1
|
Ishii M, Yamaguchi Y, Takada K, Hamaya H, Ogawa S, Akishita M. Effect of decreased expression of latent TGF-β binding proteins 4 on the pathogenesis of emphysema as an age-related disease. Arch Gerontol Geriatr 2024; 127:105597. [PMID: 39121531 DOI: 10.1016/j.archger.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Latent TGF-β binding protein 4 (LTBP4) is involved in the production of elastin fibers and has been implicated in LTBP4-related cutis laxa and its complication, emphysema-like changes. Various factors have been implicated in the pathogenesis of emphysema, including elastic degeneration, inflammation, cellular senescence, mitochondrial dysfunction, and decreased angiogenesis in the lungs. We investigated the association between LTBP4 and emphysema using human lung fibroblasts with silenced LTBP4 genes. METHODS Cell contraction, elastin expression, cellular senescence, inflammation, anti-inflammatory factors, and mitochondrial function were compared between the LTBP4 small interfering RNA (siRNA) and control siRNA. RESULTS Under the suppression of LTBP4, significant changes were observed in the following: decreased cell contractility, decreased elastin expression, increased expression of the p16 gene involved in cellular senescence, increased TNFα, decreased GSTM3 and SOD, decreased mitochondrial membrane potential, and decreased VEGF expression. Furthermore, the decreased cell contractility and increased GSTM3 expression observed under LTBP4 suppression were restored by the addition of N-acetyl-L-cysteine or recombinant LTBP4. CONCLUSION The decreased elastin expression, cellular senescence, inflammation, decreased antioxidant activity, mitochondrial dysfunction, and decreased VEGF expression under reduced LTBP4 expression may all be involved in the destruction of the alveolar wall in emphysema. Smoking is the most common cause of emphysema; however, genetic factors related to LTBP4 expression and other factors may also contribute to its pathogenesis.
Collapse
Affiliation(s)
- Masaki Ishii
- The Department of Geriatric Medicine, The University of Tokyo, Japan.
| | - Yasuhiro Yamaguchi
- Division of Department of Respiratory Medicine, Jichi Medical University Saitama Medical Center, Japan
| | - Kazufumi Takada
- The Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Hironobu Hamaya
- The Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Japan
| | - Sumito Ogawa
- The Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Masahiro Akishita
- The Department of Geriatric Medicine, The University of Tokyo, Japan; The Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Japan
| |
Collapse
|
2
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
3
|
Tian M, Li F, Pei H, Liu X, Nie H. The role of the cGAS-STING pathway in chronic pulmonary inflammatory diseases. Front Med (Lausanne) 2024; 11:1436091. [PMID: 39540037 PMCID: PMC11557406 DOI: 10.3389/fmed.2024.1436091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system. Consequently, the regulation of the cGAS-STING pathway has become a prominent area of interest in the treatment of many diseases. Chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis, are characterized by persistent or recurrent lung inflammation and tissue damage, leading to diminished respiratory function. This paper explores the mechanism of action of the cGAS-STING signaling pathway in these diseases, examines the development of STING inhibitors and nanomaterial applications, and discusses the potential clinical application prospects of targeting the cGAS-STING pathway in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
5
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Del Duca E, Dahabreh D, Kim M, Bar J, Da Rosa JC, Rabinowitz G, Facheris P, Gómez-Arias PJ, Chang A, Utti V, Chowdhury A, Liu Y, Estrada YD, Laculiceanu A, Agache I, Guttman-Yassky E. Transcriptomic evaluation of skin tape-strips in children with allergic asthma uncovers epidermal barrier dysfunction and asthma-associated biomarkers abnormalities. Allergy 2024; 79:1516-1530. [PMID: 38375886 PMCID: PMC11247382 DOI: 10.1111/all.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tape-strips, a minimally invasive method validated for the evaluation of several skin diseases, may help identify asthma-specific biomarkers in the skin of children with allergic asthma. METHODS Skin tape-strips were obtained and analyzed with RNA-Seq from children with moderate allergic asthma (MAA) (n = 11, mean age 7.00; SD = 1.67), severe allergic asthma (SAA) (n = 9, mean age 9.11; SD = 2.37), and healthy controls (HCs) (n = 12, mean age 7.36; SD = 2.03). Differentially expressed genes (DEGs) were identified by fold change ≥2 with a false discovery rate <0.05. Transcriptomic biomarkers were analyzed for their accuracy in distinguishing asthma from HCs, their relationships with asthma-related outcomes (exacerbation rate, lung function-FEV1, IOS-R5-20, and lung inflammation-FeNO), and their links to skin (barrier and immune response) and lung (remodeling, metabolism, aging) pathogenetic pathways. RESULTS RNA-Seq captured 1113 in MAA and 2117 DEGs in SAA. Epidermal transcriptomic biomarkers for terminal differentiation (FLG/filaggrin), cell adhesion (CDH19, JAM2), lipid biosynthesis/metabolism (ACOT2, LOXL2) were significantly downregulated. Gene set variation analysis revealed enrichment of Th1/IFNγ pathways (p < .01). MAA and SAA shared downregulation of G-protein-coupled receptor (OR4A16, TAS1R3), upregulation of TGF-β/ErbB signaling-related (ACVR1B, EGFR, ID1/2), and upregulation of mitochondrial-related (HIGD2A, VDAC3, NDUFB9) genes. Skin transcriptomic biomarkers correlated with the annualized exacerbation rate and with lung function parameters. A two-gene classifier (TSSC4-FAM212B) was able to differentiate asthma from HCs with 100% accuracy. CONCLUSION Tape-strips detected epithelial barrier and asthma-associated signatures in normal-appearing skin from children with allergic asthma and may serve as an alternative to invasive approaches for evaluating asthma endotypes.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Dante Dahabreh
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Madeline Kim
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Jonathan Bar
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Grace Rabinowitz
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pedro Jesús Gómez-Arias
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Annie Chang
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Vivian Utti
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Amira Chowdhury
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Yeriel D. Estrada
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Alexandru Laculiceanu
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Ioana Agache
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Wrotek A, Badyda A, Jackowska T. Molecular Mechanisms of N-Acetylcysteine in RSV Infections and Air Pollution-Induced Alterations: A Scoping Review. Int J Mol Sci 2024; 25:6051. [PMID: 38892239 PMCID: PMC11172664 DOI: 10.3390/ijms25116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
N-acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties. The respiratory syncytial virus (RSV) is one of the most important etiological factors of lower respiratory tract infections, and exposure to air pollution appears to be additionally associated with higher RSV incidence and disease severity. We aimed to systematically review the existing literature to determine which molecular mechanisms mediate the effects of NAC in an RSV infection and air pollution, and to identify the knowledge gaps in this field. A search for original studies was carried out in three databases and a calibrated extraction grid was used to extract data on the NAC treatment (dose, timing), the air pollutant type, and the most significant mechanisms. We identified only 28 studies conducted in human cellular models (n = 18), animal models (n = 7), and mixed models (n = 3). NAC treatment improves the barrier function of the epithelium damaged by RSV and air pollution, and reduces the epithelial permeability, protecting against viral entry. NAC may also block RSV-activated phosphorylation of the epidermal growth factor receptor (EGFR), which promotes endocytosis and facilitates cell entry. EGFR also enhances the release of a mucin gene, MUC5AC, which increases mucus viscosity and causes goblet cell metaplasia; the effects are abrogated by NAC. NAC blocks virus release from the infected cells, attenuates the cigarette smoke-induced shift from necrosis to apoptosis, and reverses the block in IFN-γ-induced antiviral gene expression caused by the inhibited Stat1 phosphorylation. Increased synthesis of pro-inflammatory cytokines and chemokines is induced by both RSV and air pollutants and is mediated by the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that are activated in response to oxidative stress. MCP-1 (monocyte chemoattractant protein-1) and RANTES (regulated upon activation, expressed and secreted by normal T cells) partially mediate airway hyperresponsiveness (AHR), and therapeutic (but not preventive) NAC administration reduces the inflammatory response and has been shown to reduce ozone-induced AHR. Oxidative stress-induced DNA damage and cellular senescence, observed during RSV infection and exposure to air pollution, can be partially reversed by NAC administration, while data on the emphysema formation are disputed. The review identified potential common molecular mechanisms of interest that are affected by NAC and may alleviate both the RSV infection and the effects of air pollution. Data are limited and gaps in knowledge include the optimal timing or dosage of NAC administration, therefore future studies should clarify these uncertainties and verify its practical use.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Artur Badyda
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
9
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
10
|
Li CL, Liu JF, Liu SF. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines 2024; 12:814. [PMID: 38672169 PMCID: PMC11048013 DOI: 10.3390/biomedicines12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory disorder characterized by persistent airflow limitation and chronic inflammation. In recent years, the role of mitochondrial dysfunction in COPD pathogenesis has emerged as a focal point of investigation. This review endeavors to unravel the molecular nexus between mitochondrial dysfunction and COPD, delving into the intricate interplay of oxidative stress, bioenergetic impairment, mitochondrial genetics, and downstream cellular consequences. Oxidative stress, a consequence of mitochondrial dysfunction, is explored as a driving force behind inflammation, exacerbating the intricate cascade of events leading to COPD progression. Bioenergetic impairment sheds light on the systemic consequences of mitochondrial dysfunction, impacting cellular functions and contributing to the overall energy imbalance observed in COPD patients. This review navigates through the genetic landscape, elucidating the role of mitochondrial DNA mutations, variations, and haplogroups in COPD susceptibility and severity. Cellular consequences, including apoptosis, autophagy, and cellular senescence, are examined, providing insights into the intricate mechanisms by which mitochondrial dysfunction influences COPD pathology. Therapeutic implications, spanning antioxidant strategies, mitochondria-targeted compounds, and lifestyle modifications, are discussed in the context of translational research. Important future directions include identifying novel biomarkers, advancing mitochondria-targeted therapies, and embracing patient-centric approaches to redefine COPD management. This abstract provides a comprehensive overview of our review, offering a roadmap for understanding and addressing the molecular nexus between mitochondrial dysfunction and COPD, with potential implications for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Kong J, Fan R, Zhang Y, Jia Z, Zhang J, Pan H, Wang Q. Oxidative stress in the brain-lung crosstalk: cellular and molecular perspectives. Front Aging Neurosci 2024; 16:1389454. [PMID: 38633980 PMCID: PMC11021774 DOI: 10.3389/fnagi.2024.1389454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Jining, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Jining, China
| | - Yuanqi Zhang
- College of Sports Science, Qufu Normal University, Jining, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Huixin Pan
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
12
|
Maiorino E, De Marzio M, Xu Z, Yun JH, Chase RP, Hersh CP, Weiss ST, Silverman EK, Castaldi PJ, Glass K. Joint clinical and molecular subtyping of COPD with variational autoencoders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.19.23294298. [PMID: 38260473 PMCID: PMC10802661 DOI: 10.1101/2023.08.19.23294298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.
Collapse
Affiliation(s)
- Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Margherita De Marzio
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Jeong H. Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Robert P. Chase
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | | | | |
Collapse
|
13
|
Jin Y, Li Y, He S, Ge Y, Zhao Y, Zhu K, He A, Li S, Yan S, Cao C. ATM participates in fine particulate matter-induced airway inflammation through regulating DNA damage and DNA damage response. ENVIRONMENTAL TOXICOLOGY 2023; 38:2668-2678. [PMID: 37483094 DOI: 10.1002/tox.23901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The relationship between fine particulate matter (PM2.5) and chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease and asthma, have garnered public attention, while the detailed mechanisms of PM2.5-induced airway inflammation remain unclear. This study reveals that PM2.5 induces airway inflammation both in vivo and in vitro, and, moreover, identifies DNA damage and DNA damage repair (DDR) as results of this exposure. Ataxia telangiectasia-mutated heterozygous (ATM+/- ) and wild-type C57BL/6 (WT) mice were exposed to PM2.5. The results show that, following exposure to PM2.5, the number of neutrophils in broncho alveolar lavage fluid and the mRNA expression of CXCL-1 in lung tissues of the ATM+/- mice were lower than those of the WT mice. The mRNA expression of FANCD2 and FANCI were also down-regulated. Human bronchial epithelial (HBE) cells were transfected with ATM-siRNA to induce down-regulation of ATM gene expression and were subsequently stimulated with PM2.5. The results show that the mRNA expression of TNF-α decreased in the ATM-siRNA-transfected cells. The mRNA expression of CXCL-1 and CXCL-2 in peritoneal macrophages, derived from ATM-null mice in which experiments showed that the protein expression of FANCD2 and FANCI decreased, were also decreased after PM2.5 exposure in ATM-siRNA-transfected HBE cells. In conclusion, PM2.5-induced airway inflammation is alleviated in ATM+/- mice compared with WT mice. ATM promotes PM2.5-induced airway inflammation, which may be attributed to the regulation of DNA damage and DDR.
Collapse
Affiliation(s)
- Yan Jin
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yiting Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shiyi He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yijun Ge
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yun Zhao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ke Zhu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Yan
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
15
|
Tanino R, Tsubata Y, Hotta T, Okimoto T, Amano Y, Takechi M, Tanaka T, Akita T, Nagase M, Yamashita C, Wada K, Isobe T. Characterization of a spontaneous mouse model of mild, accelerated aging via ECM degradation in emphysematous lungs. Sci Rep 2023; 13:10740. [PMID: 37400563 DOI: 10.1038/s41598-023-37638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Emphysema limits airflow and causes irreversible progression of chronic obstructive pulmonary disease (COPD). Strain differences must be considered when selecting mouse models of COPD, owing to disease complexity. We previously reported that a novel C57BL/6JJcl substrain, the Mayumi-Emphysema (ME) mouse, exhibits spontaneous emphysema; however, the other characteristics remain unknown. We aimed to characterize the lungs of ME mice and determine their experimental availability as a model. ME mice had a lower body weight than the control C57BL/6JJcl mice, with a median survival time of ~80 weeks. ME mice developed diffused emphysema with respiratory dysfunction from 8 to 26 weeks of age, but did not develop bronchial wall thickening. Proteomic analyses revealed five extracellular matrix-related clusters in downregulated lung proteins in ME mice. Moreover, EFEMP2/fibulin-4, an essential extracellular matrix protein, was the most downregulated protein in the lungs of ME mice. Murine and human EFEMP2 were detected in the pulmonary artery. Furthermore, patients with mild COPD showed decreased EFEMP2 levels in the pulmonary artery when compared to those without COPD. The ME mouse is a model of mild, accelerated aging with low-inflammatory emphysema and respiratory dysfunction that progresses with age and pulmonary EFEMP2 decrease, similar to that observed in patients with mild COPD.
Collapse
Affiliation(s)
- Ryosuke Tanino
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan.
| | - Takamasa Hotta
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Tamio Okimoto
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Yoshihiro Amano
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Tetsuya Tanaka
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugoku Gakuen University, Okayama, Japan
| | - Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mamiko Nagase
- Department of Organ Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
16
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
18
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Wang W, Mei A, Qian H, Li D, Xu H, Chen J, Yang H, Min X, Li C, Cheng L, Chen J. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:129-137. [PMID: 36815056 PMCID: PMC9939668 DOI: 10.2147/copd.s393323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common diseases of the respiratory system. As the disease recurs, damage to the airways and lung tissue gradually worsens, leading to a progressive decline in lung function, affecting the patient's workforce and quality of life, and causing a huge social and economic burden. Diabetes is a common comorbidity of COPD and patients with COPD are at increased risk of developing diabetes, while hyperglycemia can also reduce lung function and contribute to the progression and poor prognosis of COPD. Glucagon-like peptide-1 receptor agonist (GLP-1RA) is a new type of hypoglycemic agent that has been shown to regulate blood glucose levels, reduce inflammatory responses and oxidative stress, and regulate lipid metabolism, among other effects. GLP-1RAs may benefit COPD patients by acting directly on the lung from mechanisms such as reducing the inflammatory response, improving oxidative stress, regulating protease/anti-protease imbalance, improving airway mucus homeostasis, and reducing airway remodeling. This study provides a review of the potential role of GLP-1RAs in COPD and offers new ideas for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Wenwen Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Li Cheng
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, People’s Republic of China
- Institute of Virology, Hubei University of Medicine, Shiyan, Hubei, 442000, People’s Republic of China
| |
Collapse
|
20
|
Amado CA, Martín-Audera P, Agüero J, Lavín BA, Guerra AR, Boucle D, Ferrer-Pargada D, Berja A, Martín F, Casanova C, García-Unzueta M. Circulating levels of mitochondrial oxidative stress-related peptides MOTS-c and Romo1 in stable COPD: A cross-sectional study. Front Med (Lausanne) 2023; 10:1100211. [PMID: 36844198 PMCID: PMC9944395 DOI: 10.3389/fmed.2023.1100211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Background MOTS-c and Romo1 are mitochondrial peptides that are modulated by oxidative stress. No previous studies have explored circulating levels of MOTS-c in patients with chronic obstructive pulmonary disease (COPD). Methods We enrolled 142 patients with stable COPD and 47 smokers with normal lung function in an observational cross-sectional study. We assessed serum levels of both MOTS-c and Romo1 and associated these findings with clinical characteristics of COPD. Results Compared with smokers with normal lung function, patients with COPD had lower levels of MOTS-c (p = 0.02) and higher levels of Romo1 (p = 0.01). A multivariate logistic regression analysis revealed that above-median MOTS-c levels were positively associated with Romo1 levels (OR 1.075, 95% CI 1.005-1.150, p = 0.036), but no association was found with other COPD characteristics. Below-median levels of circulating MOTS-c were associated with oxygen desaturation (OR 3.25 95% CI 1.456-8.522, p = 0.005) and walking <350 meters (OR 3.246 95% CI 1.229-8.577, p = 0.018) in six-minute walk test. Above-median levels of Romo1 were positively associated with current smoking (OR 2.756, 95% CI 1.133-6.704, p = 0.025) and negatively associated with baseline oxygen saturation (OR 0.776 95% CI 0.641-0.939, p = 0.009). Conclusions Reduced levels of circulating MOTS-c and increased levels of Romo1 were detected in patients diagnosed with COPD. Low levels of MOTS-c were associated with oxygen desaturation and poorer exercise capacity using 6 min walk test. Romo1 was associated with current smoking and baseline oxygen saturation. Trial registration www.clinicaltrials.gov; No.: NCT04449419; URL: www.clinicaltrials.gov. Date of registration: June 26, 2020.
Collapse
Affiliation(s)
- Carlos A. Amado
- Department of Pulmonology, Hospital Universitario Marqués de Valdecilla, Santander, Spain,University of Cantabria, Santander, Spain,IDIVAL (Instituto de Investigación Biomédica de Cantabria), Santander, Spain,*Correspondence: Carlos A. Amado ✉
| | - Paula Martín-Audera
- Department of Clinical Biochemistry, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Juan Agüero
- Department of Pulmonology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Bernardo A. Lavín
- Department of Clinical Biochemistry, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Armando R. Guerra
- Department of Clinical Biochemistry, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | - Diego Ferrer-Pargada
- Department of Pulmonology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Berja
- Department of Clinical Biochemistry, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Fernando Martín
- Unidad de Deshabituación Tabáquica (UDESTA), Servicio Cántabro de Salud, Santander, Spain
| | - Ciro Casanova
- Servicio de Neumología-Unidad de Investigación, Hospital Universitario La Candelaria, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mayte García-Unzueta
- University of Cantabria, Santander, Spain,Department of Clinical Biochemistry, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
21
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|