1
|
Salem HR, Hegazy GA, Abdallah R, Abo-Elsoud RAA. Protective role of vitamin D3 in a rat model of hyperthyroid-induced cardiomyopathy. J Tradit Complement Med 2023; 13:277-284. [PMID: 37128195 PMCID: PMC10148126 DOI: 10.1016/j.jtcme.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background and aim Several studies have reported the cardioprotective effect of vitamin D. Thus, this study aimed to investigate the possible cardioprotective effect of vitamin D3 in hyperthyroid-induced cardiomyopathy rat model. Experimental procedure Rats were divided into 3 groups: control group; hyperthyroid group, rats were administrated l-thyroxine sodium daily for 4 weeks; and hyperthyroid + vitamin D3 treated group, rats were treated with l-thyroxine sodium for 4 weeks daily, and received the vitamin D3 for the same duration. After 4 weeks, electrocardiogram (ECG) was recorded. Then, blood samples were collected for biochemical analysis. After that, the final body weight was measured, and the rats were sacrificed. Finally, the hearts were excised, weighed and were prepared for histological examination by hematoxylin and eosin, and immunohistochemistry assessment of caspase-3 and proliferating cell nuclear antigen (PCNA). Results Hyperthyroid rats showed significant ECG changes, increased serum levels of cardiac biomarkers, fibroblast growth factor-23 (FGF23), malondialdehyde, antioxidant enzymes, tumor necrosis factor-alpha (TNF-α) and relative heart weight compared with the control rats. Vitamin D3 coadministration with l-thyroxine resulted in significant improvement in thyroid profile, ECG parameters, significant decrease of cardiac biomarkers, FGF23, malondialdehyde, TNF-α and relative heart weight, and significant decrease of the antioxidant enzymes compared with the hyperthyroid rats. The histological study was consistent with the biochemical results. Hyperthyroid rats showed upregulation of caspase-3 and PCNA in the myocardium compared with control group. Vitamin D3 treated rats showed downregulation of caspase-3 and PCNA. Conclusion Vitamin D3 provides cardioprotective effects in hyperthyroid rats.
Collapse
|
2
|
Alshaibi HF, Bakhashab S, Almuhammadi A, Althobaiti YS, Baghdadi MA, Alsolami K. Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats. Curr Issues Mol Biol 2023; 45:479-489. [PMID: 36661517 PMCID: PMC9857557 DOI: 10.3390/cimb45010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-504687127
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Wu X, Zhou X, Lai S, Liu J, Qi J. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J 2022; 36:e22505. [PMID: 35971779 DOI: 10.1096/fj.202200543rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
The hallmark feature of Diabetes mellitus (DM) is hyperglycemia which can lead to excess production of reactive oxygen species (ROS) in the myocardium, contributing to diabetic cardiomyopathy (DCM). Nuclear factor erythroid2-related factor2 (Nrf2), a transcriptional activator, enhances its ability to resist oxidative stress by activating multiple downstream anti-oxidants, anti-inflammatory proteins, and detoxifying enzymes. However, the mechanism of Nrf2 signaling in HG-induced DCM is unclear. In this study, we used HG pretreated H9c2 cells as the experimental basis in vitro, and established a high fat-diet, streptozotocin (STZ) induced Type 2 diabetic rat model in vivo. Meanwhile, we used shRNA-Nrf2 and curcumin (CUR) (as an activator) to affect H9c2 cells, to verify the role of the Nrf2 signaling pathway in DCM. The results showed that the excessive production of ROS caused by HG, which could inhibit the activation of Nrf2-related signaling, resulting in a decrease in cell energy metabolism and an increase in cell apoptosis. Surprisingly, we found that the activation of the Nrf2 signaling pathway significantly increased cardiomyocyte viability, reduced ROS formation, increased antioxidant enzyme activity, and inhibited cardiomyocyte apoptosis. In conclusion, these findings conclusively infer that CUR activation of the Nrf2/HO-1 signaling pathway exerts myocardial protection by reducing ROS formation.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueliang Zhou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Songqing Lai
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jichun Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jianwei Qi
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Alrefaie Z, Awad H, Alsolami K, Hamed EA. Uncoupling proteins: are they involved in vitamin D3 protective effect against high-fat diet-induced cardiac apoptosis in rats? Arch Physiol Biochem 2022; 128:438-446. [PMID: 31794287 DOI: 10.1080/13813455.2019.1690526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to assess the impact of high-fat diet (HFD) and vitamin D3 supplementation on cardiac apoptosis, inflammation, oxidative stress, and cardiac uncoupling proteins (UCPs) 2&3 expression. Forty rats were fed either (45%) or (10%) fat diet with or without vitamin D3 (500 U/kg/day) for 6 months, then cardiac tissue expression of Bax, Bcl2, Fas, Fas-L (markers for apoptotic pathways), TNF-α, MDA7, GPX1 (inflammatory and oxidative markers) and UCP 2&3 were assessed. Results revealed the enhancement of intrinsic and extrinsic cardiomyocyte apoptosis cascades and increased inflammatory and oxidative burdens on the heart in HFD rats. Downregulation of UCP2 and upregulation of UCP3 gene expression at 6 months. After vitamin D3 supplementation with HFD, cardiac apoptotic, inflammatory and oxidative markers were mitigated and expression of UCP3 was downregulated and UCP2 was upregulated. This work highlights the novel cardioprotective effect of vitamin D3 in the experimental model of HFD feeding through the downregulation of UCP3.
Collapse
Affiliation(s)
- Zienab Alrefaie
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam Awad
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadeejah Alsolami
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas A Hamed
- Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Wang YM, Mi SL, Jin H, Guo QL, Yu ZY, Wang JT, Zhang XM, Zhang Q, Wang NN, Huang YY, Zhou HG, Guo JC. 9-PAHSA Improves Cardiovascular Complications by Promoting Autophagic Flux and Reducing Myocardial Hypertrophy in Db/Db Mice. Front Pharmacol 2021; 12:754387. [PMID: 34867366 PMCID: PMC8634679 DOI: 10.3389/fphar.2021.754387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is a common and severe complication of diabetes. There is a large need to identify the effective and safety strategies on diabetic cardiovascular disease (DCVD). 9-PAHSA is a novel endogenous fatty acid, and has been reported to reduce blood glucose levels and attenuate inflammation. We aim to evaluate the effects of 9-PAHSA on DCVD and investigate the possible mechanisms underlying it. Firstly, serum 9-PAHSA levels in human were detected by HPLC-MS/MS analysis. Then 9-PAHSA was synthesized and purified. The synthesized 9-PAHSA was gavaged to db/db mice with 50 mg/kg for 4 weeks. The carotid arterial plaque and cardiac structure was assessed by ultrasound. Cardiac autophagy was tested by western blot analysis, electron microscope and iTRAQ. The results showed that 9-PAHSA, in patients with type 2 diabetes mellitus (T2DM), was significantly lower than that in non-diabetic subjects. Administration of 9-PAHSA for 2 weeks reduced blood glucose levels. Ultrasound observed that continue administration of 9-PAHSA for 4 weeks ameliorated carotid vascular calcification, and attenuated myocardial hypertrophy and dysfunction in db/db mice. Electron microscopy showed continue 9-PAHSA treatment significantly increased autolysosomes, while dramatically decreased greases in the myocardial cells of the db/db mice. Moreover, iTRAQ analysis exhibited that continue 9-PAHSA treatment upregulated BAG3 and HSPB8. Furthermore, western blot analysis confirmed that 9-PAHSA down-regulated Akt/mTOR and activated PI3KIII/BECN1 complex in diabetic myocardium. Thus, 9-PAHSA benefits DCVD in diabetic mice by ameliorating carotid vascular calcification, promoting autophagic flux and reducing myocardial hypertrophy.
Collapse
Affiliation(s)
- Yan-Mei Wang
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Shou-Ling Mi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jin
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi-Lin Guo
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai & State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhong-Yu Yu
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xiao-Ming Zhang
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Qian Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai & State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Na-Na Wang
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yan-Yan Huang
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Hou-Guang Zhou
- Department of Geriatrics of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Jing-Chun Guo
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai & State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mendes AKB, Sulis PM, Cavalari FC, Padilla DPR, Aragón M, Gaspar JM, Silva FRMB. 1α,25-(OH) 2 vitamin D 3 prevents insulin resistance and regulates coordinated exocytosis and insulin secretion. J Nutr Biochem 2021; 99:108864. [PMID: 34606907 DOI: 10.1016/j.jnutbio.2021.108864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Vitamin D3 is associated with improvements in insulin resistance and glycemia. In this study, we investigated the short-term effect of 1α,25(OH)2 Vitamin D3 (1,25-D3) and cholecalciferol (vitamin D3) on the glycemia and insulin sensitivity of control and dexamethasone-induced insulin-resistance rats. 45Ca2+ influx responses to 1,25-D3 and its role in insulin secretion were investigated in isolated pancreatic islets from control rats. In vivo, 5 d treatment with 1,25-D3 (i.p.) prevented insulin resistance in dexamethasone-treated rats. Treatment with 1,25-D3 improved the activities of hepatic enzymes, serum lipids and calcium concentrations in insulin-resistant rats. 25-D3 (o.g.) does not affect insulin resistance. In pancreatic islets, 1,25-D3 increased insulin secretion and stimulated rapid response 45Ca2+ influx. The stimulatory effect of 1,25-D3 on 45Ca2+ influx was decreased by diazoxide, apamine, thapsigargin, dantrolene, 2-APB, nifedipine, TEA, PKA, PKC, and cytoskeleton inhibitor, while it was increased by glibenclamide and N-ethylmaleimide. The stimulatory effect of 1,25-D3 on 45Ca2+ influx involves the activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels, which augment cytosolic calcium. These ionic changes mobilize calcium from stores and downstream activation of PKC, PKA tethering vesicle traffic and fusion at the plasma membrane for insulin secretion. This is the first study highlighting the unprecedented role of 1,25-D3 (short-term effect) in the regulation of glucose homeostasis and on prevention of insulin resistance. Furthermore, this study shows the intracellular β-cell signal transduction of 1,25-D3 through the modulation of pivotal ionic channels and proteins exhibiting a coordinated exocytosis of vesicles for insulin secretion.
Collapse
Affiliation(s)
- Ana Karla Bittencourt Mendes
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Paola Miranda Sulis
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Fernanda Carvalho Cavalari
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Diana Patricia Rey Padilla
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Bogotá, D. C., Colombia
| | - Marcela Aragón
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Bogotá, D. C., Colombia
| | - Joana Margarida Gaspar
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil.
| |
Collapse
|
7
|
Xiu L, Yao XA, Jiang T. Correlation Between 25-Hydroxyvitamin D Level and Cardiac Diastolic Dysfunction in Chinese Adults with Early-Onset Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2021; 14:1823-1831. [PMID: 33953582 PMCID: PMC8089088 DOI: 10.2147/dmso.s299422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Chinese adults with early-onset type 2 diabetes mellitus have impaired diastolic function. This study aims to analyse the association between serum vitamin D levels and cardiac diastolic dysfunction in Chinese adults with early-onset type 2 diabetes mellitus. PATIENTS AND METHODS We enrolled Chinese adults with early-onset type 2 diabetes mellitus in this study. These patients were divided into two groups: those with diastolic dysfunction and those without diastolic dysfunction. We then compared the levels of serum 25-hydroxyvitamin D [25-(OH)D] between the two groups. The correlation between diastolic function and 25-(OH)D was evaluated by Pearson correlation analysis. Finally, binary logistic regression was used to analyse the relationship between the decrease in diastolic function and 25-(OH)D and other indexes in Chinese adults with early-onset type 2 diabetes mellitus. RESULTS The level of 25-(OH)D in patients with early-onset type 2 diabetes mellitus complicated with cardiac diastolic dysfunction was significantly lower than that in patients without cardiac diastolic dysfunction (P<0.01). The degree of liver fibrosis in adult patients with early-onset type 2 diabetes mellitus complicated with diastolic dysfunction was significantly higher than that in adult patients without diastolic dysfunction (P<0.01). Moreover, decreased 25-(OH)D levels were associated with decreased diastolic function in adults with early-onset type 2 diabetes. CONCLUSION 25-(OH)-D was identified as an independent predictor of decreased diastolic function in adults with early-onset type 2 diabetes. The serum 25-(OH)D level in adults with early-onset type 2 diabetes was significantly reduced. 25-(OH)D influences the reduction in diastolic function in adults with early-onset type 2 diabetes and can be used as a predictor of decreased diastolic function in such patients.
Collapse
Affiliation(s)
- Lei Xiu
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Xiao-ai Yao
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Tao Jiang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
- Correspondence: Tao Jiang Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu, Yang Fang Dian, Beijing, 100038, People’s Republic of ChinaTel/Fax +86-10-63926692 Email
| |
Collapse
|
8
|
Gorman S, Weller RB. Investigating the Potential for Ultraviolet Light to Modulate Morbidity and Mortality From COVID-19: A Narrative Review and Update. Front Cardiovasc Med 2020; 7:616527. [PMID: 33426009 PMCID: PMC7786057 DOI: 10.3389/fcvm.2020.616527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
During the COVID-19 (coronavirus disease of 2019) pandemic, researchers have been seeking low-cost and accessible means of providing protection from its harms, particularly for at-risk individuals such as those with cardiovascular disease, diabetes and obesity. One possible way is via safe sun exposure, and/or dietary supplementation with induced beneficial mediators (e.g., vitamin D). In this narrative review, we provide rationale and updated evidence on the potential benefits and harms of sun exposure and ultraviolet (UV) light that may impact COVID-19. We review recent studies that provide new evidence for any benefits (or otherwise) of UV light, sun exposure, and the induced mediators, vitamin D and nitric oxide, and their potential to modulate morbidity and mortality induced by infection with SARS-CoV-2 (severe acute respiratory disease coronavirus-2). We identified substantial interest in this research area, with many commentaries and reviews already published; however, most of these have focused on vitamin D, with less consideration of UV light (or sun exposure) or other mediators such as nitric oxide. Data collected to-date suggest that ambient levels of both UVA and UVB may be beneficial for reducing severity or mortality due to COVID-19, with some inconsistent findings. Currently unresolved are the nature of the associations between blood 25-hydroxyvitamin D and COVID-19 measures, with more prospective data needed that better consider lifestyle factors, such as physical activity and personal sun exposure levels. Another short-coming has been a lack of measurement of sun exposure, and its potential to influence COVID-19 outcomes. We also discuss possible mechanisms by which sun exposure, UV light and induced mediators could affect COVID-19 morbidity and mortality, by focusing on likely effects on viral pathogenesis, immunity and inflammation, and potential cardiometabolic protective mechanisms. Finally, we explore potential issues including the impacts of exposure to high dose UV radiation on COVID-19 and vaccination, and effective and safe doses for vitamin D supplementation.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Richard B. Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Eid RA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, El-Sayed F, Otifi H, Alqahtani S, Asiri ZA, Aldera H. Fas/FasL-mediated cell death in rat's diabetic hearts involves activation of calcineurin/NFAT4 and is potentiated by a high-fat diet rich in corn oil. J Nutr Biochem 2019; 68:79-90. [PMID: 31030170 DOI: 10.1016/j.jnutbio.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
Abstract
This study investigated if calcineurin/nuclear factor of activated T cells (NFAT) axis mediates the cardiac apoptosis in rats with type 1 diabetes mellitus (T1DM)-induced rats or administered chronically high-fat diet rich in corn oil (CO-HFD). Also, it investigated the impact of chronic administration of CO-HFD on Fas/Fas ligand (Fas/FasL)-induced apoptosis in the hearts of T1DM-induced rats. Adult male Wistar rats (140-160 g) were classified as control: (10% fat) CO-HFD: (40% fat), T1DM, and T1DM + CO-HFD (n=20/each). In vitro, cardiomyocytes were cultured in either low glucose (LG) or high glucose (HG) media in the presence or absence of linoleic acid (LA) and other inhibitors. Compared to the control, increased reactive oxygen species (ROS), protein levels of cytochrome C, cleaved caspase-8 and caspase-3, myocardial damage and impeded left ventricular (LV) function were observed in the hearts of all treated groups and maximally in T1DM + CO-HFD-treated rats. mRNA of all NFAT members (NFAT1-4) were not affected by any treatment. CO-HFD or LA significantly up-regulated Fas levels in both LVs and cultured cardiomyocytes in a ROS dependent mechanism and independent of modulating intracellular Ca2+ levels or calcineurin activity. T1DM or hyperglycemia significant up-regulated mRNA and protein levels of Fas and FasL by activating Ca2+/calcineurin/NFAT-4 axis. Furthermore, Fas/FasL cell death induced by recombinant FasL (rFasL) or HG media was enhanced by pre-incubating the cells with LA. In conclusion, activation of the Ca2+/calcineurin/NFAT4 axis is indispensable for hyperglycemia-induced Fas/FasL cell death in the cardiomyocytes and CO-HFD sensitizes this by up-regulation of Fas.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha,61421, Saudi Arabia.
| | - Mahmoud A Alkhateeb
- Department of basic medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia; Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy El-Sayed
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha,61421, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha,61421, Saudi Arabia
| | - Sultan Alqahtani
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ziad A Asiri
- Department of clinical biochemistry, Central Laboratory Department, Asser central Hospital, Abha, Saudi Arabia
| | - Hussain Aldera
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
10
|
Mohammed NA, El-Malkey NF, Ibrahim AAS, Abdullah DM. Vitamin D3 supplementation ameliorates ovariectomy-induced cardiac apoptotic and structural changes in adult albino rats. Can J Physiol Pharmacol 2019; 97:647-654. [PMID: 30856341 DOI: 10.1139/cjpp-2018-0674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of vitamin D on cardiac dysfunction after menopause is still under investigation. Therefore, we investigated the effect of vitamin D3 on cardiac apoptotic and structural changes in ovariectomized rats. Forty adult female albino rats were divided into 4 equal groups: sham rats, sham rats treated with vitamin D3, ovariectomized rats, and ovariectomized rats treated with vitamin D3 (500 IU/kg per day for 6 weeks, orally). Body mass, blood pressure, heart rate, and whole heart mass (WHM) were measured. Serum soluble receptors of advanced glycation end products (sRAGE), C-reactive protein, malondialdehyde, and total antioxidant capacity were estimated. Cardiac sections were stained with haematoxylin-eosin and Masson's trichrome stain. Fas and FasL apoptosis-related proteins were detected by immunohistochemistry. Vitamin D3 treatment significantly decreased ovariectomy-induced cardiac Fas and FasL apoptosis-related proteins, whole heart mass, body mass, C-reactive protein, and malondialdehyde accompanied by decreased inflammation and reduced collagen deposition between cardiac muscle fibres. However, vitamin D3 significantly increased total antioxidant capacity and sRAGE in ovariectomized and sham treated groups. Our findings suggest that vitamin D3 treatment can prevent ovariectomy-induced cardiac structural and apoptotic changes in rats via increasing sRAGE and antioxidant activity. Our results suggest that vitamin D3 has therapeutic effect against postmenopausal cardiovascular disease.
Collapse
Affiliation(s)
| | - Nanees F El-Malkey
- a Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Doaa M Abdullah
- c Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
El-Mansi AA, Al-Kahtani MA. Calcitriol and Punica Granatum Extract Concomitantly Attenuate Cardiomyopathy of Diabetic Mother Rats and Their Neonates via Activation of Raf/MEK/ERK Signalling and Mitigation of Apoptotic Pathways. Folia Biol (Praha) 2019; 65:70-87. [PMID: 31464183 DOI: 10.14712/fb2019065020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We investigated the detrimental effects of diabetes on myocardium of pregestational streptozotocin (STZ)-diabetic mother rats and their neonates via evaluations of oxidative redox, inflammatory and apoptotic pathways, also aiming to characterize whether calcitriol and/or pomegranate peel extract confer myocardial protection in hyperglycaemic dams and their foetuses via modulation of the Raf/MEK/ERK cascade. Sixty Sprague-Dawley female rats were randomized into five groups (N = 12): control, diabetic, diabetic treated with calcitriol and/or pomegranate peel extract (PPE), and mated with non-diabetic healthy males. After confirmation of pregnancy, treatments were kept until gestational day (E-18). Serum and cardiac tissues of mothers and foetuses were collected and processed for biochemical, histopathological, and molecular assessments. We observed that, compared to the control, diabetic mothers showed dramatically increased hyperglycaemia and hyperlipidaemia associated with decreased myocardial functions and disrupted maternal performance. Also, diabetic mothers and their neonates exhibited elevated levels of myocardial injury (troponin I, endothelin 1, creatine kinase-MB, lactate dehydrogenase), with increased pro-inflammatory cytokines (interleukin 1, interleukin 1β, transforming growth factor β) and oxidative redox. Concurrently, the MAPK pathway was significantly down-regulated with increased myocardial apoptotic activity. Furthermore, mRNA expression of angiogenic and fibrotic markers was significantly increased. Paradoxically, calcitriol and/or pomegranate peel extract alleviated these diabetic myocardial insults and normalized the aforementioned assayed parameters. Our findings hypothesized that calcitriol and/or pomegranate peel extract exerted cardioameliorative impacts due to their unique anti-oxidative and anti-inflammatory properties, and thus may be a promising treatment that directly targets the secondary myocardial complications of diabetes in dams and their offspring.
Collapse
Affiliation(s)
- A A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Abdel-Mageid AD, Abou-Salem MES, Salaam NMHA, El-Garhy HAS. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:126-134. [PMID: 29747745 DOI: 10.1016/j.phymed.2018.04.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/07/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Modified herbal medicines implicate the combination of several therapeutic practices of native systems of medicine that may extend many earlier generations, which frequently afford valuable therapeutic benefits. PURPOSE In this study, the role of nano-curcumin and aged garlic extract (AGE) as two modified phytomedicines on alleviating both of advanced glycation end products (AGEPs) and oxidative stress (OS) in streptozotocin (STZ) induced diabetic rats were investigated during this study. METHOD Nano-curcumin and AGE suspension were orally administrated at a dose of 300, 500 mg/kg body weight respectively. Serum glucose, insulin, total cholesterol, triglycerides and myocardial enzyme activities including creatine kinase-isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were determined biochemically, while quantitative real-time polymerase chain reaction (qRT-PCR)-test had been used to determine relative of manganese-superoxide dismutase (Mn-SOD) and receptor for advanced glycation end products (RAGE) gene expressions in the heart tissue of rats. Structure of rat's heart tissue was examined by histopathological analysis (H&E). RESULTS AGE increased the body weight and insulin concentration, while, it decreased serum glucose concentration, CK-MB, and LDH enzyme activities in comparing with the diabetic group. In addition, total cholesterol, triglycerides, and AST didn't show any significant changes in serum values of AGE compared to diabetic rats. Nano-curcumin suspension decreased the serum levels of triglycerides, CK- MB, LDH, and AST. While, there were non-significant changes in the body weight, glucose, insulin, and total cholesterol level of the same group compared with the STZ- untreated induced diabetic rats. The transcript quantity of manganese-superoxide dismutase gene (Mn-SOD) was highly accumulated (3.25 and 3.87-fold) in the heart tissue sample of the induced diabetic rats in response to both nano-Curcumin and AGE suspension respectively. While AGE was the most potent treatment where it caused down regulation of the receptor for advanced glycation end products gene (RAGE) expression (1.79-fold). Results of histopathological analyses under the light microscope showed restoring the structural integrity of the myocytes towards normalization in diabetic hearts treated with each of nano-curcumin and AGE suspension compared with the untreated diabetic heart samples. CONCLUSION Nano-curcumin and AGE suspension have a great therapeutic potential in the treatment of DCM, Diabetic cardiomyopathy, by attenuating cardiac inflammation, myocardial fibrosis, and programmed myocardial cell deaths through inhibiting OS and AGEPs accumulation in diabetic heart tissue. Furthermore, the hypoglycemic antioxidant properties of AGE resulted in more potent therapeutic effect than nano-curcumin in the treatment of diabetic hearts.
Collapse
Affiliation(s)
- Afaf D Abdel-Mageid
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Mohamed E S Abou-Salem
- Department of Forensic Medicine and Toxicology, Faculty of Vet. Med., Benha University, Moshtohor, Tukh, Qalubia, Egypt
| | - Nancy M H A Salaam
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Hoda A S El-Garhy
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalubia, Egypt.
| |
Collapse
|