1
|
Zhang C, Li C, Han X. Screen printed electrode containing bismuth for the detection of cadmium ion. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
2
|
Zhang M, Kim DS, Patel R, Wu Q, Kim K. Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells. NANOMATERIALS 2022; 12:nano12091517. [PMID: 35564224 PMCID: PMC9104504 DOI: 10.3390/nano12091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa as a control. Our XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) viability assay (Cell Proliferation Kit II) showed that ML-1 cells and non-cancerous mouse fibroblast cells exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest that HeLa cells are more sensitive to the QDs compared to ML-1 cells. To test the possibility that transporting rates of QDs are different between HeLa and ML-1 cells, we performed a QD subcellular localization assay by determining Pearson’s Coefficient values and found that HeLa cells showed faster QDs transporting towards the lysosome. Consistently, the ICP-OES test showed the uptake of CdSe/ZnS QDs in HeLa cells was significantly higher than in ML-1 cells. Together, we conclude that high levels of toxicity in HeLa are positively correlated with the traffic rate of QDs in the treated cells.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| | - Daniel S. Kim
- Emory College of Arts and Science, Emory University, 201 Dowman Dr., Atlanta, GA 30322, USA;
| | - Rishi Patel
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
3
|
Domenech J, Cortés C, Vela L, Marcos R, Hernández A. Polystyrene Nanoplastics as Carriers of Metals. Interactions of Polystyrene Nanoparticles with Silver Nanoparticles and Silver Nitrate, and Their Effects on Human Intestinal Caco-2 Cells. Biomolecules 2021; 11:biom11060859. [PMID: 34207836 PMCID: PMC8227673 DOI: 10.3390/biom11060859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023] Open
Abstract
Environmental plastic wastes are continuously degraded to their micro and nanoforms. Since in the environment they coexist with other pollutants, it has been suggested that they could act as vectors transporting different toxic trace elements, such as metals. To confirm this, we have assessed the potential interactions between nanopolystyrene, as a model of nanoplastic debris, and silver compounds (silver nanoparticles and silver nitrate), as models of metal contaminant. Using TEM-EDX methodological approaches, we have been able to demonstrate metal sorption by nanopolystyrene. Furthermore, using Caco-2 cells and confocal microscopy, we have observed the co-localization of nanopolystyrene/nanosilver in different cellular compartments, including the cell nucleus. Although the internalization of these complexes showed no exacerbated cytotoxic effects, compared to the effects of each compound alone, the silver/nanopolystyrene complexes modulate the cell’s uptake of silver and slightly modify some harmful cellular effects of silver, such as the ability to induce genotoxic and oxidative DNA damage.
Collapse
Affiliation(s)
- Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (J.D.); (C.C.); (L.V.)
| | - Constanza Cortés
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (J.D.); (C.C.); (L.V.)
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (J.D.); (C.C.); (L.V.)
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (J.D.); (C.C.); (L.V.)
- Correspondence: (R.M.); (A.H.)
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (J.D.); (C.C.); (L.V.)
- Correspondence: (R.M.); (A.H.)
| |
Collapse
|
4
|
Galstyan V. “Quantum dots: Perspectives in next-generation chemical gas sensors” ‒ A review. Anal Chim Acta 2021; 1152:238192. [DOI: 10.1016/j.aca.2020.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
|
5
|
Hempt C, Kaiser JP, Scholder O, Buerki-Thurnherr T, Hofmann H, Rippl A, Schuster TB, Wick P, Hirsch C. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicol In Vitro 2020; 67:104903. [PMID: 32473318 DOI: 10.1016/j.tiv.2020.104903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
For several decades, food-grade synthetic amorphous silica (SAS) have been used as a technological additive to reduce caking of food powders. Human exposure is thus inevitable and safety concerns are taken seriously. The toxicity of silica in general and SAS in particular has been studied extensively. Overall, there is little evidence that food-grade SAS pose any health risks to humans. However, from the available data it was often not clear which type of silica was used. Accordingly, the latest report of the European food safety authority requested additional toxicity data for well-characterised "real food-grade SAS". To close this gap, we screened a panel of ten well-defined, food-grade SAS for potential adverse effects on differentiated Caco-2 cells. Precipitated and fumed SAS with low, intermediate and high specific surface area were included to determine structure-activity relationships. In a physiological dose-range up to 50 μg/ml and 48 h of incubation, none of the materials induced adverse effects on differentiated Caco-2 cells. This held true for endpoints of acute cytotoxicity as well as epithelial specific measures of barrier integrity. These results showed that despite considerable differences in production routes and material characteristics, food-relevant SAS did not elicit acute toxicity responses in intestinal epithelial cells.
Collapse
Affiliation(s)
- Claudia Hempt
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jean-Pierre Kaiser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Olivier Scholder
- Nanoscale Materials Science Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, Powder Technology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandra Rippl
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Tobias B Schuster
- Evonik Resource Efficiency GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
6
|
Kruszewska J, Kur A, Kulpińska D, Grabowska-Jadach I, Matczuk M, Keppler BK, Timerbaev AR, Jarosz M. An improved protocol for ICP-MS-based assessment of the cellular uptake of metal-based nanoparticles. J Pharm Biomed Anal 2019; 174:300-304. [DOI: 10.1016/j.jpba.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
|
7
|
Strugari AFG, Stan MS, Gharbia S, Hermenean A, Dinischiotu A. Characterization of Nanoparticle Intestinal Transport Using an In Vitro Co-Culture Model. NANOMATERIALS 2018; 9:nano9010005. [PMID: 30577573 PMCID: PMC6358835 DOI: 10.3390/nano9010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
We aimed to obtain a tunable intestinal model and study the transport of different types of nanoparticles. Caco-2/HT29-MTX co-cultures of different seeding ratios (7:3 and 5:5), cultured on Transwell® systems, were exposed to non-cytotoxic concentration levels (20 μg/mL) of silicon quantum dots and iron oxide (α-Fe₂O₃) nanoparticles. Transepithelial electric resistance was measured before and after exposure, and permeability was assessed via the paracellular marker Lucifer Yellow. At regular intervals during the 3 h transport study, samples were collected from the basolateral compartments for the detection and quantitative testing of nanoparticles. Cell morphology characterization was done using phalloidin-FITC/DAPI labeling, and Alcian Blue/eosin staining was performed on insert cross-sections in order to compare the intestinal models and evaluate the production of mucins. Morphological alterations of the Caco-2/HT29-MTX (7:3 ratio) co-cultures were observed at the end of the transport study compared with the controls. The nanoparticle suspensions tested did not diffuse across the intestinal model and were not detected in the receiving compartments, probably due to their tendency to precipitate at the monolayer surface level and form visible aggregates. These preliminary results indicate the need for further nanoparticle functionalization in order to appropriately assess intestinal absorption in vitro.
Collapse
Affiliation(s)
- Alina F G Strugari
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Miruna S Stan
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
- Department of Histology, Faculty of Medicine, Pharmacy and Dentistry, Vasile Goldis Western University of Arad, 1 Feleacului, 310396 Arad, Romania.
| | - Anca Dinischiotu
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
8
|
Figarol A, Gibot L, Golzio M, Lonetti B, Mingotaud AF, Rols MP. A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv 2018; 25:1766-1778. [PMID: 30311803 PMCID: PMC6197035 DOI: 10.1080/10717544.2018.1510064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Polymeric nanocarriers must overcome several biological barriers to reach the vicinity of solid tumors and deliver their encapsulated drug. This study assessed the in vitro and in vivo passage through the blood vessel wall to tumors of two well-characterized polymeric nanocarriers: poly(ethyleneglycol-b-ε-caprolactone) micelles and polymersomes charged with a fluorescent membrane dye (DiO: 3,3'-dioctadecyloxacarbo-cyanine perchlorate). The internalization and translocation from endothelial (human primary endothelial cells HUVEC) to cancer cells (human tumor cell line HCT-116) was studied in conventional 2D monolayers, 3D tumor spheroids, or in an endothelium model based on transwell assay. Micelles induced a faster DiO internalization compared to polymersomes but the latter crossed the endothelial monolayer more easily. Both translocation rates were enhanced by the addition of a pro-inflammatory factor or in the presence of tumor cells. These results were confirmed by early in vivo experiments. Overall, this study pointed out the room for the improvement of polymeric nanocarriers design to avoid drug losses when crossing the blood vessel walls.
Collapse
Affiliation(s)
- Agathe Figarol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | - Laure Gibot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | | | - Marie-Pierre Rols
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
9
|
Guarnieri D, Sánchez-Moreno P, Del Rio Castillo AE, Bonaccorso F, Gatto F, Bardi G, Martín C, Vázquez E, Catelani T, Sabella S, Pompa PP. Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800227. [PMID: 29756263 DOI: 10.1002/smll.201800227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Indexed: 05/09/2023]
Abstract
The biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal). Physical-chemical changes of FLG and GO during digestion are assessed by Raman spectroscopy. Moreover, the effect of chronic exposure to digested nanomaterials on integrity and functionality of an in vitro model of intestinal barrier is also determined according to a second SOP. These results show a modulation of the aggregation state of FLG and GO nanoflakes after experiencing the complex environments of the different digestive compartments. In particular, chemical doping effects are observed due to FLG and GO interaction with digestive juice components. No structural changes/degradation of the nanomaterials are detected, suggesting that they are biopersistent when administered by oral route. Chronic exposure to digested graphene does not affect intestinal barrier integrity and is not associated with inflammation and cytotoxicity, though possible long-term adverse effects cannot be ruled out.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | | | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
- Department of Engineering for Innovation, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Cristina Martín
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Sabella
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| |
Collapse
|
10
|
Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0787-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1691-1699. [PMID: 29320202 DOI: 10.1021/acs.langmuir.7b04003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interaction of functional nanoparticles with cells and model biomembranes has been widely studied to evaluate the effectiveness of the particles as potential drug delivery vehicles and bioimaging labels as well as in understanding nanoparticle cytotoxicity effects. Charged nanoparticles, in particular, with tunable surface charge have been found to be effective in targeting cellular membranes as well as the subcellular matrix. However, a microscopic understanding of the underlying physical principles that govern nanoparticle binding, uptake, or diffusion on cells is lacking. Here, we report the first experimental studies of nanoparticle diffusion on model biomembranes and correlate this to the existence of nanoscale dynamics and structural heterogeneities using super-resolution stimulated emission depletion (STED) microscopy. Using confocal and STED microscopy coupled with fluorescence correlation spectroscopy (FCS), we provide novel insight on why these nanoparticles show enhanced binding on two-component lipid bilayers as compared to single-component membranes and how binding and diffusion is correlated to subdiffraction nanoscale dynamics and structure. The enhanced binding is also dictated, in part, by the presence of structural and dynamic heterogeneity, as revealed by STED-FCS studies, which could potentially be used to understand enhanced nanoparticle binding in raft-like domains in cell membranes. In addition, we also observe a clear correlation between the enhanced nanoparticle diffusion on membranes and the extent of membrane penetration by the nanoparticles. Our results not only have a significant impact on our understanding of nanoparticle binding and uptake as well as diffusion in cell and biomembranes, but have very strong implications for uptake mechanisms and diffusion of other biomolecules, like proteins on cell membranes and their connections to functional membrane nanoscale platform.
Collapse
Affiliation(s)
- Roobala Chelladurai
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Koushik Debnath
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Sciences , Kolkata 700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
12
|
Kucki M, Diener L, Bohmer N, Hirsch C, Krug HF, Palermo V, Wick P. Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status. J Nanobiotechnology 2017; 15:46. [PMID: 28637475 PMCID: PMC5480125 DOI: 10.1186/s12951-017-0280-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Understanding the interaction of graphene-related materials (GRM) with human cells is a key to the assessment of their potential risks for human health. There is a knowledge gap regarding the potential uptake of GRM by human intestinal cells after unintended ingestion. Therefore the aim of our study was to investigate the interaction of label-free graphene oxide (GO) with the intestinal cell line Caco-2 in vitro and to shed light on the influence of the cell phenotype given by the differentiation status on cellular uptake behaviour. RESULTS Internalisation of two label-free GOs with different lateral size and thickness by undifferentiated and differentiated Caco-2 cells was analysed by scanning electron microscopy and transmission electron microscopy. Semi-quantification of cells associated with GRM was performed by flow cytometry. Undifferentiated Caco-2 cells showed significant amounts of cell-associated GRM, whereas differentiated Caco-2 cells exhibited low adhesion of GO sheets. Transmission electron microscopy analysis revealed internalisation of both applied GO (small and large) by undifferentiated Caco-2 cells. Even large GO sheets with lateral dimensions up to 10 µm, were found internalised by undifferentiated cells, presumably by macropinocytosis. In contrast, no GO uptake could be found for differentiated Caco-2 cells exhibiting an enterocyte-like morphology with apical brush border. CONCLUSIONS Our results show that the internalisation of GO is highly dependent on the cell differentiation status of human intestinal cells. During differentiation Caco-2 cells undergo intense phenotypic changes which lead to a dramatic decrease in GRM internalisation. The results support the hypothesis that the cell surface topography of differentiated Caco-2 cells given by the brush border leads to low adhesion of GO sheets and sterical hindrance for material uptake. In addition, the mechanical properties of GRM, especially flexibility of the sheets, seem to be an important factor for internalisation of large GO sheets by epithelial cells. Our results highlight the importance of the choice of the in vitro model to enable better in vitro-in vivo translation.
Collapse
Affiliation(s)
- Melanie Kucki
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Liliane Diener
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Nils Bohmer
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Harald F. Krug
- International Research Cooperations Manager, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Vincenzo Palermo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Richerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|