yumioka
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Noriya Yamaguchi
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Hideto Iwamoto
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Masashi Honda
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187‑8502, Japan
| | - Atsushi Takenaka
- Division of Urology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori 683‑8503, Japan
| |
Collapse
|
20
|
Nie H, Bu F, Xu J, Li T, Huang J. 29 immune-related genes pairs signature predict the prognosis of cervical cancer patients. Sci Rep 2020; 10:14152. [PMID: 32843657 PMCID: PMC7447790 DOI: 10.1038/s41598-020-70500-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
To screen the key immune genes in the development of cervical cancer, construct immune related gene pairs (IRGPs), and evaluate their influence on the prognosis of cervical cancer. Tumor Genome Atlas (TCGA) database and geo database were downloaded as training set and validation set respectively, and immune related gene data were downloaded from immport. IRGPs model is established by machine learning, and the model is analyzed and evaluated. Using the Uclcan to analyze the immune genes expression in cervical cancer, and to further explore the association with the expression level and the clinical stage and prognosis of cervical cancer. According to the analysis of training set, we identified 29 IRGPs as key gene pairs and constructed the model. The AUC value of the model was greater than 0.9, and the model group survival rate was conspicuous different (P < 0.001). The reliability of the model was confirmed in the validation group. Our IRGPs play an important role in the occurrence and development of cervical cancer, and can be used as a prognostic marker and potential new target of cervical cancer.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Provence, China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Provence, China
| | - Jiasheng Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Provence, China
| | - Taoshen Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Provence, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Provence, China.
| |
Collapse
|
21
|
Ma J, Cheng P, Chen X, Zhou C, Zheng W. Mining of prognosis-related genes in cervical squamous cell carcinoma immune microenvironment. PeerJ 2020; 8:e9627. [PMID: 32904067 PMCID: PMC7450998 DOI: 10.7717/peerj.9627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of this study was to explore the effective immune scoring method and mine the novel and potential immune microenvironment-related diagnostic and prognostic markers for cervical squamous cell carcinoma (CSSC). Materials and Methods The Cancer Genome Atlas (TCGA) data was downloaded and multiple data analysis approaches were initially used to search for the immune-related scoring system on the basis of Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm. Afterwards, the representative genes in the gene modules correlated with immune-related scores based on ESTIMATE algorithm were further screened using Weighted Gene Co-expression Network Analysis (WGCNA) and network topology analysis. Gene functions were mined through enrichment analysis, followed by exploration of the correlation between these genes and immune checkpoint genes. Finally, survival analysis was applied to search for genes with significant association with overall survival and external database was employed for further validation. Results The immune-related scores based on ESTIMATE algorithm was closely associated with other categories of scores, the HPV infection status, prognosis and the mutation levels of multiple CSCC-related genes (HLA and TP53). Eighteen new representative immune microenvironment-related genes were finally screened closely associated with patient prognosis and were further validated by the independent dataset GSE44001. Conclusion Our present study suggested that the immune-related scores based on ESTIMATE algorithm can help to screen out novel immune-related diagnostic indicators, therapeutic targets and prognostic predictors in CSCC.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hang Zhou, China
| | - Xuejun Chen
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Chunxia Zhou
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Wei Zheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| |
Collapse
|
22
|
Wang H, Yan C, Ye H. Overexpression of MUC16 predicts favourable prognosis in MUC16-mutant cervical cancer related to immune response. Exp Ther Med 2020; 20:1725-1733. [PMID: 32765681 PMCID: PMC7388571 DOI: 10.3892/etm.2020.8836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is the fourth ranking gynaecologic tumour in women worldwide, with respect to both incidence and mortality. MUC16 is one of the most frequently mutated genes, which functions as a tumour marker in CC. In the present study, mutation, clinical and RNA-Seq data collected from The Cancer Genome Atlas database were used to investigate the association between MUC16 mutation, immune response and clinical prognosis in CC. mRNA expression levels from the TCGA datasets and the results from the present study demonstrated that MUC16 was overexpressed in CC samples; however, there was no difference between mutant and wild-type CC samples. Furthermore, the results indicated that patients with MUC16-mutant overexpression had a prolonged survival time. In addition, overexpression of MUC16 was associated with immune responses in the microenvironment of MUC16-mutant CC. Immune responses were upregulated in patients with early-stage MUC16-mutant. The results from the present study provided novel biomarkers for potential immunotherapy approaches for CC.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gynaecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Chao Yan
- Department of Orthopaedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Hong Ye
- Department of Gynaecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
23
|
Lippens L, Van Bockstal M, De Jaeghere EA, Tummers P, Makar A, De Geyter S, Van de Vijver K, Hendrix A, Vandecasteele K, Denys H. Immunologic impact of chemoradiation in cervical cancer and how immune cell infiltration could lead toward personalized treatment. Int J Cancer 2020; 147:554-564. [PMID: 32017078 DOI: 10.1002/ijc.32893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
We investigated the potential of tumor-infiltrating immune cells (ICs) as predictive or prognostic biomarkers for cervical cancer patients. In total, 38 patients treated with (chemo)radiotherapy and subsequent surgery were included in the current study. This unique treatment schedule makes it possible to analyze IC markers in pretreatment and posttreatment tissue specimens and their changes during treatment. IC markers for T cells (CD3, CD4, CD8 and FoxP3), macrophages (CD68 and CD163) and B cells (CD20), as well as IL33 and PD-L1, were retrospectively analyzed via immunohistochemistry. Patients were grouped in the low score or high score group based on the amount of positive cells on immunohistochemistry. Correlations to pathological complete response (pCR), cause-specific survival (CSS) and metastasis development during follow-up were evaluated. In analysis of pretreatment biopsies, significantly more pCR was seen for patients with CD8 = CD3, CD8 ≥ CD4, positive IL33 tumor cell (TC) scores, IL33 IC < TC and PD-L1 TC ≥5%. Besides patients with high CD8 scores, also patients with CD8 ≥ CD4, CD163 ≥ CD68 or PD-L1 IC ≥5% had better CSS. In the analysis of posttreatment specimens, less pCR was observed for patients with high CD8 or CD163 scores. Patients with decreasing CD8 or CD163 scores between pretreatment and posttreatment samples showed more pCR, whereas those with increasing CD8 or decreasing IL33 IC scores showed a worse CSS. Meanwhile, patients with an increasing CD3 score or stable/increasing PD-L1 IC score showed more metastasis during follow-up. In this way, the intratumoral IC landscape is a promising tool for prediction of outcome and response to (chemo)radiotherapy.
Collapse
Affiliation(s)
- Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mieke Van Bockstal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Philippe Tummers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Amin Makar
- Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Sofie De Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Radiation Therapy, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
24
|
Hu Z, Yang R, Li L, Mao L, Liu S, Qiao S, Ren G, Hu J. Validation of Gene Profiles for Analysis of Regional Lymphatic Metastases in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2020; 7:3. [PMID: 32118031 PMCID: PMC7010860 DOI: 10.3389/fmolb.2020.00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
The progress of Head and Neck Squamous Cell Carcinoma (HNSCC) is dependent on both cancer stem cells (CSCs) and immune suppression. This study was designed to evaluate the distribution of CSCs and the characteristic immune suppression status in HNSCC primary tumors and lymph nodes. A total of 303 lymph nodes from 25 patients, as well as tumor and adjacent normal tissue samples, were evaluated by a quantitative PCR assay of the markers of CSCs and the characteristic immune suppression. Expressions of selected genes in The Cancer Genome Atlas (TCGA) datasets were also analyzed. In the primary tumors, we found that expressions of CSCs markers (ALDH1L1, PECAM1, PROM1) were down-regulated, while immune suppression markers FOXP3, CD47, EGFR, SOX2, and TGFB1 were up-regulated significantly when compared to that in adjacent normal tissues. In the lymph nodes, expressions of both CSCs, and immune suppression markers were upregulated significantly compared with that in primary tumors. The mRNA expression of selected CSCs and immune suppression markers exhibited the highest expression in the level II of metastasis, then declined in the level III and remained constant at a reduced value in levels IV and V of metastases. These results reveal a comprehensive understanding of the unique genetic characteristics associated with metastatic loci and potential routes of lymphatic dissemination of HNSCC, which helps to explain why the level II has a high incidence of lymph node metastasis, and why skip metastasis straight to the level IV or level V is rarely found in the clinic.
Collapse
Affiliation(s)
- Zhenrong Hu
- School of Stomatology, Weifang Medical University, Weifang, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Yang
- School of Stomatology, Weifang Medical University, Weifang, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Mao
- School of Stomatology, Weifang Medical University, Weifang, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China
| | - Shichong Qiao
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillo-facial Implantology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guoxin Ren
- School of Stomatology, Weifang Medical University, Weifang, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China
| | - Jingzhou Hu
- School of Stomatology, Weifang Medical University, Weifang, China.,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
25
|
Sun T, Wang D, Ping Y, Sang Y, Dai Y, Wang Y, Liu Z, Duan X, Tao Z, Liu W. Integrated profiling identifies SLC5A6 and MFAP2 as novel diagnostic and prognostic biomarkers in gastric cancer patients. Int J Oncol 2019; 56:460-469. [PMID: 31894266 PMCID: PMC6959404 DOI: 10.3892/ijo.2019.4944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of malignancy‑associated mortality worldwide. However, the underlying molecular mechanisms of GC are unclear and the prognosis of GC is poor. Therefore, it is important and urgent to explore the underlying mechanisms and screen for novel diagnostic and prognostic biomarkers, as well as therapeutic targets. In the current study, scale‑free gene co‑expression networks were constructed using weighted gene co‑expression network analysis, the potential associations between gene sets and clinical features were investigated, and the hub genes were identified. The gene expression profiles of GSE38749 were downloaded from the Gene Expression Omnibus database. RNA‑seq and clinical data for GC from The Cancer Genome Atlas were utilized for verification. Furthermore, the expression of candidate biomarkers in gastric tissues was investigated. Survival analysis was performed using Kaplan‑Meier and log‑rank test. The predictive role of candidate biomarkers in GC was evaluated using a receiver operator characteristic (ROC) curve. Gene Ontology, gene set enrichment analysis and gene set variation analysis methods were used to interpret the function of candidate biomarkers in GC. A total of 29 modules were identified via the average linkage hierarchical clustering. A significant module consisting of 48 genes associated with clinical traits was found; three genes with high connectivity in the clinical significant module were identified as hub genes. Among them, SLC5A6 and microfibril‑associated protein 2 (MFAP2) were negatively associated with the overall survival, and their expression was elevated in GC compared with non‑tumor tissues. Additionally, ROC curves indicated that SLC5A6 and MFAP2 showed a good diagnostic power in discriminating cancerous from normal tissues. SLC5A6 and MFAP2 were identified as novel diagnostic and prognostic biomarkers in GC patients; both of these genes were first reported here in connection with GC and deserved further research.
Collapse
Affiliation(s)
- Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Danhua Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiyun Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhenping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
26
|
TNFAIP8L1 and FLT1 polymorphisms alter the susceptibility to cervical cancer amongst uyghur females in China. Biosci Rep 2019; 39:BSR20191155. [PMID: 31289124 PMCID: PMC6639457 DOI: 10.1042/bsr20191155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
TNFAIP8L1 and FLT1 play critical roles in the occurrence and development of tumors, but no in-depth studies have been carried out in cervical cancer. The present study aims to research the correlation between polymorphisms of these two genes and the risk of cervical cancer in the Uygur women. The study involved 342 cervical cancer patients and 498 healthy women. Five single nucleotide polymorphisms (SNPs) from the TNFAIP8L1 gene and the FLT1 gene were selected and genotyped. Odds ratio and 95% CIs were calculated by logistic regression analysis to evaluate the correlation between SNPs and cervical cancer risk. The alleles rs9917028-A (P=0.032), rs10426502-A (P=0.007), and rs1060555-G (P=0.026) of TNFAIP8L1 were associated with a decreased risk of cervical cancer. In the multiple genetic models, these three SNPs were also associated with the risk of cervical cancer. The stratified analysis showed that TNFAIP8L1-rs10426502, -rs1060555, and FLT1-rs9513111 were associated with a decreased risk of cervical cancer amongst people older than 43 years. Moreover, the haplotypes AG (P=0.007) and GC (P=0.026) of linkage disequilibrium block rs10426502|rs1060555 in TNFAIP8L1 were significantly associated with an increased risk of cervical cancer. Our results suggested that the relationships between TNFAIP8L1 and FLT1 polymorphisms and the risk of cervical cancer amongst Uyghur females.
Collapse
|
27
|
Walch-Rückheim B, Ströder R, Theobald L, Pahne-Zeppenfeld J, Hegde S, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF, Smola S. Cervical Cancer-Instructed Stromal Fibroblasts Enhance IL23 Expression in Dendritic Cells to Support Expansion of Th17 Cells. Cancer Res 2019; 79:1573-1586. [PMID: 30696656 DOI: 10.1158/0008-5472.can-18-1913] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is a prerequisite for the development of cervical cancer. HPV-transformed cells actively instruct their microenvironment, promoting chronic inflammation and cancer progression. We previously demonstrated that cervical cancer cells contribute to Th17 cell recruitment, a cell type with protumorigenic properties. In this study, we analyzed the expression of the Th17-promoting cytokine IL23 in the cervical cancer micromilieu and found CD83+ mature dendritic cells (mDC) coexpressing IL23 in the stroma of cervical squamous cell carcinomas in situ. This expression of IL23 correlated with stromal Th17 cells, advanced tumor stage, lymph node metastasis, and cervical cancer recurrence. Cocultures of cervical cancer-instructed mDCs and cervical fibroblasts led to potent protumorigenic expansion of Th17 cells in vitro but failed to induce antitumor Th1 differentiation. Correspondingly, cervical cancer-instructed fibroblasts increased IL23 production in cocultured cervical cancer-instructed mDCs, which mediated subsequent Th17 cell expansion. In contrast, production of the Th1-polarizing cytokine IL12 in the cancer-instructed mDCs was strongly reduced. This differential IL23 and IL12 regulation was the consequence of an increased expression of the IL23 subunits IL23p19 and IL12p40 but decreased expression of the IL12 subunit IL12p35 in cervical cancer-instructed mDCs. Cervical cancer cell-derived IL6 directly suppressed IL12p35 in mDCs but indirectly induced IL23 expression in fibroblast-primed mDCs via CAAT/enhancer-binding protein β (C/EBPβ)-dependent induction of IL1β. In summary, our study defines a mechanism by which the cervical cancer micromilieu supports IL23-mediated Th17 expansion associated with cancer progression. SIGNIFICANCE: Cervical cancer cells differentially regulate IL23 and IL12 in DC fibroblast cocultures in an IL6/C/EBPβ/IL1β-dependent manner, thereby supporting the expansion of Th17 cells during cancer progression.
Collapse
Affiliation(s)
- Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany.
| | - Russalina Ströder
- Department of Obstetrics and Gynecology, Saarland University, Homburg/Saar, Germany
| | - Laura Theobald
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Jennifer Pahne-Zeppenfeld
- Center for Molecular Medicine Cologne and Institute of Virology, University of Cologne, Cologne, Germany
| | - Subramanya Hegde
- Center for Molecular Medicine Cologne and Institute of Virology, University of Cologne, Cologne, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Saarland University, Homburg/Saar, Germany
| | | | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Saarland University, Homburg/Saar, Germany
| | | | - Sigrun Smola
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
28
|
Xiao D, Liu D, Wen Z, Huang X, Zeng C, Zhou Z, Han Y, Ye X, Wu J, Wang Y, Guo C, Ou M, Huang S, Huang C, Wei X, Yang G, Jing C. Interaction Between Susceptibility Loci in MAVS and TRAF3 Genes, and High-risk HPV Infection on the Risk of Cervical Precancerous Lesions in Chinese Population. Cancer Prev Res (Phila) 2018; 12:57-66. [PMID: 30463990 DOI: 10.1158/1940-6207.capr-18-0177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
Persistent high-risk HPV infection is considered as a major cause of cervical cancer. Nevertheless, only some infected individuals actually develop cervical cancer. The RIG-I pathway in innate immunity plays an important role in antivirus response. Here, we hypothesized that altered function of mitochondrial antiviral signaling protein (MAVS) and mitochondrial TNF receptor-associated factor 3(TRAF3), key molecules downstream of the viral sensors RIG-I, may impair their ability of clearing HPV and thereby influence the risk for cervical precancerous lesions. To investigate the effects of MAVS and TRAF3 polymorphisms on susceptibility to cervical precancerous lesions, 8 SNPs were analyzed in 164 cervical precancerous lesion cases and 428 controls. Gene-environment interactions were also calculated. We found that CA genotype of rs6052130 in MAVS gene were at 1.48 times higher risk of developing cervical precancerous lesion than individuals with CC genotype (CA vs. CC: ORadjusted = 1.48, 95% CI, 1.02-2.16). In addition, a significant synergetic interaction between high-risk HPV infection and rs6052130 was found on an additive scale. A significantly decreased risk of cervical precancerous lesions for the TC genotype of rs12435483 in the TRAF3 gene (ORadjusted = 0.67, 95% CI, 0.45-0.98) was also found. Moreover, MDR analysis identified a significant three-locus interaction model, involving high-risk HPV infection, TRAF3 rs12435483 and number of full-term pregnancies. Our results indicate that the MAVS rs6052130 and TRAF3 rs12435483 confer genetic susceptibility to cervical precancerous lesions. Moreover, MAVS rs6052130-mutant individuals have an increased vulnerability to high-risk HPV-induced cervical precancerous lesions.
Collapse
Affiliation(s)
- Di Xiao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dandan Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zihao Wen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxia Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chengli Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zixing Zhou
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yajing Han
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaohong Ye
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jing Wu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yao Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Congcong Guo
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Meiling Ou
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiqi Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chuican Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiangcai Wei
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.,Maternal and Child Health Hospital of Guangdong, Guangzhou, Guangdong Province, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China. .,Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China. .,Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Li X, Cai Y. Methylation-Based Classification of Cervical Squamous Cell Carcinoma into Two New Subclasses Differing in Immune-Related Gene Expression. Int J Mol Sci 2018; 19:ijms19113607. [PMID: 30445744 PMCID: PMC6275080 DOI: 10.3390/ijms19113607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is traditionally classified into two major histological subtypes, cervical squamous cell carcinoma (CSCC) and cervical adenocarcinoma (CA). However, heterogeneity exists among patients, comprising possible subpopulations with distinct molecular profiles. We applied consensus clustering to 307 methylation samples with cervical cancer from The Cancer Genome Atlas (TCGA). Fisher’s exact test was used to perform transcription factors (TFs) and genomic region enrichment. Gene expression profiles were downloaded from TCGA to assess expression differences. Immune cell fraction was calculated to quantify the immune cells infiltration. Putative neo-epitopes were predicted from somatic mutations. Three subclasses were identified: Class 1 correlating with the CA subtype and Classes 2 and 3 dividing the CSCC subtype into two subclasses. We found the hypomethylated probes in Class 3 exhibited strong enrichment in promoter region as compared with Class 2. Five TFs significantly enriched in the hypomethylated promoters and their highly expressed target genes in Class 3 functionally involved in the immune pathway. Gene function analysis revealed that immune-related genes were significantly increased in Class 3, and a higher level of immune cell infiltration was estimated. High expression of 24 immune genes exhibited a better overall survival and correlated with neo-epitope burden. Additionally, we found only two immune-related driver genes, CARD11 and JAK3, to be significantly increased in Class 3. Our analyses provide a classification of the largest CSCC subtype into two new subclasses, revealing they harbored differences in immune-related gene expression.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
| |
Collapse
|
30
|
Zhu L, Tu H, Liang Y, Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J Surg Oncol 2018; 16:204. [PMID: 30314496 PMCID: PMC6186038 DOI: 10.1186/s12957-018-1506-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background As indoleamine-2,3-dioxygenase 1 (IDO1) is critical in tumor immune escape, we determined to study the regulatory mechanism of miR-218 on IDO1 in cervical cancer. Methods Real-time PCR (RT-qPCR) was carried out to measure the expression of miR-218. RT-qPCR and Western blot were performed to detect the expression of IDO1 in cervical cancer. Dual-luciferase reporter assay was used to determine the binding of miR-218 on the IDO1 3′UTR. Cell viability, apoptosis, and related factors were determined using cell counting kit-8 (CCK-8), Annexin-V/PI (propidium) assay, enzyme-linked immunosorbnent assay (ELISA), RT-qPCR, and Western blot assays after miR-218 mimics has been transfected to HeLa cervical cancer cells. Results MiR-218 was downregulated in cervical cancer. The expression of miR-218 was negatively correlated with IDO1 in cervical cancer tissues and cells. IDO1 is a direct target of miR-218. MiR-218 overexpression was found to inhibit cell viability and promoted apoptosis via activating the expression of Cleaved-Caspase-3 and to inhibit the expression of Survivin, immune factors (TGF-β, VEGF, IL-6, PGE2, COX-2), and JAK2/STAT3 pathway. Conclusion MiR-218 inhibits immune escape of cervical cancer cells by direct downregulating IDO1.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Huaidong Tu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Yanmei Liang
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Dihong Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, No.283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan Province, China.
| |
Collapse
|
31
|
Yu LM, Wang WW, Qi R, Leng TG, Zhang XL. MicroRNA-224 inhibition prevents progression of cervical carcinoma by targeting PTX3. J Cell Biochem 2018; 119:10278-10290. [PMID: 30129088 DOI: 10.1002/jcb.27370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Cervical carcinoma is known as one of the most lethal and common conditions in women worldwide. Increasing evidence shows that microRNAs (miRs) may be involved in the pathogenesis of cervical carcinoma. This study investigates the correlation between expression of miR-224 in peripheral blood mononuclear cells and both diagnosis and prognosis of cervical carcinoma to clarify the effect miR-224 has on the biological behaviors of the subjected cervical carcinoma cells. Initially, 132 patients diagnosed with cervical carcinoma and 120 healthy subjects were recruited. Peripheral blood expression of miR-224 and PTX3 was detected. A telephone follow-up was performed every 3 months after treatment. The diagnostic value of miR-224 in cervical carcinoma was analyzed using the Receiver Operating Characteristic curve. The effects of both miR-224 and PTX3 on cell proliferation, migration, and invasion were evaluated with an intervention of miR-224 ectopic expression or depletion and PTX3 silencing. The bioinformatics prediction website and dual-luciferase reporter assay revealed PTX3 to be a target gene for miR-224. Moreover, miR-224 was detected as over-expressed, but PTX3 was under-expressed in cervical carcinoma. Additionally, as a diagnostic biomarker, a high miR-224 expression was closely linked with the progression of cervical carcinoma. Both miR-224 overexpression and PTX3 silencing promoted cell proliferation, migration, and invasion, whereas, the aforementioned properties were depressed when miR-224 was inhibited. Altogether, the miR-224 overexpression may be a biological indicator in predicting the progression of cervical carcinoma. Thus, miR-224 inhibition may significantly prevent cervical carcinoma progression by targeting the PTX3 gene.
Collapse
Affiliation(s)
- Li-Mei Yu
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Wei-Wei Wang
- Department of Ultrasound, Yantai Yuhuangding Hospital, Yantai, China
| | - Rong Qi
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Tian-Gang Leng
- Department of Imaging, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Lu Zhang
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
32
|
Bhat S, Gardi N, Hake S, Kotian N, Sawant S, Kannan S, Parmar V, Desai S, Dutt A, Joshi NN. Impact of intra-tumoral IL17A and IL32 gene expression on T-cell responses and lymph node status in breast cancer patients. J Cancer Res Clin Oncol 2017; 143:1745-1756. [PMID: 28470472 PMCID: PMC5863950 DOI: 10.1007/s00432-017-2431-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Pro-inflammatory cytokines such as Interleukin-17A (IL17A) and Interleukin-32 (IL32), known to enhance natural killer and T cell responses, are also elevated in human malignancies and linked to poor clinical outcomes. To address this paradox, we evaluated relation between IL17A and IL32 expression and other inflammation- and T cell response-associated genes in breast tumors. METHODS TaqMan-based gene expression analysis was carried out in seventy-eight breast tumors. The association between IL17A and IL32 transcript levels and T cell response genes, ER status as well as lymph node status was also examined in breast tumors from TCGA dataset. RESULTS IL17A expression was detected in 32.7% ER-positive and 84.6% ER-negative tumors, with higher expression in the latter group (26.2 vs 7.1-fold, p < 0.01). ER-negative tumors also showed higher expression of IL32 as opposed to ER-positive tumors (8.7 vs 2.5-fold, p < 0.01). Expression of both IL17A and IL32 genes positively correlated with CCL5, GNLY, TBX21, IL21 and IL23 transcript levels (p < 0.01). Amongst ER-positive tumors, higher IL32 expression significantly correlated with lymph node metastases (p < 0.05). Conversely, in ER-negative subtype, high IL17A and IL32 expression was seen in patients with negative lymph node status (p < 0.05). Tumors with high IL32 and IL17A expression showed higher expression of TH1 response genes studied, an observation validated by similar analysis in the TCGA breast tumors (n=1041). Of note, these tumors were characterized by low expression of a potentially immunosuppressive isoform of IL32 (IL32γ). CONCLUSION These results suggest that high expression of both IL17A and IL32 leads to enhancement of T cell responses. Our study, thus, provides basis for the emergence of strong T cell responses in an inflammatory milieu that have been shown to be associated with better prognosis in ER-negative breast cancer.
Collapse
Affiliation(s)
- Shreyas Bhat
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nilesh Gardi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sujata Hake
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nirupama Kotian
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sharada Sawant
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sadhana Kannan
- Epidemiology and Clinical Trials Unit, Clinical Research Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Amit Dutt
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Narendra N Joshi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
33
|
Li Y, Yang Y, Xiong A, Wu X, Xie J, Han S, Zhao S. Comparative Gene Expression Analysis of Lymphocytes Treated with Exosomes Derived from Ovarian Cancer and Ovarian Cysts. Front Immunol 2017; 8:607. [PMID: 28620375 PMCID: PMC5451634 DOI: 10.3389/fimmu.2017.00607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cancer cells employ many strategies to evade immune defense and to facilitate tumor growth and angiogenesis. As a novel mode of intercellular communication, cancer-derived exosomes contribute to the recruitment and mediation of lymphocytes within the tumor environment. However, the mechanisms and key molecules mediating the effect of exosomes on lymphocytes are unclear. We treated healthy peripheral blood lymphocytes with exosomes from ovarian cancer and ovarian cysts and screened for differentially expressed genes using the RT2 Profiler Cancer Inflammation and Immunity Crosstalk PCR Array. A total of 26 upregulated genes (mainly pro-inflammatory genes and immunostimulatory and immunosuppressive factor) and two downregulated genes (antigen presentation HLA-A/B) were identified. Western blotting using lymphocytes from malignant ascites and peritoneal washings of benign ovarian cysts suggested that the interferon and NF-κB signaling pathway were involved in the immune regulation of malignant exosomes. Out of 28 differentially expressed genes detected using the array, 11 were validated by real-time PCR using lymphocytes within ovarian cancer (n = 27) and ovarian cyst (n = 9) environments. In conclusion, our findings indicate that malignant cells secrete exosomes in the tumor microenvironment to recruit lymphocytes in order to suppress antitumor immunity (IL10, Foxp3, and HLA-A/B) and enhance tumor invasion, angiogenesis, and dissemination of proinflammatory cytokines (such as IL6 and VEGFA) via the interferon and NF-κB signaling pathways. These results clarify lymphocyte-cancer cell cross talk via exosomes and may facilitate the development of effective immunotherapeutic strategies for ovarian cancer.
Collapse
Affiliation(s)
- Yujuan Li
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Aiwei Xiong
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Wu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyan Xie
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Suping Han
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuli Zhao
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
PCR: Identification of Genetic Polymorphisms. Methods Mol Biol 2017. [PMID: 28502002 DOI: 10.1007/978-1-4939-6990-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Polymerase chain reaction (PCR) enables the amplification of a specific sequence of deoxyribonucleic acid (DNA) through the process of three main steps: template DNA denaturation, annealing of the primers to complementary sequences, and primer extension to synthesize DNA strands. By using this method, the target sequence will be copied and amplified at an exponential rate. PCR provides a qualitative method for identifying DNA from fresh or dried cells/body fluids, formalin-fixed archival tissue specimens, and ancient specimens.Herein we describe basic information for performing successful PCR experiments using the amplification of a human Alu insertion on the PV92 gene locus on chromosome 16 as an example method.
Collapse
|
35
|
Punt S, Corver WE, van der Zeeuw SAJ, Kielbasa SM, Osse EM, Buermans HPJ, de Kroon CD, Jordanova ES, Gorter A. Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival. Oncotarget 2016; 6:38681-94. [PMID: 26299617 PMCID: PMC4770729 DOI: 10.18632/oncotarget.4526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer is typically well infiltrated by immune cells. Because of the intricate relationship between cancer cells and immune cells, we aimed to identify both cancer cell and immune cell expressed biomarkers. Using a novel approach, we isolated RNA from flow-sorted viable EpCAM+ tumor epithelial cells and CD45+ tumor-infiltrating immune cells obtained from squamous cell cervical cancer samples (n = 24). Total RNA was sequenced and differential gene expression analysis of the CD45+ immune cell fractions identified TCL1A as a novel marker for predicting improved survival (p = 0.007). This finding was validated using qRT-PCR (p = 0.005) and partially validated using immunohistochemistry (p = 0.083). Importantly, TCL1A was found to be expressed in a subpopulation of B cells (CD3−/CD19+/CD10+/CD34−) using multicolor immunofluorescence. A high TCL1A/CD20 (B cell) ratio, determined in total tumor samples from a separate patient cohort using qRT-PCR (n = 52), was also correlated with improved survival (p = 0.027). This is the first study demonstrating the prognostic value of separating tumor epithelial cells from tumor-infiltrating immune cells and determining their RNA expression profile for identifying putative cancer biomarkers. Our results suggest that intratumoral TCL1A+ B cells are important for controlling cervical cancer development.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Sander A J van der Zeeuw
- Department of Sequencing Analysis Support Core, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Bioinformatics Center of Expertise, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Henk P J Buermans
- Department of Leiden Genome Technology Center, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Cornelis D de Kroon
- Department of Gynaecology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands.,Center for Gynecological Oncology Amsterdam, VUMC, De Boelelaan, Amsterdam, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| |
Collapse
|
36
|
Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod Pathol 2016; 29:753-63. [PMID: 27056074 PMCID: PMC4931542 DOI: 10.1038/modpathol.2016.64] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/13/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Programmed death-ligand 1 (PD-L1) is expressed in various immune cells and tumor cells, and is able to bind to PD-1 on T lymphocytes, thereby inhibiting their function. At present, the PD-1/PD-L1 axis is a major immunotherapeutic target for checkpoint inhibition in various cancer types, but information on the clinical significance of PD-L1 expression in cervical cancer is largely lacking. Here, we studied PD-L1 expression in paraffin-embedded samples from two cohorts of patients with cervical cancer: primary tumor samples from cohort I (squamous cell carcinoma, n=156 and adenocarcinoma, n=49) and primary and paired metastatic tumor samples from cohort II (squamous cell carcinoma, n=96 and adenocarcinoma, n=31). Squamous cell carcinomas were more frequently positive for PD-L1 and also contained more PD-L1-positive tumor-associated macrophages as compared with adenocarcinomas (both P<0.001). PD-L1-positive tumor-associated macrophages were found to express CD163 and/or CD14 by triple fluorescent immunohistochemistry, demonstrating an M2-like phenotype. Interestingly, disease-free survival (P=0.022) and disease-specific survival (P=0.046) were significantly poorer in squamous cell carcinoma patients with diffuse PD-L1 expression as compared with patients with marginal PD-L1 expression (i.e., on the interface between tumor and stroma) in primary tumors. Disease-specific survival was significantly worse in adenocarcinoma patients with PD-L1-positive tumor-associated macrophages compared with adenocarcinoma patients without PD-L1-positive tumor-associated macrophages (P=0.014). No differences in PD-L1 expression between primary tumors and paired metastatic lymph nodes were detected. However, PD-L1-positive immune cells were found in greater abundance around the metastatic tumors as compared with the paired primary tumors (P=0.001 for squamous cell carcinoma and P=0.041 for adenocarcinoma). These findings point to a key role of PD-L1 in immune escape of cervical cancer, and provide a rationale for therapeutic targeting of the PD-1/PD-L1 pathway.
Collapse
|
37
|
Fjeldbo CS, Aarnes EK, Malinen E, Kristensen GB, Lyng H. Identification and Validation of Reference Genes for RT-qPCR Studies of Hypoxia in Squamous Cervical Cancer Patients. PLoS One 2016; 11:e0156259. [PMID: 27244197 PMCID: PMC4887009 DOI: 10.1371/journal.pone.0156259] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/11/2016] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an adverse factor in cervical cancer, and hypoxia-related gene expression could be a powerful biomarker for identifying the aggressive hypoxic tumors. Reverse transcription quantitative PCR (RT-qPCR) is a valuable method for gene expression studies, but suitable reference genes for data normalization that are independent of hypoxia status and clinical parameters of cervical tumors are lacking. In the present work, we aimed to identify reference genes for RT-qPCR studies of hypoxia in squamous cervical cancer. From 422 candidate reference genes selected from the literature, we used Illumina array-based expression profiles to identify 182 genes not affected by hypoxia in cervical cancer, i.e. genes regulated by hypoxia in eight cervical cancer cell lines or correlating with the hypoxia-associated dynamic contrast-enhanced magnetic resonance imaging parameter ABrix in 42 patients, were excluded. Among the 182 genes, nine candidates (CHCHD1, GNB2L1, IPO8, LASP1, RPL27A, RPS12, SOD1, SRSF9, TMBIM6) that were not associated with tumor volume, stage, lymph node involvement or disease progression in array data of 150 patients, were selected for further testing by RT-qPCR. geNorm and NormFinder analyses of RT-qPCR data of 74 patients identified CHCHD1, SRSF9 and TMBIM6 as the optimal set of reference genes, with stable expression both overall and across patient subgroups with different hypoxia status (ABrix) and clinical parameters. The suitability of the three reference genes were validated in studies of the hypoxia-induced genes DDIT3, ERO1A, and STC2. After normalization, the RT-qPCR data of these genes showed a significant correlation with Illumina expression (P<0.001, n = 74) and ABrix (P<0.05, n = 32), and the STC2 data were associated with clinical outcome, in accordance with the Illumina data. Thus, CHCHD1, SRSF9 and TMBIM6 seem to be suitable reference genes for studying hypoxia-related gene expression in squamous cervical cancer samples by RT-qPCR. Moreover, STC2 is a promising prognostic hypoxia biomarker in cervical cancer.
Collapse
Affiliation(s)
- Christina S. Fjeldbo
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eva-Katrine Aarnes
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Gunnar B. Kristensen
- Department of Gynaecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
38
|
Alldredge JK, Tewari KS. Clinical Trials of Antiangiogenesis Therapy in Recurrent/Persistent and Metastatic Cervical Cancer. Oncologist 2016; 21:576-85. [PMID: 27026677 DOI: 10.1634/theoncologist.2015-0393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Treatment options for women with metastatic, persistent, or recurrent cervical cancer are limited and thus the disease portends a poor prognosis. It is critical to understand the pathophysiology of cervical cancer to better delineate therapeutic targets. The development of antiangiogenic therapies and their subsequent analysis in rigorous therapeutic trials have redefined current management strategies and is an exciting area of current exploration. RESULTS Translational trials have furthered the understanding of molecular determinants of angiogenesis. Phase II trials have shown promising trends with developing antiangiogenic therapies. A practice-changing phase III trial has recently been published. Given the potential benefits and different toxicity spectrum compared with standard cytotoxic chemotherapy, antiangiogenic options are under active investigation for this vulnerable patient population. Emerging data are promising for other antiangiogenic-directed therapeutics, as well as cervical cancer molecular biomarkers to guide diagnosis and treatment. CONCLUSION Antiangiogenic therapies have evolved during the past 20 years and remain an exciting area of current exploration. IMPLICATIONS FOR PRACTICE Understanding of the angiogenic microenvironment has furthered understanding of tumor biology and management. Antiangiogenic therapies show promise for women with advanced cervical cancer. A review of the evolution of these biologic agents shows them to be an effective and tolerable management strategy for many patients in this vulnerable population, with exciting future potential.
Collapse
|
39
|
Punt S, Dronkers EAC, Welters MJP, Goedemans R, Koljenović S, Bloemena E, Snijders PJF, Gorter A, van der Burg SH, Baatenburg de Jong RJ, Jordanova ES. A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17(+) cell frequency. Cancer Immunol Immunother 2016; 65:393-403. [PMID: 26899388 PMCID: PMC4826411 DOI: 10.1007/s00262-016-1805-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
Abstract
Patients with HPV-positive oropharyngeal squamous cell carcinomas (OPSCCs) have a better prognosis than patients with non-HPV-induced OPSCC. The role of the immune response in this phenomenon is yet unclear. We studied the number of T cells, regulatory T cells (Tregs), T helper 17 (Th17) cells and IL-17+ non-T cells (mainly granulocytes) in matched HPV-positive and HPV-negative OPSCC cases (n = 162). Furthermore, the production of IFN-γ and IL-17 by tumor-infiltrating T cells was analyzed. The number of tumor-infiltrating T cells and Tregs was higher in HPV-positive than HPV-negative OPSCC (p < 0.0001). In contrast, HPV-negative OPSCC contained significantly higher numbers of IL-17+ non-T cells (p < 0.0001). Although a high number of intra-tumoral T cells showed a trend toward improved survival of all OPSCC patients, their prognostic effect in patients with a low number of intra-tumoral IL-17+ non-T cells was significant with regard to disease-specific (p = 0.033) and disease-free survival (p = 0.012). This suggests that a high frequency of IL-17+ non-T cells was related to a poor immune response, which was further supported by the observation that a high number of T cells was correlated with improved disease-free survival in the HPV-positive OPSCC (p = 0.008). In addition, we detected a minor Th17 cell population. However, T cells obtained from HPV-positive OPSCC produced significantly more IL-17 than those from HPV-negative tumors (p = 0.006). The improved prognosis of HPV-positive OPSCC is thus correlated with higher numbers of tumor-infiltrating T cells, more active Th17 cells and lower numbers of IL-17+ non-T cells.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center (LUMC), P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Emilie A C Dronkers
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elisabeth Bloemena
- Department of Pathology, VU Medical Center (VUMC), Amsterdam, The Netherlands.,Department of Oral and Maxillofacial Surgery/Oral Pathology, Academic Centre for Dentistry, Amsterdam, The Netherlands
| | - Peter J F Snijders
- Department of Pathology, VU Medical Center (VUMC), Amsterdam, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center (LUMC), P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center (LUMC), P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Center for Gynecological Oncology Amsterdam, VUMC, Amsterdam, The Netherlands.
| |
Collapse
|