1
|
Jia W, Wang T, Chen F, Liu Z, Hou X, Cao W, Zhao X, Lu B, Hu Y, Dong Y, Zhou J, Zhou Z, Zhan W. Low-Intensity Pulsed Ultrasound Responsive Scaffold Promotes Intramembranous and Endochondral Ossification via Ultrasonic, Thermal, and Electrical Stimulation. ACS NANO 2025; 19:4422-4439. [PMID: 39901850 DOI: 10.1021/acsnano.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Multiple physical stimuli are expected to produce a synergistic effect to promote bone tissue regeneration. Low-intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair for the mechanical stimulation that it provides. In addition, LIPUS can also excite the biomaterials to generate other physical stimuli such as thermal or electrical stimuli. In this study, a scaffold based on decellularized adipose tissue (DAT) is established by incorporating polydopamine-modified multilayer black phosphorus nanosheets (pDA-mBP@DAT). Their effect on bone repair under LIPUS stimulation and the potential mechanisms are further investigated. This scaffold possesses piezoelectric properties and generates a mild thermogenic stimulus when stimulated by LIPUS. With superior properties, this scaffold is demonstrated to have good cytocompatibility in vitro and in vivo. Simultaneously, LIPUS promotes cell attachment, migration, and osteogenic differentiation in the pDA-mBP@DAT scaffold. Furthermore, the combined use of pDA-mBP@DAT and LIPUS significantly affects the regenerative effect in rat models of critical-sized calvarial defects. The possible mechanisms include promoting osteogenesis and neovascularization and activating the Piezo1. This study presents insight into speeding up bone regeneration by the synergistic combination of LIPUS and pDA-mBP@DAT scaffolds.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, P.R. China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Feng Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201102, P.R. China
| | - Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaodong Hou
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, P.R. China
| | - Wentao Cao
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201102, P.R. China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Hu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yijie Dong
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, P.R. China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, P.R. China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, P.R. China
| |
Collapse
|
2
|
Nayak U, Halagali P, Panchal KN, Tippavajhala VK, Mudgal J, Radhakrishnan R, Manikkath J. Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. Curr Pharm Des 2025; 31:443-460. [PMID: 39318210 DOI: 10.2174/0113816128328722240828184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations. OBJECTIVE This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based CNS targeted drug delivery. METHODS An extensive literature search was conducted, comprising the initial development of nanoparticle- based CNS-targeted drug delivery approaches to the latest advancements using various online search tools. RESULTS The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the BBB during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here. CONCLUSION Important properties and pathways that determine the penetration of nanoparticles across the CNS are reviewed in this article, along with recent advances in the field.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Khushi N Panchal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S102TA, UK
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
3
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
5
|
Kour A, Panda HS, Singh IR, Kumar A, Panda JJ. Peptide-metal nanohybrids (PMN): Promising entities for combating neurological maladies. Adv Colloid Interface Sci 2023; 318:102954. [PMID: 37487364 DOI: 10.1016/j.cis.2023.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Nanotherapeutics are gaining traction in the modern scenario because of their unique and distinct properties which separate them from macro materials. Among the nanoparticles, metal NPs (MNPs) have gained importance due to their distinct physicochemical and biological characteristics. Peptides also exhibit several important functions in humans. Different peptides have received approval as pharmaceuticals, and clinical trials have been commenced for several peptides. Peptides are also used as targeting ligands. Considering all the advantages offered by these two entities, the conjugation of MNPs with peptides has emerged as a potential strategy for achieving successful targeting, diagnosis, and therapy of various neurological pathologies.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | | | | | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
7
|
Lerouge F, Ong E, Rositi H, Mpambani F, Berner LP, Bolbos R, Olivier C, Peyrin F, Apputukan VK, Monnereau C, Andraud C, Chaput F, Berthezène Y, Braun B, Jucker M, Åslund AK, Nyström S, Hammarström P, R Nilsson KP, Lindgren M, Wiart M, Chauveau F, Parola S. In vivo targeting and multimodal imaging of cerebral amyloid-β aggregates using hybrid GdF 3 nanoparticles. Nanomedicine (Lond) 2023; 17:2173-2187. [PMID: 36927004 DOI: 10.2217/nnm-2022-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Aim: To propose a new multimodal imaging agent targeting amyloid-β (Aβ) plaques in Alzheimer's disease. Materials & methods: A new generation of hybrid contrast agents, based on gadolinium fluoride nanoparticles grafted with a pentameric luminescent-conjugated polythiophene, was designed, extensively characterized and evaluated in animal models of Alzheimer's disease through MRI, two-photon microscopy and synchrotron x-ray phase-contrast imaging. Results & conclusion: Two different grafting densities of luminescent-conjugated polythiophene were achieved while preserving colloidal stability and fluorescent properties, and without affecting biodistribution. In vivo brain uptake was dependent on the blood-brain barrier status. Nevertheless, multimodal imaging showed successful Aβ targeting in both transgenic mice and Aβ fibril-injected rats.
Collapse
Affiliation(s)
- Frédéric Lerouge
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Elodie Ong
- University of Lyon, Lyon Neuroscience Research Center, CNRS UMR, 5292, INSERM U1028, University of Lyon 1, Lyon, France
| | - Hugo Rositi
- University of Clermont Auvergne, Clermont Auvergne INP, Institut Pascal, CNRS UMR, 6602, Clermont-Ferrand, France
| | - Francis Mpambani
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Lise-Prune Berner
- University of Lyon, CREATIS, INSA-Lyon, University of Lyon 1, CNRS UMR, 5220, INSERM U1206, Villeurbanne, France
| | | | - Cécile Olivier
- University of Lyon, CREATIS, INSA-Lyon, University of Lyon 1, CNRS UMR, 5220, INSERM U1206, Villeurbanne, France
| | - Françoise Peyrin
- University of Lyon, CREATIS, INSA-Lyon, University of Lyon 1, CNRS UMR, 5220, INSERM U1206, Villeurbanne, France
| | - Vinu K Apputukan
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Cyrille Monnereau
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Chantal Andraud
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Frederic Chaput
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| | - Yves Berthezène
- University of Lyon, CREATIS, INSA-Lyon, University of Lyon 1, CNRS UMR, 5220, INSERM U1206, Villeurbanne, France
| | - Bettina Braun
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Andreas Ko Åslund
- Department of Physics, Chemistry, & Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry, & Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry, & Biology, Linköping University, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry, & Biology, Linköping University, Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science & Technology, Trondheim, Norway
| | - Marlène Wiart
- University of Lyon, CarMeN laboratory, INSERM U1060, INRA, U1397, University of Lyon 1, INSA-Lyon, Oullins, France.,CNRS, Villeurbanne, France
| | - Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center, CNRS UMR, 5292, INSERM U1028, University of Lyon 1, Lyon, France
| | - Stephane Parola
- University of Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie, University of Lyon 1, CNRS UMR, 5182, Lyon, France
| |
Collapse
|
8
|
Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28052336. [PMID: 36903581 PMCID: PMC10005336 DOI: 10.3390/molecules28052336] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is to blame for about 60% of dementia cases worldwide. The blood-brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the "core" of the wrapped drug, and the cell membrane acts as the "shell" of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB's restriction, prevent harm to the body's immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized.
Collapse
|
9
|
Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104973. [PMID: 36435391 DOI: 10.1016/j.neubiorev.2022.104973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease caused by the deposition of amyloid β (Aβ) fibrils forming extracellular plaques and the development of neurofibrillary tangles (NFT) of intracellular hyperphosphorylated tau protein. Currently, the AD treatments focus on improving cognitive and behavioral symptoms and have limited success. It is imperative to develop novel treatment approaches that can control/inhibit AD progression, especially in the elderly population. Immunotherapy provides a promising and safe treatment option for AD by boosting the patient's immune system. The minimum immune surveillance in the immune-privileged brain, however, makes immunotherapy for AD a challenging endeavor. Therefore, the success of AD immunotherapy depends mainly on the strategy by which therapeutics is delivered to the brain rather than its efficacy. The blood-brain barrier (BBB) is a major obstacle to therapeutic delivery into the brain microenvironment. Various nano-formulations have been exploited to improve the efficacy of AD immunotherapy. In this review, the applications of different types of nano-formulations in augmenting AD immunotherapy have been discussed.
Collapse
Affiliation(s)
- Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | - Arijit Samanta
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | | | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
10
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
11
|
Chen J, Zhou Z, Luo S, Liu G, Xiang J, Tian Z. Progress of advanced nanomaterials in diagnosis of neurodegenerative diseases. Biosens Bioelectron 2022; 217:114717. [PMID: 36179434 DOI: 10.1016/j.bios.2022.114717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (NDDs) encompass a wide range of clinically and pathologically diverse diseases characterized by progressive long-term cognitive decline, memory and function loss in daily life. Due to the lack of effective drugs and therapeutic strategies for preventing or delaying neurodegenerative progression, it is urgent to diagnose NDDs as early and accurately as possible. Nanomaterials, emerged as one of the most promising materials in the 21st century, have been widely applied and play a significant role in diagnosis and treatment of NDDs because of their remarkable properties including stability, prominent biocompatibility, unique structure, novel physical and chemical characteristics. In this review, we outlined general strategies for the application of different types of advanced materials in early and staged diagnosis of NDDs in vivo and in vitro. According to applied technology, in vivo research mainly involves magnetic resonance, fluorescence, and surface enhanced Raman imaging on structures of brain tissues, cerebral vessels and related distributions of biomarkers. In vitro research is focused on the detection of fluid biomarkers in cerebrospinal fluid and peripheral blood based on fluorescence, electrochemical, Raman and surface plasmon resonance techniques. Finally, we discussed the current challenges and future perspectives of biomarker-based NDDs diagnosis as well as potential applications regarding advanced nanomaterials.
Collapse
Affiliation(s)
- Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhifang Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Siheng Luo
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, PR China.
| | - Zhongqun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
12
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
13
|
Mazzaglia A, Di Natale G, Tosto R, Scala A, Sortino G, Piperno A, Casaletto MP, Riminucci A, Giuffrida ML, Mineo PG, Villari V, Micali N, Pappalardo G. KLVFF oligopeptide-decorated amphiphilic cyclodextrin nanomagnets for selective amyloid beta recognition and fishing. J Colloid Interface Sci 2022; 613:814-826. [PMID: 35074707 DOI: 10.1016/j.jcis.2022.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Recognition and capture of amyloid beta (Aβ) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic β-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aβ to collect Aβ (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions. Single domain MNP@SC16OH/Ada-Pep nanomagnets of 20-40 nm were observed by TEM analysis. DLS and ζ-potential measurements revealed that MNP@SC16OH nanoassemblies owned in aqueous dispersion a hydrodynamic radius of about 150 nm, which was unaffected by Ada-Pep decoration, while the negative ζ-potential of MNP@SC16OH (-40 mV) became less negative (-30 mV) in MNP@SC16OH/Ada-Pep, confirming the exposition of positively charged KLVFF on nanomagnets surface. The ability of MNP@SC16OH/Ada-Pep to recruit Aβ (1-42) in aqueous solution was evaluated by MALDI-TOF and compared with the ineffectiveness of undecorated MNP@SC16OH and VFLKF scrambled peptide-decorated nanoassemblies (MNP@SC16OH/Ada-scPep), pointing out the selectivity of KLVFF-decorated nanohybrid towards Aβ (1-42). Finally, the property of nanomagnets to extract Aβ in conditioned medium of cells over-producing Aβ peptides was investigated as proof of concept of effectiveness of these nanomaterials as potential diagnostic tools.
Collapse
Affiliation(s)
- Antonino Mazzaglia
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Giuseppe Di Natale
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via P. Gaifami 18, 95126 Catania, Italy
| | - Rita Tosto
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via P. Gaifami 18, 95126 Catania, Italy; International PhD School of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuseppe Sortino
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Pia Casaletto
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Alberto Riminucci
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Maria Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via P. Gaifami 18, 95126 Catania, Italy
| | - Placido G Mineo
- Dipartimento di Scienze Chimiche, Università di Catania, V. le A. Doria 6, 95125 Catania, Italy
| | - Valentina Villari
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D'Alcontres 37, 98158 Messina, Italy
| | - Norberto Micali
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D'Alcontres 37, 98158 Messina, Italy.
| | - Giuseppe Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
14
|
Phongpradist R, Thongchai W, Thongkorn K, Lekawanvijit S, Chittasupho C. Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions. Polymers (Basel) 2022; 14:443. [PMID: 35160433 PMCID: PMC8838555 DOI: 10.3390/polym14030443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Curcumin is one of the most promising natural therapeutics for use against Alzheimer's disease. The major limitations of curcumin are its low oral bioavailability and difficulty in permeating the blood-brain barrier. Therefore, designing a delivery system of curcumin to overcome its limitations must be employed. KLVFF, a peptide known as an amyloid blocker, was used in this study as a targeting moiety to develop a targeted drug delivery system. A prototype of transnasal KLVFF conjugated microemulsions containing curcumin (KLVFF-Cur-ME) for the nose-to-brain delivery was fabricated. The KLVFF-Cur-ME was developed by a titration method. A conjugation of KLVFF was performed through a carbodiimide reaction, and the conjugation efficiency was confirmed by FTIR and DSC technique. KLVFD-Cur-ME was characterized for the drug content, globule size, zeta potential, and pH. A transparent and homogeneous KLVFF-Cur-ME is achieved with a drug content of 80.25% and a globule size of 76.1 ± 2.5 nm. The pH of KLVFF-Cur-ME is 5.33 ± 0.02, indicating non-irritation to nasal tissues. KLVFD-Cur-ME does not show nasal ciliotoxicity. An ex vivo diffusion study revealed that KLVFF-Cur-ME partitions the porcine nasal mucosa through diffusion, following the Higuchi model. This investigation demonstrates the successful synthesis of a bifunctional KLVFF-Cur-ME as a novel prototype to deliver anti-Aβ aggregation via an intranasal administration.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wisanu Thongchai
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand;
| | - Kriangkrai Thongkorn
- Department of Companion Animals and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
15
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
16
|
Zeng F, Peng K, Han L, Yang J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer's Disease. ACS Biomater Sci Eng 2021; 7:3573-3585. [PMID: 34279071 DOI: 10.1021/acsbiomaterials.1c00605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is well established that the polymerization of amyloid-β peptides into fibrils/plaques is a critical step during the development of Alzheimer's disease (AD). Phototherapy, which includes photodynamic therapy and photothermal therapy, is a highly attractive strategy in AD treatment due to its merits of operational flexibility, noninvasiveness, and high spatiotemporal resolution. Distinct from traditional chemotherapies or immunotherapies, phototherapies capitalize on the interaction between photosensitizers or photothermal transduction agents and light to trigger photochemical reactions to generate either reactive oxygen species or heat effects to modulate Aβ aggregation, ultimately restoring nerve damage and ameliorating memory deficits. In this Review, we provide an overview of the recent advances in the development of near-infrared-activated nanoagents for AD phototherapies and discuss the potential challenges of and perspectives on this emerging field with a special focus on how to improve the efficiency and utility of such treatment. We hope that this Review will spur preclinical research and the clinical translation of AD treatment through phototherapy.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kewen Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Han
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
18
|
Nanotechnological approaches for targeting amyloid-β aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discov Today 2021; 26:1972-1979. [PMID: 33892144 DOI: 10.1016/j.drudis.2021.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/21/2020] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders can arise as a result of amyloid-β production and misfolding of its protein. The complex anatomy of the brain and the unresolved mechanics of the central nervous system hinder drug delivery; the brain is sheathed in a highly protective blood-brain barrier, a tightly packed layer of endothelial cells that restrict the entry of certain substances into the brain. Nanotechnology has achieved success in delivery to the brain, with preclinical assessments showing an acceptable concentration of active drugs in the therapeutic range, and nanoparticles can be fabricated to inhibit amyloid and enhance the delivery of the therapeutic molecule. This review focuses on the interactions of nanoparticles with amyloid-β aggregates and provides an assessment of their theranostic potential.
Collapse
|
19
|
Kakinen A, Javed I, Davis TP, Ke PC. In vitro and in vivo models for anti-amyloidosis nanomedicines. NANOSCALE HORIZONS 2021; 6:95-119. [PMID: 33438715 DOI: 10.1039/d0nh00548g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amyloid diseases are global epidemics characterized by the accumulative deposits of cross-beta amyloid fibrils and plaques. Despite decades of intensive research, few solutions are available for the diagnosis, treatment, and prevention of these debilitating diseases. Since the early work on the interaction of human β2-microglobulin and nanoparticles by Linse et al. in 2007, the field of amyloidosis inhibition has gradually evolved into a new frontier in nanomedicine offering numerous interdisciplinary research opportunities, especially for materials, chemistry and biophysics. In this review we summarise, for the first time, the in vitro and in vivo models employed thus far in the field of anti-amyloidosis nanomedicines. Based on this systematic summary, we bring forth the notion that, due to the complex and often overlapping physiopathologies of amyloid diseases, there is a crucial need for the appropriate use of in vitro and in vivo models for validating novel anti-amyloidosis nanomedicines, and there is a crucial need for the development of new animal models that reflect the behavioural, symptomatic and cross-talk hallmarks of amyloid diseases such as Alzheimer's (AD), Parkinson's (PD) diseases and type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
20
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Mourtas S, Mavroidi B, Marazioti A, Kannavou M, Sagnou M, Pelecanou M, Antimisiaris SG. Liposomes Decorated with 2-(4'-Aminophenyl)benzothiazole Effectively Inhibit Aβ 1-42 Fibril Formation and Exhibit in Vitro Brain-Targeting Potential. Biomacromolecules 2020; 21:4685-4698. [PMID: 33112137 DOI: 10.1021/acs.biomac.0c00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential of 2-benzothiazolyl-decorated liposomes as theragnostic systems for Alzheimer's disease was evaluated in vitro, using PEGylated liposomes that were decorated with two types of 2-benzothiazoles: (i) the unsubstituted 2-benzothiazole (BTH) and (ii) the 2-(4-aminophenyl)benzothiazole (AP-BTH). The lipid derivatives of both BTH-lipid and AP-BTH-lipid were synthesized, for insertion in liposome membranes. Liposomes (LIP) containing three different concentrations of benzothiazoles (5, 10, and 20%) were formulated, and their stability, integrity in the presence of serum proteins, and their ability to inhibit β-amyloid (1-42) (Αβ42) peptide aggregation (by circular dichroism (CD) and thioflavin T (ThT) assay), were evaluated. Additionally, the interaction of some LIP with an in vitro model of the blood-brain barrier (BBB) was studied. All liposome types ranged between 92 and 105 nm, with the exception of the 20% AP-BTH-LIP that were larger (180 nm). The 5 and 10% AP-BTH-LIP were stable when stored at 4 °C for 40 days and demonstrated high integrity in the presence of serum proteins for 7 days at 37 °C. Interestingly, CD experiments revealed that the AP-BTH-LIP substantially interacted with Αβ42 peptides and inhibited fibril formation, as verified by ThT assay, in contrast with the BTH-LIP, which had no effect. The 5 and 10% AP-BTH-LIP were the most effective in inhibiting Αβ42 fibril formation. Surprisingly, the AP-BTH-LIP, especially the 5% ones, demonstrated high interaction with brain endothelial cells and high capability to be transported across the BBB model. Taken together, the current results reveal that the 5% AP-BTH-LIP are of high interest as novel targeted theragnostic systems against AD, justifying further in vitro and in vivo exploitation.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Antonia Marazioti
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Maria Kannavou
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Marina Sagnou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| |
Collapse
|
22
|
Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ. Surface functionalisation of poly-APO-b-polyol ester cross-linked copolymers as core-shell nanoparticles for targeted breast cancer therapy. Sci Rep 2020; 10:21704. [PMID: 33303818 PMCID: PMC7729971 DOI: 10.1038/s41598-020-78601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Selina Abdul Hamid
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zainah Adam
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Najila Mohd Janib
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
Distasio N, Salmon H, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. VCAM‐1‐Targeted Gene Delivery Nanoparticles Localize to Inflamed Endothelial Cells and Atherosclerotic Plaques. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas Distasio
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
| | - Hugo Salmon
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - France Dierick
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Talin Ebrahimian
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - Stephanie Lehoux
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| |
Collapse
|
24
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Wu Y, Li H, Yan Y, Wang K, Cheng Y, Li Y, Zhu X, Xie J, Sun X. Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer. Int J Nanomedicine 2020; 15:4691-4703. [PMID: 32636625 PMCID: PMC7335283 DOI: 10.2147/ijn.s244172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Gd-encapsulated carbonaceous dots (Gd@C-dots) have excellent stability and magnetic properties without free Gd leakage, therefore they can be considered as a safe alternative T1 contrast agent to commonly used Gd complexes. To improve their potential for cancer diagnosis and treatment, affibody-modified Gd@C-dots targeting non-small-cell lung cancer (NSCLC) EGFR-positive tumors with enhanced renal clearance were developed and synthesized. Materials and Methods Gd@C-dots were developed and modified with Ac-Cys-ZEGFR:1907 through EDC/NHS. The size, morphology, and optical properties of the Gd@C-dots and Gd@C-dots-Cys-ZEGFR:1907 were characterized. Targeting ability was evaluated by in vitro and in vivo experiments, respectively. Residual gadolinium concentration in major organs was detected with confocal imaging and inductively coupled plasma mass spectrometry (ICP-MS) ex vivo. H&E staining was used to assess the morphology of these organs. Results Gd@C-dots with nearly 20 nm in diameter were developed and modified with Ac-Cys-ZEGFR:1907. EGFR expression in HCC827 cells was higher than NCI-H520. In cell uptake assays, EGFR-expressing HCC827 cells exhibited significant MR T1WI signal enhancement when compared to NCI-H520 cells. Cellular uptake of Gd@C-dots-Cys-ZEGFR:1907 was reduced, when Ac-Cys-ZEGFR:1907 was added. In vivo targeting experiments showed that the probe signal was significantly higher in HCC827 than NCI-H520 xenografts at 1 h after injection. In contrast to Gd@C-dots, Gd@C-dots-Cys-ZEGFR:1907 nanoparticles can be efficiently excreted through renal clearance. No morphological changes were observed by H&E staining in the major organs after injection of Gd@C-dots-Cys-ZEGFR:1907. Conclusion Gd@C-dots-Cys-ZEGFR:1907 is a high-affinity EGFR-targeting probe with efficient renal clearance and is therefore a promising contrast agent for clinical applications such as diagnosis and treatment of NSCLC EGFR-positive malignant tumors.
Collapse
Affiliation(s)
- Yongyi Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Haoxiang Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Yuling Yan
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Yangyang Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jin Xie
- Department of Chemistry and Bio-Imaging Research Center, The University of Georgia, Athens, Georgia 30602, USA
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, 150028, People's Republic of China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
26
|
Ulanova M, Poljak A, Wen W, Bongers A, Gloag L, Gooding J, Tilley R, Sachdev P, Braidy N. Nanoparticles as contrast agents for the diagnosis of Alzheimer’s disease: a systematic review. Nanomedicine (Lond) 2020; 15:725-743. [DOI: 10.2217/nnm-2019-0316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle (NP)-based magnetic contrast agents have opened the potential for MRI to be used for early diagnosis of Alzheimer’s disease (AD). This article aims to review the current progress of research in this field. A comprehensive literature search was performed based on PubMed, Medline, EMBASE, PsychINFO and Scopus databases using the following terms: ‘Alzheimer’s disease’ AND ‘nanoparticles’ AND ‘Magnetic Resonance Imaging.’ 33 studies were included that described the development and utility of various NPs for AD imaging, including their coating, functionalization, MRI relaxivity, toxicity and bioavailability. NPs show immense promise for neuroimaging, due to superior relaxivity and biocompatibility compared with currently available imaging agents. Consistent reporting is imperative for further progress in this field.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andre Bongers
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard Tilley
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
27
|
Herlan C, Bräse S. Lanthanide conjugates as versatile instruments for therapy and diagnostics. Dalton Trans 2020; 49:2397-2402. [PMID: 32030383 DOI: 10.1039/c9dt04851k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanides have demonstrated outstanding properties in many fields of research including biology and medicinal chemistry. Their unique luminescence and magnetic properties make them the metals of choice for next generation theranostics that efficiently combine the two central pillars of medicine - diagnostics and therapy. Attached to targeting units, lanthanide complexes pave the way for real-time imaging of drug uptake and distribution as well as specific regulation of subcellular processes with few side effects. This enables individualized treatment options for severe diseases characterized by altered cell expression. The highly diverse results achieved as well as insights into the challenges that research in this area has to face in the upcoming years will be summarized in the present review.
Collapse
Affiliation(s)
- Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Srivastava AK, Roy Choudhury S, Karmakar S. Near-Infrared Responsive Dopamine/Melatonin-Derived Nanocomposites Abrogating in Situ Amyloid β Nucleation, Propagation, and Ameliorate Neuronal Functions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5658-5670. [PMID: 31986005 DOI: 10.1021/acsami.9b22214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is one of the common causes of dementia and mild cognitive impairments, which is progressively expanding among the elderly population worldwide. A short Amyloid-β (Aβ) peptide generated after amyloidogenic processing of amyloid precursor protein exist as intermolecular β-sheet rich oligomeric, protofibriler, and fibrillar structures and believe to be toxic species which instigate neuronal pathobiology in the brain and deposits as senile plaque. Enormous efforts are being made to develop an effective anti-AD therapy that can target Aβ processing, aggregation, and propagation and provide a synergistic neuroprotective effect. However, a nanodrug prepared from natural origin can confer a multimodal synergistic chemo/photothermal inhibition of Aβ pathobiology is not yet demonstrated. In the present work, we report a dopamine-melatonin nanocomposite (DM-NC), which possesses a synergistic near-infrared (NIR) responsive photothermal and pharmacological modality. The noncovalent interaction-mediated self-assembly of melatonin and dopamine oxidative intermediates leads to the evolution of DM-NCs that can withstand variable pH and peroxide environment. NIR-activated melatonin release and photothermal effect collectively inhibit Aβ nucleation, self-seeding, and propagation and can also disrupt the preformed Aβ fibers examined using in vitro Aβ aggregation and Aβ-misfolding cyclic amplification assays. The DM-NCs display a higher biocompatibility to neuroblastoma cells, suppress the AD-associated generation of intracellular reactive oxygen species, and are devoid of any negative impact on the axonal growth process. In okadaic acid-induced neuroblastoma and ex vivo midbrain slice culture-based AD model, DM-NCs exposure suppresses the intracellular Aβ production, aggregation, and accumulation. Therefore, this nature-derived nanocomposite demonstrates a multimodal NIR-responsive synergistic photothermal and pharmacological modality for effective AD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Subhasree Roy Choudhury
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Surajit Karmakar
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| |
Collapse
|
29
|
Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer's disease. Int J Biol Macromol 2019; 130:515-526. [DOI: 10.1016/j.ijbiomac.2019.02.156] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
|
30
|
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019; 11:E101. [PMID: 30813646 PMCID: PMC6471564 DOI: 10.3390/pharmaceutics11030101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
The field of neuronanomedicine has recently emerged as the bridge between neurological sciences and nanotechnology. The possibilities of this novel perspective are promising for the diagnosis and treatment strategies of severe central nervous system disorders. Therefore, the development of nano-vehicles capable of permeating the blood⁻brain barrier (BBB) and reaching the brain parenchyma may lead to breakthrough therapies that could improve life expectancy and quality of the patients diagnosed with brain disorders. The aim of this review is to summarize the recently developed organic, inorganic, and biological nanocarriers that could be used for the delivery of imaging and therapeutic agents to the brain, as well as the latest studies on the use of nanomaterials in brain cancer, neurodegenerative diseases, and stroke. Additionally, the main challenges and limitations associated with the use of these nanocarriers are briefly presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Dr. Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
31
|
Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR. Nanotechnology in Targeted Drug Delivery and Therapeutics. APPLICATIONS OF TARGETED NANO DRUGS AND DELIVERY SYSTEMS 2019:357-409. [DOI: 10.1016/b978-0-12-814029-1.00014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. NANO CONVERGENCE 2018; 5:35. [PMID: 30499047 PMCID: PMC6265354 DOI: 10.1186/s40580-018-0168-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 05/26/2023]
Abstract
The major neurological disorders found in a central nervous system (CNS), such as brain tumors, Alzheimer's diseases, Parkinson's diseases, and Huntington's disease, have led to devastating outcomes on the human public health. Of these disorders, early diagnostics remains poor, and no treatment has been successfully discovered; therefore, they become the most life-threatening medical burdens worldwide compared to other major diseases. The major obstacles for the drug discovery are the presence of a restrictive blood-brain barrier (BBB), limiting drug entry into brains and undesired neuroimmune activities caused by untargeted drugs, leading to irreversible neuronal damages. Recent advances in nanotechnology have contributed to the development of novel nanoplatforms and effective delivering strategies to improve the CNS disorder treatment while less disturbing brain systems. The nanoscale drug carriers, including liposomes, dendrimers, viral capsids, polymeric nanoparticles, silicon nanoparticles, and magnetic/metallic nanoparticles, enable the effective drug delivery penetrating across the BBB, the aforementioned challenges in the CNS. Moreover, drugs encapsulated by the nanocarriers can reach further deeper into targeting regions while preventing the degradation. In this review, we classify novel disease hallmarks incorporated with emerging nanoplatforms, describe promising approaches for improving drug delivery to the disordered CNS, and discuss their implications for clinical practice.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Eric Gerard Cutler
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| |
Collapse
|
33
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018; 7:E490. [PMID: 30486404 PMCID: PMC6306759 DOI: 10.3390/jcm7120490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are zero-dimensional nanomaterials and, based on their nature, they can be categorized into organic, inorganic, and composites nanoparticles. Due to their unique physical and chemical properties, nanoparticles are extensively used in a variety of fields, including medicine, pharmaceutics, and food industry. Although they have the potential to improve the diagnosis and treatment of brain diseases, it is fundamentally important to develop standardized toxicological studies, which can prevent the induction of neurotoxic effects. The focus of this review is to emphasize both the beneficial and negative effects of nanoparticles on brain health.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
34
|
de la Torre C, Ceña V. The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer's Disease Therapeutics and Diagnostics. Pharmaceutics 2018; 10:pharmaceutics10040190. [PMID: 30336640 PMCID: PMC6321229 DOI: 10.3390/pharmaceutics10040190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/17/2018] [Accepted: 10/13/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the main causes of disability and dependency among elderly people. AD is a neurodegenerative disorder characterized by a progressive and irreversible cognitive impairment, whose etiology is unclear because of the complex molecular mechanisms involved in its pathophysiology. A global view of the AD pathophysiology is described in order to understand the need for an effective treatment and why nanoparticles (NPs) could be an important weapon against neurodegenerative diseases by solving the general problem of poor delivery into the central nervous system (CNS) for many drugs. Drug delivery into the CNS is one of the most challenging objectives in pharmaceutical design, due to the limited access to the CNS imposed by the blood-brain barrier (BBB). The purpose of this review is to present a comprehensive overview of the use of NPs as delivery systems for therapeutic and diagnostic purposes in models of AD.
Collapse
Affiliation(s)
- Cristina de la Torre
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Almansa, 14, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain.
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Almansa, 14, 02006 Albacete, Spain.
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain.
| |
Collapse
|
35
|
Lux F, Tran VL, Thomas E, Dufort S, Rossetti F, Martini M, Truillet C, Doussineau T, Bort G, Denat F, Boschetti F, Angelovski G, Detappe A, Crémillieux Y, Mignet N, Doan BT, Larrat B, Meriaux S, Barbier E, Roux S, Fries P, Müller A, Abadjian MC, Anderson C, Canet-Soulas E, Bouziotis P, Barberi-Heyob M, Frochot C, Verry C, Balosso J, Evans M, Sidi-Boumedine J, Janier M, Butterworth K, McMahon S, Prise K, Aloy MT, Ardail D, Rodriguez-Lafrasse C, Porcel E, Lacombe S, Berbeco R, Allouch A, Perfettini JL, Chargari C, Deutsch E, Le Duc G, Tillement O. AGuIX ® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol 2018; 92:20180365. [PMID: 30226413 PMCID: PMC6435081 DOI: 10.1259/bjr.20180365] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.
Collapse
Affiliation(s)
- François Lux
- NH TherAguix SAS, Villeurbanne, France.,Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Vu Long Tran
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France.,Nano-H SAS, Saint-Quentin-Fallavier, France
| | - Eloïse Thomas
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | | | - Fabien Rossetti
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Matteo Martini
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Charles Truillet
- Imagerie Moléculaire In Vivo, Inserm, CEA, CNRS, Univ Paris Sud, Université Paris Saclay - Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Guillaume Bort
- Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| | - Franck Denat
- Institut de Chimie Moléculaire, Université de Bourgogne, Dijon, France
| | | | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexandre Detappe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Yannick Crémillieux
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR, Université Bordeaux, Bordeaux, France
| | - Nathalie Mignet
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,CNRS, UTCBS UMR , Paris, France.,Université Paris Descartes Sorbonne-Paris-Cité, Paris, France.,INSERM, UTCBS U 1022, Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,CNRS, UTCBS UMR , Paris, France.,Université Paris Descartes Sorbonne-Paris-Cité, Paris, France.,INSERM, UTCBS U 1022, Paris, France
| | - Benoit Larrat
- NeuroSpin, CEA Saclay, Gif-sur-Yvette, France.,Université Paris-Saclay, Orsay, France
| | - Sébastien Meriaux
- NeuroSpin, CEA Saclay, Gif-sur-Yvette, France.,Université Paris-Saclay, Orsay, France
| | - Emmanuel Barbier
- INSERM, Univ. Grenoble Alpes, Grenoble Institut des Neurosciences , Grenoble, France
| | - Stéphane Roux
- Institut UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, Besançon, France
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Marie-Caline Abadjian
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carolyn Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory Institut National de la Santé et de la Recherche Médicale U1060,INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center forScientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | | | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, UMR, Université de Lorraine-CNRS, Nancy, France
| | - Camille Verry
- Radiotherapy department, CHU de Grenoble, Grenoble cedex 9, France
| | - Jacques Balosso
- Radiotherapy department, CHU de Grenoble, Grenoble cedex 9, France
| | - Michael Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, USA
| | | | - Marc Janier
- UNIV Lyon - Université Claude Bernard Lyon 1, Villeurbanne, France.,Hospices Civils de Lyon, plateforme Imthernat, Hôpital Edouard Herriot, Lyon, France
| | - Karl Butterworth
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Stephen McMahon
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Kevin Prise
- Centre for Cancer Research and Cell Biology Queen's University Belfast,, Belfast BT9 7AE, UK
| | - Marie-Thérèse Aloy
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Dominique Ardail
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Claire Rodriguez-Lafrasse
- IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Erika Porcel
- ISMO UMR, Université Paris Saclay, Université Paris Sud, CNRS, Orsay cedex, France
| | - Sandrine Lacombe
- ISMO UMR, Université Paris Saclay, Université Paris Sud, CNRS, Orsay cedex, France
| | - Ross Berbeco
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Awatef Allouch
- Cell death and Aging team, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Laboratory of Molecular Radiotherapy INSERM, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Université Paris Sud - Paris , rue Edouard Vaillant, Villejuif, France
| | - Jean-Luc Perfettini
- Cell death and Aging team, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Laboratory of Molecular Radiotherapy INSERM, Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Gustave Roussy, rue Edouard Vaillant, Villejuif, France.,Université Paris Sud - Paris , rue Edouard Vaillant, Villejuif, France
| | - Cyrus Chargari
- French Military Health Academy, Ecole du Val-de-Grâce, Paris, France.,Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France.,Radiotherapy Department, Gustave Roussy, Villejuif, France.,Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Radiotherapy Department, Gustave Roussy, Villejuif, France.,Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Olivier Tillement
- NH TherAguix SAS, Villeurbanne, France.,Univ Lyon Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, LYON, France
| |
Collapse
|
36
|
Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review. NANOMATERIALS 2018; 8:nano8090740. [PMID: 30231587 PMCID: PMC6164038 DOI: 10.3390/nano8090740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
Abstract
Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins. The second part deals with the functionalization by various moieties of numerous MNPs’ surfaces (molecules, peptides, antibody fragments, or whole antibodies of MNPs) for the detection and the quantification of amyloid aggregates. The last part of this review focuses on the use of MNPs for magnetic-resonance-based amyloid imaging in biomedical fields, with particular attention to the application of gadolinium-based paramagnetic nanoparticles (AGuIX), which have been recently developed. Biocompatible AGuIX nanoparticles show favorable characteristics for in vivo use, such as nanometric and straightforward functionalization. Their properties have enabled their application in MRI. Here, we report that AGuIX nanoparticles grafted with the Pittsburgh compound B can actively target amyloid aggregates in the brain, beyond the blood–brain barrier, and remain the first step in observing amyloid plaques in a mouse model of Alzheimer’s disease.
Collapse
|
37
|
Di Natale G, Zimbone S, Bellia F, Tomasello M, Giuffrida M, Pappalardo G, Rizzarelli E. Potential therapeutics of Alzheimer's diseases: New insights into the neuroprotective role of trehalose‐conjugated beta sheet breaker peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- G. Di Natale
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - S. Zimbone
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - F. Bellia
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - M.F. Tomasello
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - M.L. Giuffrida
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - G. Pappalardo
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - E. Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
- Dipartimento di Scienze Chimiche Università degli studi di Catania, Viale Andrea Doria 6 Catania 95125 Italy
| |
Collapse
|
38
|
Morales-Zavala F, Casanova-Morales N, Gonzalez RB, Chandía-Cristi A, Estrada LD, Alvizú I, Waselowski V, Guzman F, Guerrero S, Oyarzún-Olave M, Rebolledo C, Rodriguez E, Armijo J, Bhuyan H, Favre M, Alvarez AR, Kogan MJ, Maze JR. Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease. J Nanobiotechnology 2018; 16:60. [PMID: 30097010 PMCID: PMC6085760 DOI: 10.1186/s12951-018-0385-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background Stable and non-toxic fluorescent markers are gaining attention in molecular diagnostics as powerful tools for enabling long and reliable biological studies. Such markers should not only have a long half-life under several assay conditions showing no photo bleaching or blinking but also, they must allow for their conjugation or functionalization as a crucial step for numerous applications such as cellular tracking, biomarker detection and drug delivery. Results We report the functionalization of stable fluorescent markers based on nanodiamonds (NDs) with a bifunctional peptide. This peptide is made of a cell penetrating peptide and a six amino acids long β-sheet breaker peptide that is able to recognize amyloid β (Aβ) aggregates, a biomarker for the Alzheimer disease. Our results indicate that functionalized NDs (fNDs) are not cytotoxic and can be internalized by the cells. The fNDs allow ultrasensitive detection (at picomolar concentrations of NDs) of in vitro amyloid fibrils and amyloid aggregates in AD mice brains. Conclusions The fluorescence of functionalized NDs is more stable than that of fluorescent markers commonly used to
stain Aβ aggregates such as Thioflavin T. These results pave the way for performing ultrasensitive and reliable detection of Aβ aggregates involved in the pathogenesis of the Alzheimer disease. Electronic supplementary material The online version of this article (10.1186/s12951-018-0385-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Morales-Zavala
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | | | - Raúl B Gonzalez
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - América Chandía-Cristi
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ignacio Alvizú
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Victor Waselowski
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Simón Guerrero
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Marisol Oyarzún-Olave
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Rebolledo
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Enrique Rodriguez
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Julien Armijo
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.,Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Heman Bhuyan
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Mario Favre
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Alejandra R Alvarez
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Nanoscale Technology and Advanced Materials, Pontificia Universidad Catolica de Chile, Santiago, Chile. .,CARE-Chile-UC, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| | - Jerónimo R Maze
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile. .,Center for Nanoscale Technology and Advanced Materials, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| |
Collapse
|
39
|
Fernández T, Martínez-Serrano A, Cussó L, Desco M, Ramos-Gómez M. Functionalization and Characterization of Magnetic Nanoparticles for the Detection of Ferritin Accumulation in Alzheimer's Disease. ACS Chem Neurosci 2018; 9:912-924. [PMID: 29298040 DOI: 10.1021/acschemneuro.7b00260] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early diagnosis in Alzheimer's disease (AD), prior to the appearance of marked clinical symptoms, is critical to prevent irreversible neuronal damage and neural malfunction that lead to dementia and death. Therefore, there is an urgent need to generate new contrast agents which reveal by a noninvasive method the presence of some of the pathological signs of AD. In the present study, we demonstrate for the first time a new nanoconjugate composed of magnetic nanoparticles bound to an antiferritin antibody, which has been developed based on the existence of iron deposits and high levels of the ferritin protein present in areas with a high accumulation of amyloid plaques (particularly the subiculum in the hippocampal area) in the brain of a transgenic mouse model with five familial AD mutations. Both in vitro and after intravenous injection, functionalized magnetic nanoparticles were able to recognize and bind specifically to the ferritin protein accumulated in the subiculum area of the AD transgenic mice.
Collapse
Affiliation(s)
- Tamara Fernández
- Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Alberto Martínez-Serrano
- Department of Molecular Biology
and Centre for Molecular Biology “Severo Ochoa” (CBMSO),
Universidad Autónoma de Madrid and Consejo Superior de Investigaciones
Científicas, 28049 Madrid, Spain
| | - Lorena Cussó
- Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Manuel Desco
- Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Milagros Ramos-Gómez
- Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
40
|
André S, Ansciaux E, Saidi E, Larbanoix L, Stanicki D, Nonclercq D, Vander Elst L, Laurent S, Muller RN, Burtea C. Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. J Alzheimers Dis 2017; 60:1547-1565. [DOI: 10.3233/jad-170563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Séverine André
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Emilie Ansciaux
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Elamine Saidi
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | | | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | | | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Robert N. Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| |
Collapse
|
41
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
42
|
Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, Morfin JF, Toth E, Saraiva MJ, Allémann E, Tillement O, Forge V, Lux F, Marquette C. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017. [PMID: 28635419 DOI: 10.2217/nnm-2017-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. MATERIALS & METHODS The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. RESULTS Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with KD values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. CONCLUSION Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Marie Plissonneau
- Nano-H S.A.S, 38070 Saint Quentin Fallavier, France.,Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Nathalie Stransky-Heilkron
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Mireille Dumoulin
- Laboratory of Enzymology & Protein Folding, Centre for Protein Engineering, InBioS, University of Liege Sart Tilman, 4000 Liege, Belgium
| | - Laurence Heinrich-Balard
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Pascaline Rivory
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Eva Toth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Maria Joao Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Molecular Neurobiology Group, IBMC - Institute for Molecular & Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Olivier Tillement
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - François Lux
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Christel Marquette
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
43
|
Lacerda S, Morfin JF, Geraldes CFGC, Tóth É. Metal complexes for multimodal imaging of misfolded protein-related diseases. Dalton Trans 2017; 46:14461-14474. [DOI: 10.1039/c7dt02371e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation of misfolded proteins and progressive polymerization of otherwise soluble proteins is a common hallmark of several highly debilitating and increasingly prevalent diseases, including amyotrophic lateral sclerosis, cerebral amyloid angiopathy, type II diabetes and Parkinson's, Huntington's and Alzheimer's diseases.
Collapse
Affiliation(s)
- S. Lacerda
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| | - J.-F. Morfin
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| | - C. F. G. C. Geraldes
- Department of Life Sciences
- Faculty of Sciences and Technology
- University of Coimbra
- 3000-393 Coimbra
- Portugal
| | - É. Tóth
- Centre de Biophysique Moléculaire
- CNRS
- UPR 4301
- Université d'Orléans
- 45071 Orléans Cedex 2
| |
Collapse
|
44
|
Tafoya MA, Madi S, Sillerud LO. Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: Contrast optimization. J Magn Reson Imaging 2016; 46:574-588. [PMID: 27875002 DOI: 10.1002/jmri.25563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To optimize magnetic resonance imaging (MRI) of antibody-conjugated superparamagnetic nanoparticles for detecting amyloid-β plaques and activated microglia in a 3X transgenic mouse model of Alzheimer's disease. MATERIALS AND METHODS Ten 3X Tg mice were fed either chow or chow containing 100 ppm resveratrol. Four brains, selected from animals injected with either anti-amyloid targeted superparamagnetic iron oxide nanoparticles, or anti-Iba-1-conjugated FePt-nanoparticles, were excised, fixed with formalin, and placed in Fomblin for ex vivo MRI (11.7T) using multislice-multiecho, multiple gradient echo, rapid acquisition with relaxation enhancement, and susceptibility-weighted imaging (SWI). Aβ plaques and areas of neuroinflammation appeared as hypointense regions whose number, location, and Z-score were measured as a function of sequence type and echo time. RESULTS The MR contrast was due to the shortening of the transverse relaxation time of the plaque-adjacent tissue water. A theoretical analysis of this effect showed that the echo time was the primary determinant of plaque contrast and was used to optimize Z-scores. The Z-scores of the detected lesions varied from 21 to 34 as the echo times varied from 4 to 25 msec, with SWI providing the highest Z-score and number of detected lesions. Computation of the entire plaque and activated microglial distributions in 3D showed that resveratrol treatment led to a reduction of ∼24-fold of Aβ plaque density and ∼4-fold in microglial activation. CONCLUSION Optimized MRI of antibody-conjugated superparamagnetic nanoparticles served to reveal the 3D distributions of both Aβ plaques and activated microglia and to measure the effects of drug treatments in this 3X Tg model. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:574-588.
Collapse
Affiliation(s)
- Marissa A Tafoya
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Laurel O Sillerud
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|