1
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
2
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Geng S, Fang B, Wang K, Wang F, Zhou Y, Hou Y, Iqbal MZ, Chen Y, Yu Z. Polydopamine Nanoformulations Induced ICD and M1 Phenotype Macrophage Polarization for Enhanced TNBC Synergistic Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59814-59832. [PMID: 39450881 DOI: 10.1021/acsami.4c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time. Herein, we select polydopamine (PDA) nanoparticles to serve as the carrier for our nanomedicine as well as a potent photothermal agent and modulator of macrophage polarization. PDA nanoparticles are loaded with the insoluble immune adjuvant Imiquimod (R837) to construct PDA(R837) nanoformulations. These straightforward yet highly effective nanoformulations demonstrate excellent performance, allowing for successful triple-negative breast cancer (TNBC) treatment through synergistic photothermal immunotherapy. Moreover, experimental results showed that PDA(R837) implementation of PTT is effective in the thermal ablation of primary tumors while causing ICD and releasing R837, further promoting dendritic cell (DC) maturation and activating the systemic antitumor immune response. Furthermore, PDA(R837) nanoformulations inhibit tumor metastasis and recurrence and achieve M1 phenotype macrophage polarization, achieving long-term and excellent antitumor efficacy. Therefore, the structurally simple PDA(R837) nanoformulations provide cancer treatment and have excellent clinical translational application prospects.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Fang Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| |
Collapse
|
4
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
5
|
Rabie LE, Mohran AA, Gaber KA, Ali NM, Abd El Naby AM, Ghoniem EA, Abd Elmaksod BA, Abdallah AN. Beyond Conventional Treatments: Exploring CAR-T Cell Therapy for Cancer Stem Cell Eradication. Stem Cell Rev Rep 2024; 20:2001-2015. [PMID: 39312080 PMCID: PMC11554798 DOI: 10.1007/s12015-024-10786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND For decades cancer remained the center of attention in the scientific community as its survival rates are low. Researchers from all around the world wanted to know the core of the problem as to what initiates cancer in a patient and helps with its progression. Many postulations came to light, but Cancer Stem Cells (CSC) was the most appealing and convincing. MAIN BODY In this review, we shed light on a potential solution to the problem by reviewing CAR-T cells (Chimeric antigen receptor T cells). These specialized T cells are designed to detect specific antigens on cancer cells. We analyse the steps of their formation from the collection of T cells from the patient's bloodstream and modifying it to exhibit specific CAR structures on their surfaces, to reinjecting them back and evaluating their efficacy. We thoroughly investigate the structure of the CAR design with improvements across different generations. The focus extends to the unique properties of CSCs as in how targeting specific markers on them can enhance the precision of cancer therapy. CONCLUSION Despite the successes, the review discusses the existing limitations and toxicities associated with CAR-derived therapies, highlighting the ongoing need for research and refinement. Looking ahead, we explore proposed strategies aimed at optimizing CAR-T cell therapy to mitigate adverse effects for improved cancer treatments.
Collapse
Affiliation(s)
- Lobna E Rabie
- Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ahmed A Mohran
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Kholoud A Gaber
- Molecular Biology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nour M Ali
- Chemistry Department, Faculty of Science, KFS University, Kafr El-Sheikh, Egypt
| | - Asmaa M Abd El Naby
- Zoology-Chemistry Department, Faculty of Science, Beni Suef University, Beni Suef, Egypt
| | - Eman A Ghoniem
- Biotechnology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Wrona MV, Ghosh R, Coll K, Chun C, Yousefzadeh MJ. The 3 I's of immunity and aging: immunosenescence, inflammaging, and immune resilience. FRONTIERS IN AGING 2024; 5:1490302. [PMID: 39478807 PMCID: PMC11521913 DOI: 10.3389/fragi.2024.1490302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
As we age, our immune system's ability to effectively respond to pathogens declines, a phenomenon known as immunosenescence. This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.
Collapse
Affiliation(s)
- Marianna V. Wrona
- Columbia University in the City of New York, New York, NY, United States
| | - Rituparna Ghosh
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Kaitlyn Coll
- Florida International University, Miami, FL, United States
| | - Connor Chun
- Bronx High School of Science, New York, NY, United States
| | - Matthew J. Yousefzadeh
- Columbia University in the City of New York, New York, NY, United States
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Ding M, Lin J, Qin C, Fu Y, Du Y, Qiu X, Wei P, Xu T. Novel CAR-T Cells Specifically Targeting SIA-CIgG Demonstrate Effective Antitumor Efficacy in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400156. [PMID: 39178136 PMCID: PMC11516049 DOI: 10.1002/advs.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Indexed: 08/25/2024]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is a promising cancer treatment method. However, its application in bladder cancer (BC) remains limited, partially because of the absence of appropriate target molecules. Sialylated cancer-derived IgG (SIA-CIgG) is highly expressed in BC and is closely associated with malignant biological behavior. However, its potential as a target for CAR-T cell therapy to treat BC is yet to be established. Here, it is found that SIA-CIgG is highly expressed in most BC samples but displayed limited expression in normal tissues. CAR-T cells specifically targeting SIA-CIgG can effectively lyse BC cells and the cytotoxicity depends on SIA-CIgG expression. Furthermore, SIA-CIgG CAR-T cells demonstrate milder tumor cell lysis and enhanced persistence compared with human epidermal growth factor receptor 2 (HER2) CAR-T cells, which have undergone extensive clinical trials. After repeated tumor antigen challenges, SIA-CIgG CAR-T cells display substantial alterations in both the transcriptome and chromatin accessibility. When combining SIA-CIgG CAR-T cell therapy with FDA-approved drugs to treat BC, the histone deacetylase inhibitor (HDACi), vorinostat, is found to enhance the ablility of CAR-T cells for tumor cell lysis. Therefore, the combination of SIA-CIgG CAR-T cells and vorinostat is promising for BC treatment.
Collapse
Affiliation(s)
- Mengting Ding
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Jiaxing Lin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yuhao Fu
- Center for Cell and Gene Circuit DesignCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yiqing Du
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Xiaoyan Qiu
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Ping Wei
- Center for Cell and Gene Circuit DesignCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Tao Xu
- Department of UrologyPeking University People's HospitalBeijing100044China
| |
Collapse
|
8
|
Srivastava S, Tyagi A, Pawar VA, Khan NH, Arora K, Verma C, Kumar V. Revolutionizing Immunotherapy: Unveiling New Horizons, Confronting Challenges, and Navigating Therapeutic Frontiers in CAR-T Cell-Based Gene Therapies. Immunotargets Ther 2024; 13:413-433. [PMID: 39219644 PMCID: PMC11365499 DOI: 10.2147/itt.s474659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, India
| | | | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Arora
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
- Department of Biotechnology, SSET, Sharda University, Greater Noida, 201306, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, 500 University Dr, Heshey, PA, USA
| |
Collapse
|
9
|
Ercilla-Rodríguez P, Sánchez-Díez M, Alegría-Aravena N, Quiroz-Troncoso J, Gavira-O'Neill CE, González-Martos R, Ramírez-Castillejo C. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024; 15:1333150. [PMID: 39091493 PMCID: PMC11291200 DOI: 10.3389/fimmu.2024.1333150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Genes, Transgenic, Suicide
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- T-Lymphocytes/immunology
- Animals
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | - Marta Sánchez-Díez
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nicolás Alegría-Aravena
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, Albacete, Spain
| | - Josefa Quiroz-Troncoso
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Clara E. Gavira-O'Neill
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Raquel González-Martos
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ramírez-Castillejo
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| |
Collapse
|
10
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
11
|
Rousseau A, Zafrani L. Acute kidney injury after CAR-T cell infusion. Bull Cancer 2024; 111:748-753. [PMID: 36220698 DOI: 10.1016/j.bulcan.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Chimeric antigen receptor T (CAR-T)-cell, an adaptive immune therapy is approved for patients with acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Its use and subsequent toxicities are expected to rise in the coming years. The main toxicities are cytokine release syndrome, hemophagocytic lymphohistiocytosis and immune effector cell associated neurotoxicity syndrome. Cytokine release syndrome is observed in up to 40% of patients. Almost 20% of patient suffer from acute kidney injury after CAR-T cell infusion. Associated factors are high-grade cytokine release syndrome, a prior autologous or allogeneic stem cell transplantation andrequirement of intensive care unit. Several mechanisms may contribute to the occurrence of acute kidney injury after CAR-T infusion: hypoperfusion during cytokine release syndrome, cytokine injury, T cell infiltration, tumor lysis syndrome and sepsis-induced injury. Kidney injury is associated with substantial increase in morbi-mortality.
Collapse
Affiliation(s)
- Adrien Rousseau
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.
| | - Lara Zafrani
- Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris, Medical Intensive Care Unit, Paris, France
| |
Collapse
|
12
|
Lee HJ, Hwang SJ, Jeong EH, Chang MH. Genetically Engineered CLDN18.2 CAR-T Cells Expressing Synthetic PD1/CD28 Fusion Receptors Produced Using a Lentiviral Vector. J Microbiol 2024; 62:555-568. [PMID: 38700775 PMCID: PMC11303488 DOI: 10.1007/s12275-024-00133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 08/07/2024]
Abstract
This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- Cell Line, Tumor
- Claudins/genetics
- Claudins/metabolism
- Cytokines/metabolism
- Genetic Engineering
- Genetic Vectors/genetics
- Immunotherapy, Adoptive/methods
- Interferon-gamma/metabolism
- Lentivirus/genetics
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Stomach Neoplasms/therapy
- Stomach Neoplasms/immunology
- Stomach Neoplasms/genetics
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Heon Ju Lee
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea.
| | - Seo Jin Hwang
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| | - Eun Hee Jeong
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| | - Mi Hee Chang
- CARBio Therapeutics Co., Ltd., Cheongju, 28160, Republic of Korea
| |
Collapse
|
13
|
Alviano AM, Biondi M, Grassenis E, Biondi A, Serafini M, Tettamanti S. Fully equipped CARs to address tumor heterogeneity, enhance safety, and improve the functionality of cellular immunotherapies. Front Immunol 2024; 15:1407992. [PMID: 38887285 PMCID: PMC11180895 DOI: 10.3389/fimmu.2024.1407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Although adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells has achieved unprecedented response rates in patients with certain hematological malignancies, this therapeutic modality is still far from fulfilling its remarkable potential, especially in the context of solid cancers. Antigen escape variants, off-tumor destruction of healthy tissues expressing tumor-associated antigens (TAAs), poor CAR-T cell persistence, and the occurrence of functional exhaustion represent some of the most prominent hurdles that limit CAR-T cell ability to induce long-lasting remissions with a tolerable adverse effect profile. In this review, we summarize the main approaches that have been developed to face such bottlenecks, including the adapter CAR (AdCAR) system, Boolean-logic gating, epitope editing, the modulation of cell-intrinsic signaling pathways, and the incorporation of safety switches to precisely control CAR-T cell activation. We also discuss the most pressing issues pertaining to the selection of co-stimulatory domains, with a focus on strategies aimed at promoting CAR-T cell persistence and optimal antitumor functionality.
Collapse
Affiliation(s)
- Antonio Maria Alviano
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Erica Grassenis
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Serafini
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Tettamanti
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
14
|
Mody H, Sutaria DS, Miles D. Clinical Pharmacology Considerations for the "Off-the-Shelf" Allogeneic Cell Therapies. Clin Pharmacol Ther 2024; 115:1233-1250. [PMID: 38501153 DOI: 10.1002/cpt.3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies have garnered unprecedented clinical success with multiple regulatory approvals for the treatment of various hematological malignancies. However, there are still several clinical challenges that limit their broad utilization for aggressive disease conditions. To address some of these challenges, allogeneic cell therapies are evaluated as an alternative approach. As compared with autologous products, they offer several advantages, such as a more standardized "off the shelf" product, reduced manufacturing complexity, and no requirement of bridging therapy. As with autologous CAR-T therapies, allogeneic cell therapies also present clinical pharmacology challenges due to their in vivo living nature, unique pharmacokinetics or cellular kinetics (CKs), and complex dose-exposure-response relationships that are impacted by various patient- and product-related factors. On top of that, allogeneic cell therapies present additional unique challenges, including attenuated in vivo persistence and graft-vs.-host disease risk as compared with autologous counterparts. This review draws comparison between autologous and allogeneic cell therapies, summarizing key engineering aspects unique to allogeneic cell therapy. Clinical pharmacology learnings from emerging clinical data of allogeneic cell therapy programs are also highlighted, with particular emphasis on CK, dose-exposure-response relationship, lymphodepletion regimen, repeat dosing, and patient- and product-related factors that can impact CK and patient outcomes. There are specific unique challenges and opportunities arising from the development of allogeneic cell therapies, especially in optimizing lymphodepletion and establishing a regimen for repeat dosing. This review highlights how clinical pharmacologists are well positioned to help address these challenges by leveraging novel clinical pharmacology and modeling and simulation approaches.
Collapse
Affiliation(s)
- Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Dale Miles
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| |
Collapse
|
15
|
Rademacher MJ, Faber ML, Bone KM, Medin JA, Schloemer NJ. Fate control engagement augments NK cell responses in LV/hu-IL-12 transduced sarcoma. Exp Mol Pathol 2024; 137:104898. [PMID: 38729059 DOI: 10.1016/j.yexmp.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.
Collapse
Affiliation(s)
- Mary Jo Rademacher
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L Faber
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kathleen M Bone
- Departments of Pathology; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey A Medin
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA; Departments of Biochemisty; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nathan J Schloemer
- Departments of Pediatrics; Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
16
|
Lin H, Deng T, Jiang L, Meng F, Cao Y, Zhang Y, Ge R, Zhu X. Adverse Reactions in Relapsed/Refractory B-Cell Lymphoma Administered with Chimeric Antigen Receptor T Cell Alone or in Combination with Autologous Stem Cell Transplantation. Cancers (Basel) 2024; 16:1722. [PMID: 38730674 PMCID: PMC11083715 DOI: 10.3390/cancers16091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: The combination of CAR-T with ASCT has been observed to enhance the efficacy of CAR-T cell therapy. However, the impact of this combination on adverse reactions is still uncertain. (2) Methods: Between January 2019 and February 2023, 292 patients diagnosed with r/r B-cell lymphoma received either CAR-T therapy alone or in combination with ASCT at our institution. We evaluated the incidence of CRS and CRES and utilized a logistic regression model to identify factors contributing to severe CRS (grade 3-4) and CRES (grade 3-4). (3) Results: The overall incidence of CRS and CRES was 78.9% and 8.2% in 147 patients receiving CAR-T alone, and 95.9% and 15.2% in 145 patients receiving CAR-T combined with ASCT, respectively. The incidence of overall CRS (p < 0.0001) and mild CRS (grade 1-2) (p = 0.021) was elevated in the ASCT combined with CAR-T group. No significant difference was observed in severe CRS and CRES between the groups. Among the 26 cases of lymphoma involving the central nervous system (CNS), 96.2% (25/26) developed CRS (15.4% grade 3-4), and 34.6% (9/26) manifested CRES (7.7% grade 3-4). Female patients had a lower incidence of severe CRS but a higher incidence of severe CRES. Lymphomas with CNS involvement demonstrated a higher risk of CRES compared to those without central involvement. (4) Conclusions: The combination of ASCT with CAR-T demonstrated a preferable option in r/r B-cell lymphoma without an increased incidence of severe CRS and CRES.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Ting Deng
- Department of Hematology, Chongqing Fifth People’s Hospital, Chongqing 400062, China;
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Renying Ge
- Department of Hematology, Xianning Central Hospital, The First Affiliated Hospital to Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| |
Collapse
|
17
|
Verbič A, Lebar T, Praznik A, Jerala R. Subunits of an E3 Ligase Complex as Degrons for Efficient Degradation of Cytosolic, Nuclear, and Membrane Proteins. ACS Synth Biol 2024; 13:792-803. [PMID: 38404221 PMCID: PMC10949250 DOI: 10.1021/acssynbio.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Protein degradation is a highly regulated cellular process crucial to enable the high dynamic range of the response to external and internal stimuli and to balance protein biosynthesis to maintain cell homeostasis. Within mammalian cells, hundreds of E3 ubiquitin ligases target specific protein substrates and could be repurposed for synthetic biology. Here, we present a systematic analysis of the four protein subunits of the multiprotein E3 ligase complex as scaffolds for the designed degrons. While all of them were functional, the fusion of a fragment of Skp1 with the target protein enabled the most effective degradation. Combination with heterodimerizing peptides, protease substrate sites, and chemically inducible dimerizers enabled the regulation of protein degradation. While the investigated subunits of E3 ligases showed variable degradation efficiency of the membrane and cytosolic and nuclear proteins, the bipartite SSD (SOCSbox-Skp1(ΔC111)) degron enabled fast degradation of protein targets in all tested cellular compartments, including the nucleus and plasma membrane, in different cell lines and could be chemically regulated. These subunits could be employed for research as well as for diverse applications, as demonstrated in the regulation of Cas9 and chimeric antigen receptor proteins.
Collapse
Affiliation(s)
- Anže Verbič
- Department of Synthetic Biology
and Immunology, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | | | - Arne Praznik
- Department of Synthetic Biology
and Immunology, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology
and Immunology, National Institute of Chemistry, Ljubljana 1000, Slovenia
| |
Collapse
|
18
|
Albarrán V, San Román M, Pozas J, Chamorro J, Rosero DI, Guerrero P, Calvo JC, González C, García de Quevedo C, Pérez de Aguado P, Moreno J, Cortés A, Soria A. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol 2024; 15:1352805. [PMID: 38550594 PMCID: PMC10972864 DOI: 10.3389/fimmu.2024.1352805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Adoptive cell therapy (ACT) comprises different strategies to enhance the activity of T lymphocytes and other effector cells that orchestrate the antitumor immune response, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR) gene-modified T cells, and therapy with tumor-infiltrating lymphocytes (TILs). The outstanding results of CAR-T cells in some hematologic malignancies have launched the investigation of ACT in patients with refractory solid malignancies. However, certain characteristics of solid tumors, such as their antigenic heterogeneity and immunosuppressive microenvironment, hamper the efficacy of antigen-targeted treatments. Other ACT modalities, such as TIL therapy, have emerged as promising new strategies. TIL therapy has shown safety and promising activity in certain immunogenic cancers, mainly advanced melanoma, with an exciting rationale for its combination with immune checkpoint inhibitors. However, the implementation of TIL therapy in clinical practice is hindered by several biological, logistic, and economic challenges. In this review, we aim to summarize the current knowledge, available clinical results, and potential areas of future research regarding the use of T cell therapy in patients with solid tumors.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - María San Román
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Javier Pozas
- Department of Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Jesús Chamorro
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Diana Isabel Rosero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Calvo
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Carlos González
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | | | | | - Jaime Moreno
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Alfonso Cortés
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Ainara Soria
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
19
|
Kim SY, Soh H, Jung JH, Cho EH, Kim H, Ju JM, Sheen JH, Lee SJ, Oh SJ, Lee SJ, Chung J, Ryu JS. Direct and Indirect Chimeric Antigen Receptor T-Cell Imaging with PET/MRI in a Tumor Xenograft Model. Radiology 2024; 310:e231406. [PMID: 38411517 DOI: 10.1148/radiol.231406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.
Collapse
Affiliation(s)
- Seog-Young Kim
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Hyunsu Soh
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Jin Hwa Jung
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Eun Hye Cho
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Hyori Kim
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Ji-Min Ju
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Joong Hyuk Sheen
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Sang Ju Lee
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Seung Jun Oh
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Sang-Jin Lee
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Junho Chung
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Jin-Sook Ryu
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| |
Collapse
|
20
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Lee S, Kim TD. Breakthroughs in Cancer Immunotherapy: An Overview of T Cell, NK Cell, Mφ, and DC-Based Treatments. Int J Mol Sci 2023; 24:17634. [PMID: 38139461 PMCID: PMC10744055 DOI: 10.3390/ijms242417634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Efforts to treat cancer using chimeric antigen receptor (CAR)-T therapy have made astonishing progress and clinical trials against hematopoietic malignancies have demonstrated their use. However, there are still disadvantages which need to be addressed: high costs, and side effects such as Graft-versus-Host Disease (GvHD) and Cytokine Release Syndrome (CRS). Therefore, recent efforts have been made to harness the properties of certain immune cells to treat cancer-not just T cells, but also natural killer (NK) cells, macrophages (Mφ), dendritic cells (DC), etc. In this paper, we will introduce immune cell-based cellular therapies that use various immune cells and describe their characteristics and their clinical situation. The development of immune cell-based cancer therapy fully utilizing the unique advantages of each and every immune cell is expected to enhance the survival of tumor patients owing to their high efficiency and fewer side effects.
Collapse
Affiliation(s)
- Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Webber BR, Johnson MJ, Skeate JG, Slipek NJ, Lahr WS, DeFeo AP, Mills LJ, Qiu X, Rathmann B, Diers MD, Wick B, Henley T, Choudhry M, Starr TK, McIvor RS, Moriarity BS. Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair. Nat Biomed Eng 2023:10.1038/s41551-023-01157-4. [PMID: 38092857 PMCID: PMC11169092 DOI: 10.1038/s41551-023-01157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.
Collapse
Affiliation(s)
- Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Qiu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ob-Gyn and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
24
|
Asghar MS, Ismail Shah SM, Rani A, Kazmi S, Savul IS, Ukrani J, Khan F, Hasan CA, Rathore N, Syed M, Keswani S, Surkasha FNU, Mal D, Kumar D. Toxicities of CAR T-cell therapy: a review of current literature. Ann Med Surg (Lond) 2023; 85:6013-6020. [PMID: 38098580 PMCID: PMC10718333 DOI: 10.1097/ms9.0000000000001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/24/2023] [Indexed: 12/17/2023] Open
Abstract
The chimeric antigen receptor (CAR) design, first invented by Zelig Eshhar, paved the way for the use of genetically modified T-cells in targeted therapy against cancer cells. Since then, it has gone through many generations, especially with the integration of co-stimulation in the second and third-generation CARs. However, it also mounts a hyperactive immune response named as cytokine release syndrome with the release of several cytokines eventually resulting in multiple end-organ toxicities. The severity of cytokine release syndrome depends upon certain factors such as the tumor burden, choice of co-stimulation, and degree of lymphodepletion, and can manifest as pulmonary edema, vascular leak, renal dysfunction, cardiac problems, hepatic failure, and coagulopathy. Many grading criteria have been used to define these clinical manifestations but they lack harmonization. Neurotoxicity has also been significantly associated with CAR T-cell therapy but it has not been studied much in previous literature. This review aims to provide a comprehensive account of the clinical manifestations, diagnosis, management, and treatment of CAR T-cell associated neurotoxicity.
Collapse
Affiliation(s)
| | | | - Anooja Rani
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences
| | - Sana Kazmi
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences
| | - Ilma S. Savul
- Department of Internal Medicine, St. Joseph Medical Center, Houston
| | - Janta Ukrani
- Department of Internal Medicine, Mather Hospital-Northwell Health, New York
| | - Farmanullah Khan
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Chaudhary A. Hasan
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences
| | - Navin Rathore
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Maria Syed
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shiwani Keswani
- Department of Medicine, Ghulam Muhammad Mahar Medical College, Sukkur
| | - FNU Surkasha
- Department of Medicine, Ghulam Muhammad Mahar Medical College, Sukkur
| | - Doongro Mal
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences
| | - Dileep Kumar
- Department of Medicine, Liaquat University of Medical and Health Sciences
| |
Collapse
|
25
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
26
|
Sayadmanesh A, Yekehfallah V, Valizadeh A, Abedelahi A, Shafaei H, Shanehbandi D, Basiri M, Baradaran B. Strategies for modifying the chimeric antigen receptor (CAR) to improve safety and reduce toxicity in CAR T cell therapy for cancer. Int Immunopharmacol 2023; 125:111093. [PMID: 37897950 DOI: 10.1016/j.intimp.2023.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Immune cell therapy with chimeric antigen receptor (CAR) T cells, which has shown promising efficacy in patients with some hematologic malignancies, has introduced several successfully approved CAR T cell therapy products. Nevertheless, despite significant advances, treatment with these products has major challenges regarding potential toxicity and sometimes fatal adverse effects for patients. These toxicities can result from cytokine release or on-target off-tumor toxicity that targets healthy host tissue following CAR T cell therapy. The present study focuses on the unexpected side effects of targeting normal host tissues with off-target toxicity. Also, recent safety strategies such as replacing or adding different components to CARs and redesigning CAR structures to eliminate the toxic impact of CAR T cells, including T cell antigen coupler (TAC), switch molecules, suicide genes, and humanized monoclonal antibodies in the design of CARs, are discussed in this review.
Collapse
Affiliation(s)
- Ali Sayadmanesh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Yekehfallah
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Monzo HJ, Kalander K, Hyytiäinen MM, Elbasani E, Wall J, Moyano-Galceran L, Tanjore Ramanathan J, Jukonen J, Laakkonen P, Ristimäki A, Carlson JW, Lehti K, Salehi S, Puolakkainen P, Haglund C, Seppänen H, Leppä S, Ojala PM. Efficacy and Safety of Glycosphingolipid SSEA-4 Targeting CAR-T Cells in an Ovarian Carcinoma Model. Mol Cancer Ther 2023; 22:1319-1331. [PMID: 37486980 DOI: 10.1158/1535-7163.mct-23-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapies for solid tumors face critical challenges such as heterogeneous antigen expression. We characterized stage-specific embryonic antigen-4 (SSEA-4) cell-surface glycolipid as a target for CAR T-cell therapy. SSEA-4 is mainly expressed during embryogenesis but is also found in several cancer types making it an attractive tumor-associated antigen. Anti-SSEA-4 CAR-T cells were generated and assessed preclinically in vitro and in vivo for antitumor response and safety. SSEA-4 CAR-T cells effectively eliminated SSEA-4-positive cells in all the tested cancer cell lines, whereas SSEA-4-negative cells lines were not targeted. In vivo efficacy and safety studies using NSG mice and the high-grade serous ovarian cancer cell line OVCAR4 demonstrated a remarkable and specific antitumor response at all the CAR T-cell doses used. At high T-cell doses, CAR T cell-treated mice showed signs of health deterioration after a follow-up period. However, the severity of toxicity was reduced with a delayed onset when lower CAR T-cell doses were used. Our data demonstrate the efficacy of anti-SSEA-4 CAR T-cell therapy; however, safety strategies, such as dose-limiting and/or equipping CAR-T cells with combinatorial antigen recognition should be implemented for its potential clinical translation.
Collapse
Affiliation(s)
- Hector J Monzo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kerttu Kalander
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko M Hyytiäinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Endrit Elbasani
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Wall
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Joonas Jukonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Center, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinli, Finland
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sahar Salehi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Pauli Puolakkainen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sirpa Leppä
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
29
|
Jiang W, Gu G, Zhang Y, Song Y, Shi M, Wang G, Li H, Tao T, Qin J, Li X, Jia H, Jiao F, Xu W, Huang X. Novel mesothelin-targeted chimeric antigen receptor-modified UNKT cells are highly effective in inhibiting tumor progression. Pharmacol Res 2023; 197:106942. [PMID: 37775021 DOI: 10.1016/j.phrs.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The design of chimeric antigen receptors (CAR) significantly enhances the antitumor efficacy of T cells. Although some CAR-T products have been approved by FDA in treating hematological tumors, adoptive immune therapy still faces many difficulties and challenges in the treatment of solid tumors. In this study, we reported a new strategy to treat solid tumors using a natural killer-like T (NKT) cell line which showed strong cytotoxicity to lyse 15 cancer cell lines, safe to normal cells and had low or no Graft-versus-host activity. We thus named it as universal NKT (UNKT). In both direct and indirect 3D tumor-like organ model, UNKT showed efficient tumor-killing properties, indicating that it could penetrate the microenvironment of solid tumors. In mesothelin (MSLN)-positive tumor cells (SKOV-3 and MCF-7), MSLN targeting CAR modified-UNKT cells had enhanced killing potential against MSLN positive ovarian cancer compared with the wild type UNKT, as well as MSLN-CAR-T cells. Compared with CAR-T, Single-cell microarray 32-plex proteomics revealed CAR-UNKT cells express more effector cytokines, such as perforin and granzyme B, and less interleukin-6 after activation. Moreover, our CAR-UNKT cells featured in more multifunctionality than CAR-T cells. CAR-UNKT cells also demonstrated strong antitumor activity in mouse models of ovarian cancer, with the ability to migrate and infiltrate the tumor without inducing immune memory. The fast-in and -out, enhanced and prolonged tumor killing properties of CAR-UNKT suggested a novel cure option of cellular immunotherapy in the treatment of MSLN-positive solid tumors.
Collapse
Affiliation(s)
- Wei Jiang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guosheng Gu
- Abelow Pharmaceuticals Inc., 10 Xinghuo Road, Jiangbei New Area, Nanjing, Jiangsu 210000, China
| | - Yumin Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yushuai Song
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Tingting Tao
- CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Beijing Institute For Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100020, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China; University of Chinese Academy of Sciences, Beijing 100020, China
| | - Xianliang Li
- Department of HBP Surgery,Beijing Chao Yang Hospital,The Capital Medical University, Beijing 100020, China
| | - Hongtao Jia
- Abelow Pharmaceuticals Inc., 10 Xinghuo Road, Jiangbei New Area, Nanjing, Jiangsu 210000, China
| | - Feng Jiao
- Abelow Pharmaceuticals Inc., 10 Xinghuo Road, Jiangbei New Area, Nanjing, Jiangsu 210000, China
| | - Weidong Xu
- Abelow Pharmaceuticals Inc., 10 Xinghuo Road, Jiangbei New Area, Nanjing, Jiangsu 210000, China.
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin 150081, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
30
|
Abramson HN. Immunotherapy of Multiple Myeloma: Current Status as Prologue to the Future. Int J Mol Sci 2023; 24:15674. [PMID: 37958658 PMCID: PMC10649824 DOI: 10.3390/ijms242115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of therapeutic measures to treat multiple myeloma has undergone a seismic shift since the dawn of the current century. This has been driven largely by the introduction of new classes of small molecules, such as proteasome blockers (e.g., bortezomib) and immunomodulators (e.g., lenalidomide), as well as by immunotherapeutic agents starting with the anti-CD38 monoclonal antibody daratumumab in 2015. Recently, other immunotherapies have been added to the armamentarium of drugs available to fight this malignancy. These include the bispecifics teclistamab, talquetamab, and elranatamab, and the chimeric antigen receptor (CAR) T-cell products idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel). While the accumulated benefits of these newer agents have resulted in a more than doubling of the disease's five-year survival rate to nearly 60% and improved quality of life, the disease remains incurable, as patients become refractory to the drugs and experience relapse. This review covers the current scope of antimyeloma immunotherapeutic agents, both those in clinical use and in development. Included in the discussion are additional monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), bi- and multitargeted mAbs, and CAR T-cells and emerging natural killer (NK) cells, including products intended for "off-the-shelf" (allogeneic) applications. Emphasis is placed on the benefits of each along with the challenges that need to be surmounted if MM is to be cured.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Chen Z, Zhang Y, Kwak-Kim J, Wang W. Memory regulatory T cells in pregnancy. Front Immunol 2023; 14:1209706. [PMID: 37954599 PMCID: PMC10637476 DOI: 10.3389/fimmu.2023.1209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Pregnancy requires the process of maternal immune tolerance to semi-allogeneic embryos. In contrast, an overreactive maternal immune system to embryo-specific antigens is likely to result in the rejection of embryos while damaging the invading placenta, such that the likelihood of adverse pregnancy outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing excessive immune responses and regulating immune homeostasis. When stimulating Tregs, specific antigens will differentiate into memory Tregs with long-term survival and rapid and powerful immune regulatory ability. Immunomodulatory effects mediated by memory Tregs at the maternal-fetal interface take on critical significance in a successful pregnancy. The impaired function of memory Tregs shows a correlation with various pregnancy complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent pregnancy losses). However, the differentiation process and characteristics of memory Tregs, especially their role in pregnancy, remain unclear. In this study, a review is presented in terms of memory Tregs differentiation and activation, the characteristics of memory Tregs and their role in pregnancy, and the correlation between memory Tregs and pregnancy complications. Furthermore, several potential therapeutic methods are investigated to restore the function of memory Tregs in accordance with immunopathologies arising from memory Tregs abnormalities and provide novel targets for diagnosing and treating pregnancy-associated diseases.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, Qingdao, China
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
33
|
Byun KT, Kim B, Cho J, Lee I, Lee MG, Park D, Kang TB, Won HS, Kim CG. Development of an Anti-HER2 Single-Chain Variable Antibody Fragment Construct for High-Yield Soluble Expression in Escherichia coli and One-Step Chromatographic Purification. Biomolecules 2023; 13:1508. [PMID: 37892190 PMCID: PMC10605039 DOI: 10.3390/biom13101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Although single-chain variable fragment (scFv) is recognized as a highly versatile scaffold of recombinant antibody fragment molecules, its overexpression in Escherichia coli often leads to the formation of inclusion bodies. To address this issue, we devised and tested four different constructs, named v21, v22, v23 and v24, for producing anti-human epidermal growth factor receptor 2 (HER2) scFv. Among them, the v24 construct obtained from N-terminal fusion of maltose-binding protein (MBP) and subsequent tobacco etch virus protease (TEV) was identified as the most efficient construct for the production of anti-HER2 scFv. Aided by an MBP tag, high-yield soluble expression was ensured and soluble scFv was liberated in cells via autonomous proteolytic cleavage by endogenously expressed TEV. The isolated scFv containing a C-terminal hexahistidine tag was purified through a one-step purification via nickel-affinity chromatography. The purified scFv exhibited a strong (nanomolar Kd) affinity to HER2 both in vitro and in cells. Structural and functional stabilities of the scFv during storage for more than one month were also assured. Given the great utility of anti-HER2 scFv as a basic platform for developing therapeutic and diagnostic agents for cancers, the v24 construct and methods presented in this study are expected to provide a better manufacturing system for producing anti-HER2 scFv with various industrial applications.
Collapse
Affiliation(s)
- Kyu Tae Byun
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
| | - Boram Kim
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
| | - Junmin Cho
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
| | - Inbeom Lee
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
| | - Myung Gu Lee
- Konkukbio Inc., Konkuk University, Chungju 27478, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Tae-Bong Kang
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Chan Gil Kim
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (K.T.B.); (B.K.)
| |
Collapse
|
34
|
Yang Z, Wang Y. Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies. Chin Med J (Engl) 2023; 136:2285-2296. [PMID: 37358555 PMCID: PMC10538902 DOI: 10.1097/cm9.0000000000002549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 06/27/2023] Open
Abstract
ABSTRACT Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhihuan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Tianjin Key Laboratory of Cell Therapy for Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | |
Collapse
|
35
|
Yang P, Yu F, Yao Z, Ding X, Xu H, Zhang J. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer. Cancer Immunol Immunother 2023; 72:3191-3202. [PMID: 37418008 PMCID: PMC10991104 DOI: 10.1007/s00262-023-03491-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and the worst prognosis. The application of immunotherapy for TNBC is limited. This study was to verify the potential application of chimeric antigen receptor-T cells (CAR-T cells) targeting CD24 named as 24BBz in treatment of TNBC. 24BBz was constructed by lentivirus infection and then was co-culture with breast cancer cell lines to evaluate the activation, proliferation and cytotoxicity of engineered T cells. The anti-tumor activity of 24BBz was verified in the subcutaneous xenograft model of nude mice. We found that CD24 gene was significantly up-regulated in breast cancer (BRCA), especially in TNBC. 24BBz showed antigen-specific activation and dose-dependent cytotoxicity against CD24-positive BRCA tumor cells in vitro. Furthermore, 24BBz showed significant anti-tumor effect in CD24-positive TNBC xenografts and T cells infiltration in tumor tissues, while some T cells exhibited exhaustion. No pathological damage of major organs was found during the treatment. This study proved that CD24-specific CAR-T cells have potent anti-tumor activity and potential application value in treatment of TNBC.
Collapse
Affiliation(s)
- Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China
| | - Fan Yu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- Nanjing Anji Biological Technology Co., LTD, Nanjing, 210033, People's Republic of China
| | - Zheng Yao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China.
| | - Juan Zhang
- Antibody Engineering Laboratory, Department of Molecular Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing City, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
36
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
37
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential targets and applications of nanodrug targeting myeloid cells in osteosarcoma for the enhancement of immunotherapy. Front Pharmacol 2023; 14:1271321. [PMID: 37808190 PMCID: PMC10551637 DOI: 10.3389/fphar.2023.1271321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Arcila ME, Patel U, Momeni-Boroujeni A, Yao J, Chan R, Chan J, Rijo I, Yu W, Chaves N, Patel H, Kakadiya S, Lachhander S, Senechal B, Riviere IC, Wang X, Sadelain M, Nafa K, Salazar P, Palomba L, Curran KJ, Park JH, Daniyan A, Borsu L. Validation of a High-Sensitivity Assay for Detection of Chimeric Antigen Receptor T-Cell Vectors Using Low-Partition Digital PCR Technology. J Mol Diagn 2023; 25:634-645. [PMID: 37330049 PMCID: PMC10488325 DOI: 10.1016/j.jmoldx.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023] Open
Abstract
Although in vivo engraftment, expansion, and persistence of chimeric antigen receptor (CAR) T cells are pivotal components of treatment efficacy, quantitative monitoring has not been implemented in routine clinical practice. We describe the development and analytical validation of a digital PCR assay for ultrasensitive detection of CAR constructs after treatment, circumventing known technical limitations of low-partitioning platforms. Primers and probes, designed for detection of axicabtagene, brexucabtagene, and Memorial Sloan Kettering CAR constructs, were employed to validate testing on the Bio-Rad digital PCR low-partitioning platform; results were compared with Raindrop, a high-partitioning system, as reference method. Bio-Rad protocols were modified to enable testing of DNA inputs as high as 500 ng. Using dual-input reactions (20 and 500 ng) and a combined analysis approach, the assay demonstrated consistent target detection around 1 × 10-5 (0.001%) with excellent specificity and reproducibility and 100% accuracy compared with the reference method. Dedicated analysis of 53 clinical samples received during validation/implementation phases showed the assay effectively enabled monitoring across multiple time points of early expansion (day 6 to 28) and long-term persistence (up to 479 days). CAR vectors were detected at levels ranging from 0.005% to 74% (vector versus reference gene copies). The highest levels observed in our cohort correlated strongly with the temporal diagnosis of grade 2 and 3 cytokine release syndrome diagnosis (P < 0.005). Only three patients with undetectable constructs had disease progression at the time of sampling.
Collapse
Affiliation(s)
- Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Utsav Patel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - JinJuan Yao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger Chan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joe Chan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ivelise Rijo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wayne Yu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelio Chaves
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hina Patel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Srushti Kakadiya
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Lachhander
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brigitte Senechal
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Isabelle C Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michel Sadelain
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paulo Salazar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lia Palomba
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jae H Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Daniyan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laetitia Borsu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
39
|
Rihackova E, Rihacek M, Vyskocilova M, Valik D, Elbl L. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma-a review and prospects for the future. Front Cardiovasc Med 2023; 10:1243531. [PMID: 37711551 PMCID: PMC10499183 DOI: 10.3389/fcvm.2023.1243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Treatment of malignant lymphoma has for years been represented by many cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic irradiation. Although they are in clinical practice for decades, the precise mechanism of cardiotoxicity and effective prevention is still part of the research. At this article we discuss most routinely used anti-cancer drugs in chemotherapeutic regiments for malignant lymphoma with the focus on novel insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at molecular levels may unveil possible targets of cardioprotective supportive therapy or optimization of current therapeutic protocols. Additionally, we review novel specific targeted therapy and its challenges in cardio-oncology.
Collapse
Affiliation(s)
- Eva Rihackova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Michal Rihacek
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Vyskocilova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Dalibor Valik
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomir Elbl
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| |
Collapse
|
40
|
Lee EHJ, Murad JP, Christian L, Gibson J, Yamaguchi Y, Cullen C, Gumber D, Park AK, Young C, Monroy I, Yang J, Stern LA, Adkins LN, Dhapola G, Gittins B, Chang WC, Martinez C, Woo Y, Cristea M, Rodriguez-Rodriguez L, Ishihara J, Lee JK, Forman SJ, Wang LD, Priceman SJ. Antigen-dependent IL-12 signaling in CAR T cells promotes regional to systemic disease targeting. Nat Commun 2023; 14:4737. [PMID: 37550294 PMCID: PMC10406808 DOI: 10.1038/s41467-023-40115-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.
Collapse
Affiliation(s)
- Eric Hee Jun Lee
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lea Christian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Cody Cullen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Cari Young
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lawrence A Stern
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lauren N Adkins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Gaurav Dhapola
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Brenna Gittins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Catalina Martinez
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA, 91010, USA
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, 91010, USA
| | | | - Jun Ishihara
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W120BZ, UK
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98019, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, City of Hope, Duarte, CA, 91010, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
41
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
He M, Zhang D, Cao Y, Chi C, Zeng Z, Yang X, Yang G, Sharma K, Hu K, Enikeev M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023; 9:e19147. [DOI: https:/doi.org/10.1016/j.heliyon.2023.e19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
|
43
|
He M, Zhang D, Cao Y, Chi C, Zeng Z, Yang X, Yang G, Sharma K, Hu K, Enikeev M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023; 9:e19147. [PMID: 37664750 PMCID: PMC10469587 DOI: 10.1016/j.heliyon.2023.e19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Recent immunotherapy research has focused on chimeric antigen receptor-modified T cells (CAR-Ts). CAR-T therapies have been clinically applied to manage hematologic malignancies with satisfactory effectiveness. However, the application of CAR-T immunotherapy in solid tumors remains challenging. Even so, current CAR-T immunotherapies for prostate cancer (PCa) have shown some promise, giving hope to patients with advanced metastatic PCa. This review aimed to elucidate different types of prostate tumor-associated antigen targets, such as prostate-specific membrane antigen and prostate stem cell antigen, and their effects. The current status of the corresponding targets in clinical research through their applications was also discussed. To improve the efficacy of CAR-T immunotherapy, we addressed the possible applications of multimodal immunotherapy, chemotherapy, and CAR-T combined therapies. The obstacles of solid tumors were concisely elaborated. Further studies should aim to discover novel potential targets and establish new models by overcoming the inherent barriers of solid tumors, such as tumor heterogeneity and the immunosuppressive nature of the tumor microenvironment.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Changliang Chi
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Zitong Zeng
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Kritika Sharma
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
44
|
Geng P, Chi Y, Yuan Y, Yang M, Zhao X, Liu Z, Liu G, Liu Y, Zhu L, Wang S. Novel chimeric antigen receptor T cell-based immunotherapy: a perspective for triple-negative breast cancer. Front Cell Dev Biol 2023; 11:1158539. [PMID: 37457288 PMCID: PMC10339351 DOI: 10.3389/fcell.2023.1158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and does not express estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2). It has a poor prognosis, and traditional endocrine and anti-HER2 targeted therapies have low efficacy against it. In contrast, surgery, radiotherapy, and/or systemic chemotherapy are relatively effective at controlling TNBC. The resistance of TNBC to currently available clinical therapies has had a significantly negative impact on its treatment outcomes. Hence, new therapeutic options are urgently required. Chimeric antigen receptor T cell (CAR-T) therapy is a type of immunotherapy that integrates the antigen specificity of antibodies and the tumor-killing effect of T cells. CAR-T therapy has demonstrated excellent clinical efficacy against hematological cancers. However, its efficacy against solid tumors such as TNBC is inadequate. The present review aimed to investigate various aspects of CAR-T administration as TNBC therapy. We summarized the potential therapeutic targets of CAR-T that were identified in preclinical studies and clinical trials on TNBC. We addressed the limitations of using CAR-T in the treatment of TNBC in particular and solid tumors in general and explored key strategies to overcome these impediments. Finally, we comprehensively examined the advancement of CAR-T immunotherapy as well as countermeasures that could improve its efficacy as a TNBC treatment and the prognosis of patients with this type of cancer.
Collapse
Affiliation(s)
- Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Guangwei Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yihui Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Liang Zhu
- Clinical Research Center, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
45
|
Hu C, Liu M, Li Y, Zhao Y, Sharma A, Liu H, Schmidt-Wolf IGH. Recent advances and future perspectives of CAR-T cell therapy in head and neck cancer. Front Immunol 2023; 14:1213716. [PMID: 37457699 PMCID: PMC10346844 DOI: 10.3389/fimmu.2023.1213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Head and neck cancer (HNC) ranks as the sixth most prevalent type of cancer globally and accounts for about 4% of all types of cancer. Among all HNC, most are head and neck squamous cell carcinoma (HNSCC) with clinical therapies that include surgery, radiation therapy, chemotherapy, immunotherapy, targeted therapy, and multimodal treatments. In recent years, chimeric antigen receptor (CAR)-T cell immunotherapy has significantly transformed the therapeutic approaches for leukemia and lymphoma and has garnered increased attention as a potential treatment for a wide range of cancers. However, CAR-T immunotherapy in solid tumors, especially HNSCCs, lags significantly behind due to the paucity of tumor-specific antigens, high levels of tumor heterogeneity, immunosuppressive tumor microenvironment, the risk of treatment-related toxicities and off-target adverse events in HNSCCs. The objective of this review is to explore the advancement of CAR-T cell therapy in the treatment of HNSCCs. We aim to outline the targeted antigens in HNSCCs, highlight the challenges and potential solutions, and discuss the relevant combination therapies. Our review presents a comprehensive overview of the recent developments in CAR-T cell therapy for HNSCCs, and provides valuable insights into future research avenues.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yi Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Haotian Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
46
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
47
|
Sen P, Ghosh SS. The Intricate Notch Signaling Dynamics in Therapeutic Realms of Cancer. ACS Pharmacol Transl Sci 2023; 6:651-670. [PMID: 37200816 PMCID: PMC10186364 DOI: 10.1021/acsptsci.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/20/2023]
Abstract
The Notch pathway is remarkably simple without the interventions of secondary messengers. It possesses a unique receptor-ligand interaction that imparts signaling upon cleavage of the receptor followed by the nuclear localization of its cleaved intracellular domain. It is found that the transcriptional regulator of the Notch pathway lies at the intersection of multiple signaling pathways that enhance the aggressiveness of cancer. The preclinical and clinical evidence supports the pro-oncogenic function of Notch signaling in various tumor subtypes. Owing to its oncogenic role, the Notch signaling pathway assists in enhanced tumorigenesis by facilitating angiogenesis, drug resistance, epithelial to mesenchymal transition, etc., which is also attributed to the poor outcome in patients. Therefore, it is extremely vital to discover a suitable inhibitor to downregulate the signal-transducing ability of Notch. The Notch inhibitory agents, such as receptor decoys, protease (ADAM and γ-secretase) inhibitors, and monoclonal/bispecific antibodies, are being investigated as candidate therapeutic agents. Studies conducted by our group exemplify the promising results in ablating tumorigenic aggressiveness by inhibiting the constituents of the Notch pathway. This review deals with the detailed mechanism of the Notch pathways and their implications in various malignancies. It also bestows us with the recent therapeutic advances concerning Notch signaling in the context of monotherapy and combination therapy.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
48
|
Harris JD, Chang Y, Syahirah R, Lian XL, Deng Q, Bao X. Engineered anti-prostate cancer CAR-neutrophils from human pluripotent stem cells. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2023; 20:100074. [PMID: 37089616 PMCID: PMC10121188 DOI: 10.1016/j.regen.2023.100074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Immunotherapy is a powerful technique where immune cells are modified to improve cytotoxicity against cancerous cells to treat cancers that do not respond to surgery, chemotherapy, or radiotherapy. Expressing chimeric antigen receptor (CAR) in immune cells, typically T lymphocytes, is a practical modification that drives an immune response against cancerous tissue. CAR-T efficacy is suboptimal in solid tumors due to the tumor microenvironment (TME) that limits T lymphocyte cytotoxicity. In this study, we demonstrate that neutrophils differentiated from human pluripotent stem cells modified with AAVS1-inserted CAR constructs showed a robust cytotoxic effect against prostate-specific membrane antigen (PSMA) expressing LNCaP cells as a model for prostate cancer in vitro. Our results suggest that engineered CAR can significantly enhance the neutrophil anti-tumor effect, providing a new avenue in treating prostate cancers.
Collapse
Affiliation(s)
- Jackson D. Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research. West Lafayette, IN 47907, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research. West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Deng
- Purdue University Institute for Cancer Research. West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research. West Lafayette, IN 47907, USA
| |
Collapse
|
49
|
Xiong X, Yu Y, Jin X, Xie D, Sun R, Lu W, Wei Y, Guo R, Zhao M. Functional Validation of the RQR8 Suicide /Marker Gene in CD19 CAR-T Cells and CLL1CAR-T Cells. Ann Hematol 2023; 102:1523-1535. [PMID: 37086278 DOI: 10.1007/s00277-023-05227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Chimeric antigen receptor T cell therapy (CAR-T) is a novel treatment that has produced unprecedented clinical effects in patients with hematological malignancies. Acute adverse events often occur following adoptive immunotherapy. Therefore, a suicide gene is helpful, which is a genetically encoded mechanism that allows selective destruction of adoptively transferred T cells in the face of unacceptable toxicity. RQR8 is a gene that integrates CD34 and CD20 epitopes. In our study, we incorporated the suicide gene RQR8 into CAR-T cells, so it enabled rituximab to eliminate vector/transgene-expressing T cells via antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity. In this work, we explored the functionality of RQR8 CAR-T cells in vitro and in vivo. We believe that RQR8 as a safety switch will make CAR-T cell therapy safer and less costly.
Collapse
Affiliation(s)
- Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
- Army Medical Center of PLA, Chong Qing, China
| | - Yibing Yu
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Yunxiong Wei
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China.
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
- Nankai University School of Medicine, Tianjin, China.
| |
Collapse
|
50
|
Faeq MH, Al-Haideri M, Mohammad TAM, Gharebakhshi F, Marofi F, Tahmasebi S, Modaresahmadi S. CAR-modified immune cells as a rapidly evolving approach in the context of cancer immunotherapies. Med Oncol 2023; 40:155. [PMID: 37083979 PMCID: PMC10119530 DOI: 10.1007/s12032-023-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Nowadays, one of the main challenges clinicians face is malignancies. Through the progression of technology in recent years, tumor nature and tumor microenvironment (TME) can be better understood. Because of immune system involvement in tumorigenesis and immune cell dysfunction in the tumor microenvironment, clinicians encounter significant challenges in patient treatment and normal function recovery. The tumor microenvironment can stop the development of tumor antigen-specific helper and cytotoxic T cells in the tumor invasion process. Tumors stimulate the production of proinflammatory and immunosuppressive factors and cells that inhibit immune responses. Despite the more successful outcomes, the current cancer therapeutic approaches, including surgery, chemotherapy, and radiotherapy, have not been effective enough for tumor eradication. Hence, developing new treatment strategies such as monoclonal antibodies, adaptive cell therapies, cancer vaccines, checkpoint inhibitors, and cytokines helps improve cancer treatment. Among adoptive cell therapies, the interaction between the immune system and malignancies and using molecular biology led to the development of chimeric antigen receptor (CAR) T cell therapy. CAR-modified immune cells are one of the modern cancer therapeutic methods with encouraging outcomes in most hematological and solid cancers. The current study aimed to discuss the structure, formation, subtypes, and application of CAR immune cells in hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Mohammed Hikmat Faeq
- Student of General Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysoon Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Pharmacology, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shadan Modaresahmadi
- Department of Immunology and Biotechnology, Texas Tech University Health Siences Center, Abilene, TX, USA
| |
Collapse
|