1
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
2
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024; 13:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
3
|
Krasoń MZ, Paradowska A, Boncel S, Lejawa M, Fronczek M, Śliwka J, Nożyński J, Bogus P, Hrapkowicz T, Czamara K, Kaczor A, Radomski MW. Graphene Oxide Significantly Modifies Cardiac Parameters and Coronary Endothelial Reactivity in Healthy and Hypertensive Rat Hearts Ex Vivo. ACS OMEGA 2024; 9:28397-28411. [PMID: 38973833 PMCID: PMC11223131 DOI: 10.1021/acsomega.4c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
Interactions of graphene oxide (GO) with an ex vivo rat heart and its coronary vessels have not been studied yet. Moreover, the conflicting data on the "structure-properties" relationships do not allow for biomedical applications of GO. Herein, we study the impact of GO on the ex vivo isolated rat heart, normotensive and hypertensive, under the working heart and the constant-pressure perfusion (Langendorff) regimes. Four structural GO variants of the following initial morphology were used: few-layer (below 10-layer) GO1, O < 49%; predominantly single-layer GO2, O = 41-50%; 15-20-layer GO3, O < 11%; and few-layer (below 10-layer) NH4 +-functionalized GO4, O < 44%, N = 3-6%. The aqueous GO dispersions, sonicated and stabilized with bovine serum albumin in Krebs-Henseleit-like solution-uniformized in terms of the particle size-were eventually size-monodisperse as revealed by dynamic light scattering. To study the cardiotoxicity mechanisms of GO, histopathology, Raman spectroscopy, analysis of cardiac parameters (coronary and aortic flows, heart rate, aortic pressure), and nitric oxide (NO-)-dependent coronary flow response to bradykinin (blood-vessel-vasodilator) were used. GO1 (10 mg/L) exerted no effects on cardiac function and preserved an increase in coronary flow in response to bradykinin. GO2 (10 mg/L) reduced coronary flow, aortic pressure in normotensive hearts, and coronary flow in hypertensive hearts, and intensified the response to bradykinin in normal hearts. GO3 (10 mg/L) reduced all parameters in hypertensive hearts and coronary response to bradykinin in normal hearts. At higher concentrations (normotensive hearts, 30 mg/L), the coronary response to bradykinin was blocked. GO4 (10 mg/L) reduced the coronary flow in normal hearts, while for hypertensive hearts, all parameters, except the coronary flow, were reduced and the coronary response to bradykinin was blocked. The results showed that a low number of GO layers and high O-content were safer for normal and hypertensive rat hearts. Hypertensive hearts deteriorated easier upon perfusion with low-O-content GOs. Our findings support the necessity of strict control over the GO structure during organ perfusion and indicate the urgent need for personalized medicine in biomedical applications of GO.
Collapse
Affiliation(s)
- Marcin Z. Krasoń
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
- Department
of Cardiac, Vascular and Endovascular Surgery and Transplantology,
Silesian Center for Heart Disease, Medical
University of Silesia in Katowice, Marii Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Anna Paradowska
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
| | - Sławomir Boncel
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Mateusz Lejawa
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
- Department
of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 38, 41-808 Zabrze, Poland
| | - Martyna Fronczek
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
- Department
of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 38, 41-808 Zabrze, Poland
| | - Joanna Śliwka
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
- Department
of Cardiac, Vascular and Endovascular Surgery and Transplantology,
Silesian Center for Heart Disease, Medical
University of Silesia in Katowice, Marii Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Jerzy Nożyński
- Department
of Cardiac, Vascular and Endovascular Surgery and Transplantology,
Silesian Center for Heart Disease, Medical
University of Silesia in Katowice, Marii Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Piotr Bogus
- Silesian
Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland
| | - Tomasz Hrapkowicz
- Department
of Cardiac, Vascular and Endovascular Surgery and Transplantology,
Silesian Center for Heart Disease, Medical
University of Silesia in Katowice, Marii Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Krzysztof Czamara
- Jagiellonian
Centre of Experimental Therapeutics (JCET), Jagiellonian University, M. Bobrzyńskiego 14, 30-348 Kraków, Poland
| | - Agnieszka Kaczor
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marek W. Radomski
- Department
of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon SKS7N 5E5, Canada
| |
Collapse
|
4
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
6
|
Mu Z, Jin T, Chu T, Lu H, Chen Y, Li S, Zeng B, Huang C, Lei K, Cai X, Deng H, Hu R. Functionalized MoS 2-nanosheets with NIR-Triggered nitric oxide delivery and photothermal activities for synergistic antibacterial and regeneration-promoting therapy. J Nanobiotechnology 2023; 21:463. [PMID: 38044437 PMCID: PMC10694958 DOI: 10.1186/s12951-023-02167-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility. Herein, a novel multimodal synergistic antibacterial system (SNO-CS@MoS2) was developed. This system employs easily surface-modified thin-layer MoS2 as photothermal agents and loaded with S-nitrosothiol-modified chitosan (SNO-CS) via electrostatic interactions, thus realizing the combination of NO gas therapy and photothermal therapy (PTT). Furthermore, this surface modification renders SNO-CS@MoS2 highly stable and capable of binding with bacteria. Through PTT's thermal energy, SNO-CS@MoS2 rapidly generates massive NO, collaborating with PTT to achieve antibacterial effects. This synergistic therapy can swiftly disrupt the bacterial membrane, causing protein leakage and ATP synthesis function damage, ultimately eliminating bacteria. Notably, after effectively eliminating all bacteria, the residual SNO-CS@MoS2 can create trace NO to promote fibroblast migration, proliferation, and vascular regeneration, thereby accelerating wound healing. This study concluded that SNO-CS@MoS2, a novel multifunctional nanomaterial with outstanding antibacterial characteristics and potential to promote wound healing, has promising applications in infected soft tissue wound treatment.
Collapse
Affiliation(s)
- Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Ting Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Tengda Chu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Hongyang Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Yuanqi Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Sisi Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - BaiRui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Kezheng Lei
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China.
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China.
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China.
| |
Collapse
|
7
|
AbouAitah K, Sabbagh F, Kim BS. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2666. [PMID: 37836307 PMCID: PMC10574074 DOI: 10.3390/nano13192666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article's main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| |
Collapse
|
8
|
Jithendra P, Mohamed JMM, Annamalai D, Al-Serwi RH, Ibrahim AM, El-Sherbiny M, Rajam AM, Eldesoqui M, Mansour N. Biopolymer collagen-chitosan scaffold containing Aloe vera for chondrogenic efficacy on cartilage tissue engineering. Int J Biol Macromol 2023; 248:125948. [PMID: 37482169 DOI: 10.1016/j.ijbiomac.2023.125948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The chondrogenic efficacy of aloe vera blended collagen-chitosan (COL-CS-AV) porous scaffold was investigated using articular chondrocytes in a standard condition. Cytocompatibility was analyzed using fluorescent dyes (calcein AM/ethidium bromide) and the viable cells were quantified by MTT assay. Glycosaminoglycan (GAG) content of ECM was estimated by using 1, 9-Dimethyl methylene Blue (DMMB). The total RNA content was quantified and the cartilage specific genes (col2a1, Acan) were amplified by reverse transcription-PCR from the cell lysate of the scaffolds. Histological examination was made using Haematoxylin and Eosin (H&E), safranin-O, masson's trichrome, alcian blue, and alizarin red to stain the specific component of ECM secreted on the construct. The cartilage specific collagen type II was estimated by immunohistochemistry using monoclonal type II collagen antibody. The results of these studies proved that COL-CS-AV scaffold has more chondrogenic efficacy than COL-CS, thus the aloe vera blend COL-CS-AV scaffold might be used as suitable candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Panneerselvam Jithendra
- Department of Biotechnology, CSIR-Central Leather Research Institute, Chennai 600020, India; Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Dinesh Annamalai
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Abraham Merlin Rajam
- Medical Research center, Women's wellness Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nimer Mansour
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
9
|
Shen Z, Zhu W, Huang Y, Zhang J, Wu Y, Pan Y, Yang G, Wang D, Li Y, Tang BZ. Visual Multifunctional Aggregation-Induced Emission-Based Bacterial Cellulose for Killing of Multidrug-Resistant Bacteria. Adv Healthc Mater 2023; 12:e2300045. [PMID: 37042250 DOI: 10.1002/adhm.202300045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Multidrug-resistant (MDR) bacteria-related wound infections are a thorny issue. It is urgent to develop new antibacterial wound dressings that can not only prevent wounds from MDR bacteria infection but also promote wound healing. Herein, an aggregation-induced emission (AIE) molecule BITT-composited bacterial cellulose (BC) is presented as wound dressings. BC-BITT composites have good transparency, making it easy to monitor the wound healing process through the composite membrane. The BC-BITT composites retain the advantages of biocompatible BC, and display photodynamic and photothermal synergistic antibacterial effects under irradiation of a 660 nm laser. Furthermore, the BC-BITT composites show excellent wound healing performance in a mouse full-thickness skin wound model infected by MDR bacteria, simultaneously with negligible toxicity. This work paves a way for treating clinically troublesome wound infections.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing and Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen, Guangdong, 518055, China
| | - Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
10
|
Naskar A, Kim KS. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023; 15:pharmaceutics15041116. [PMID: 37111601 PMCID: PMC10146283 DOI: 10.3390/pharmaceutics15041116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT–PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT–PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based Nanomaterials for Bacterial Imaging and Antimicrobial Applications: Recent Advances and Perspectives. Molecules 2023; 28:2863. [PMID: 36985835 PMCID: PMC10057855 DOI: 10.3390/molecules28062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacterial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms. The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides, and other materials retain the excellent antimicrobial properties of AIEgens while giving other materials excellent properties, further enhancing the antimicrobial effect of the material. This paper reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity, focusing on the materials' preparation and their related antimicrobial strategies. Finally, it concludes with an outlook on some of the problems and challenges still facing the field.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
12
|
Yang Y, Zhang C, Gong M, Zhan Y, Yu Z, Shen C, Zhang Y, Yu L, Chen Z. Integrated photo-inspired antibacterial polyvinyl alcohol/carboxymethyl cellulose hydrogel dressings for pH real-time monitoring and accelerated wound healing. Int J Biol Macromol 2023; 238:124123. [PMID: 36963550 DOI: 10.1016/j.ijbiomac.2023.124123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Recurrent infection of chronic wounds remains a major clinical challenge. Recently, the hydrogel antibacterial materials have attracted extensive attention for preventing infection in wound healing. In this study, a hybrid hydrogel made of polyvinyl alcohol - iodine (PAI), sodium carboxymethyl cellulose (CMC), and carbamino quantum dot (CQDs) was prepared by the cross-linking of hydrogen bonds, named as polyvinyl alcohol‑iodine/sodium carboxymethyl cellulose/carbon quantum dots (PAI/CMC/CQDs). The composite hydrogels exhibited the outstanding photothermal conversion efficiency with near infrared (NIR) light irradiation, and the high antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Meanwhile, the elevated temperature of the composite hydrogels up to ~45 °C was able to stimulate the migration of epidermal cell to accelerate skin repair. Given that PAI and CQDs could respond to different pH values (5-8), the real-time would pH information was provided by the visible light and fluorescent light dual monitoring system by naked eye. Moreover, the visible-fluorescent images could be collected and transformed into RGB signals to quantify the would pH levels, avoiding secondary injuries caused by frequent dressing changes. PAI/CMC/CQDs was demonstrated the significant therapeutic effect on chronic wounds by eliminating bacterial infections and promoting skin repair under the smart RGB monitoring system.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Gong
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Zhan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhenkun Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chang Shen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Li Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
13
|
Zhao Z, Zhang Y, Cheng Y, Li J, Wang W, Huang S, Ma X, Zhang X. Thermosensitive Nanotherapeutics for Localized Photothermal Ablation of MRSA-Infected Osteomyelitis Combined with Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12842-12854. [PMID: 36862542 DOI: 10.1021/acsami.2c23312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic osteomyelitis is an inflammatory skeletal disease caused by a bacterial infection that affects the periosteum, bone, and bone marrow. Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent. The bacterial biofilm formed on the necrotic bone is a considerable challenge to treating MRSA-infected osteomyelitis. Here, we developed an all-in-one cationic thermosensitive nanotherapeutic (TLCA) for treating MRSA-infected osteomyelitis. The prepared TLCA particles were positively charged and <230 nm in size, which allowed them to diffuse effectively into the biofilm. The positive charges of the nanotherapeutic accurately targeted the biofilm, and it subsequently regulated the drug release under near-infrared (NIR) light irradiation, thereby efficiently exerting the synergistic effect of NIR light-driven photothermal sterilization and chemotherapy. More than 80% of the antibiotics were abruptly released at 50 °C, which dispersed the biofilm by up to 90%. When applied to MRSA-infected osteomyelitis, with a localized temperature of 50 °C induced by 808 nm laser irradiation, it not only eliminated the bacteria and controlled infection but also inhibited the bone tissue inflammatory response, significantly reducing TNF-α, IL-1β, and IL-6 levels. In conclusion, we constructed an all-in-one antimicrobial treatment modality that provides a new and effective strategy for the topical treatment of chronic osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinlong Ma
- Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Li B, Wang W, Zhao L, Yan D, Li X, Gao Q, Zheng J, Zhou S, Lai S, Feng Y, Zhang J, Jiang H, Long C, Gan W, Chen X, Wang D, Tang BZ, Liao Y. Multifunctional AIE Nanosphere-Based "Nanobomb" for Trimodal Imaging-Guided Photothermal/Photodynamic/Pharmacological Therapy of Drug-Resistant Bacterial Infections. ACS NANO 2023; 17:4601-4618. [PMID: 36826229 DOI: 10.1021/acsnano.2c10694] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Injudicious or inappropriate use of antibiotics has led to the prevalence of drug-resistant bacteria, posing a huge menace to global health. Here, a self-assembled aggregation-induced emission (AIE) nanosphere (AIE-PEG1000 NPs) that simultaneously possesses near-infrared region II (NIR-II) fluorescence emissive, photothermal, and photodynamic properties is prepared using a multifunctional AIE luminogen (AIE-4COOH). The AIE-PEG1000 NPs were encapsulated with teicoplanin (Tei) and ammonium bicarbonate (AB) into lipid nanovesicles to form a laser-activated "nanobomb" (AIE-Tei@AB NVs) for the multimodal theranostics of drug-resistant bacterial infections. In vivo experiments validate that the "nanobomb" enables high-performance NIR-II fluorescence, infrared thermal, and ultrasound (AB decomposition during the photothermal process to produce numerous CO2/NH3 bubbles, which is an efficient ultrasound contrast agent) imaging of multidrug-resistant bacteria-infected foci after intravenous administration of AIE-Tei@AB NVs followed by 660 nm laser stimulation. The highly efficient photothermal and photodynamic features of AIE-Tei@AB NVs, combined with the excellent pharmacological property of rapidly released Tei during bubble generation and NV disintegration, collectively promote broad-spectrum eradication of three clinically isolated multidrug-resistant bacteria strains and rapid healing of infected wounds. This multimodal imaging-guided synergistic therapeutic strategy can be extended for the theranostics of superbugs.
Collapse
Affiliation(s)
- Bin Li
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Lu Zhao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Qiuxia Gao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Sitong Zhou
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Shanshan Lai
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Jie Zhang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Hang Jiang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Chengmin Long
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wenjun Gan
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Xiaodong Chen
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yuhui Liao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
15
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|
16
|
Shi Y, Zhu D, Wang D, Liu B, Du X, Wei G, Zhou X. Recent advances of smart AIEgens for photoacoustic imaging and phototherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Zhang Y, Li D, Xu Y, Niu Y. Application of a Cascaded Nanozyme in Infected Wound Recovery of Diabetic Mice. ACS Biomater Sci Eng 2022; 8:1522-1531. [PMID: 35274927 DOI: 10.1021/acsbiomaterials.1c01590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of peroxidase (POD)-like nanozyme-derived catalytic therapy has provided a promising choice for reactive oxygen species (ROS)-mediated broad-spectrum antibacterials to replace antibiotics, but it still suffers from limitations of low therapeutic efficiency and unusual addition of unstable H2O2. Considering that the higher blood glucose in diabetic wounds provides much more numerous nutrients for bacterial growth, a cascade nanoenzymatic active material was developed by coating glucose oxidase (GOx) onto POD-like Fe2(MoO4)3 [Fe2(MoO4)3@GOx]. GOx could consume the nutrient of glucose to produce gluconic acid (weakly acidic) and H2O2, which could be subsequently converted into highly oxidative •OH via the catalysis of POD-like Fe2(MoO4)3. Accordingly, the synergistic effect of starvation and ROS-mediated therapy showed significantly efficient antibacterial effect while avoiding the external addition of H2O2 that affects the stability and efficacy of the therapy system. Compared with the bactericidal rates of 46.2-59.404% of GOx or Fe2(MoO4)3 alone on extended-spectrum β-lactamases producing Escherichia coli and methicillin-resistant Staphylococcus aureus, those of the Fe2(MoO4)3@GOx group are 98.396 and 98.776%, respectively. Animal experiments showed that the as-synthesized Fe2(MoO4)3@GOx could much efficiently promote the recovery of infected wounds in type 2 diabetic mice while showing low cytotoxicity in vivo.
Collapse
Affiliation(s)
- Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Danxia Li
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.,Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264099, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
18
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
19
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
20
|
Hua L, Qian H, Lei T, Liu W, He X, Hu Y, Lei P. Triggering Drug Release and Thermal-Disrupting Interface Induced Mitigation of Composite Photothermal Hydrogel Treating Infectious Wounds. Front Bioeng Biotechnol 2021; 9:796602. [PMID: 34966728 PMCID: PMC8710761 DOI: 10.3389/fbioe.2021.796602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: With the development of photothermal technology, the appearance of composite photothermal hydrogels has increased the selectivity of treating infectious skin defects. However, how to design composite photothermal hydrogel with better antibacterial performance, reduce the resistance rate of bacteria, and the damage rate of normal tissue still needs further study. Methods: The Prussian blue and tannic acid were loaded on polyacrylamide hydrogels. Characterization of DLS, Zeta potential, UV absorption spectrum, hydrogel swelling rate, scanning electronic microscopic, drug release profile, photothermal properties, in vitro cytocompatibility, and antibacterial properties. Experiments were measured by skin defect repair, antibacterial detection, and histological staining experiments. Results: The polyacrylamide hydrogel with photothermal effect and controllable release of tannic acid was successfully prepared. The hydrogel has strong light transmittance and adhesion, and the swelling rate can reach 600%, which improves the self-cleaning ability. SEM results showed the porous structure of hydrogels, promoting cell growth. Through photothermal switches, the composite hydrogel represented adjustable and controllable drug release ability. Combined with the synergistic antibacterial effect of tannic acid, this further enhanced the antibacterial ability and reduced the probability of antibiotic resistance. The in vitro and in vivo experiments showed the hydrogel had good biocompatibility and excellent antibacterial properties, which could promote the repair of infectious skin defects in SD rats. Conclusion: We fabricated a hydrogel with a triggering drug release rate, alleviating heat damage, transparent morphology, mechanical stability, strong adhesion, good biocompatibility, and synergistic antibacterial ability, which presents new treatment options for infectious skin defect repair.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
- The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Hu Qian
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Ting Lei
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Wenbin Liu
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Xi He
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Pengfei Lei
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| |
Collapse
|
21
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
22
|
Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. NANOTECHNOLOGY 2021; 32:502008. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Image-guided therapy, with simultaneous imaging and therapy functions, has the potential to greatly enhance the therapeutic efficacy of anticancer therapy, and reduce the incidence of side effects. Fluorescence imaging has the advantages of easy operation, abundant signal, high contrast, and fast response for real-time and non-invasive tracking. Luminogens with aggregation-induced emission characteristics (AIEgens) can emit strong luminescence in an aggregate state, which makes them ideal materials to construct applicative fluorophores for fluorescence imaging. The opportunity for image-guided cancer treatment has inspired researchers to explore the theranostic application of AIEgens combined with other therapy methods. In recent years, many AIEgens with efficient photosensitizing or photothermal abilities have been designed by precise molecular engineering, with superior performance in image-guided anticancer therapy. Owing to the hydrophobic property of most AIEgens, an assembly approach has been wildly utilized to construct biocompatible AIEgen-based nanostructures in aqueous systems, which can be used for image-guided anticancer therapy. In the present review, we summarize the recent advances in the assembled AIEgens for image-guided anticancer therapy. Five types of image-guided anticancer therapy using assembled AIEgens are included: chemotherapy, photodynamic therapy, photothermal therapy, gene therapy, and synergistic therapy. Moreover, a brief conclusion with the discussion of current challenges and future perspectives in this area is further presented.
Collapse
Affiliation(s)
- Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
- Department of Oncological Gynecology, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Leijing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| |
Collapse
|
23
|
Li M, Wen H, Li H, Yan ZC, Li Y, Wang L, Wang D, Tang BZ. AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials 2021; 276:121007. [PMID: 34237505 PMCID: PMC8253668 DOI: 10.1016/j.biomaterials.2021.121007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
The outbreak of infectious diseases such as COVID-19 causes an urgent need for abundant personal protective equipment (PPE) which leads to a huge shortage of raw materials. Additionally, the inappropriate disposal and sterilization of PPE may result in a high risk of cross-contamination. Therefore, the exploration of antimicrobial materials possessing both microbe interception and self-decontamination effects to develop reusable and easy-to-sterilize PPE is of great importance. Herein, an aggregation-induced emission (AIE)-active luminogen-loaded nanofibrous membrane (TTVB@NM) sharing sunlight-triggered photodynamic/photothermal anti-pathogen functions are prepared using the electrospinning technique. Thanks to its porous nanostructure, TTVB@NM shows excellent interception effects toward ultrafine particles and pathogenic aerosols. Benefiting from the superior photophysical properties of the AIE-active dopants, TTVB@NM exhibits integrated properties of wide absorption in visible light range, efficient ROS generation, and moderate photothermal conversion performance. A series of antimicrobial evaluations reveal that TTVB@NM could effectively inactivate pathogenic aerosols containing bacteria (inhibition rate: >99%), fungi (~88%), and viruses (>99%) within only 10 min sunlight irradiation. This study represents a new strategy to construct reusable and easy-to-sterilize hybrid materials for potential bioprotective applications.
Collapse
Affiliation(s)
- Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haifei Wen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoxuan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhi-Chao Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
24
|
Zhang X, Chen Y, Li C, Xue Z, Wu H, Li J, Ou H, Shen J, Ding D. Root Canal Disinfection Using Highly Effective Aggregation-Induced Emission Photosensitizer. ACS APPLIED BIO MATERIALS 2021; 4:3796-3804. [PMID: 35006809 DOI: 10.1021/acsabm.0c01274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Root canal (RC) therapy is the primary treatment of dental-pulp and periapical diseases. The mechanical method and chemical irrigation have limitations in RC therapy. Much attention has focused on exploring more controllable and efficacious antimicrobial methods. Although the introduction of photodynamic therapy (PDT) has provided the ideas for RC debridement, the problems of low photosensitive efficiency and nonsignificant germicidal potency of traditional photosensitizers (e.g., methylene blue) have not been solved. Since the concept of "aggregation-induced emission" (AIE) was proposed, optimization of photosensitizers has been boosted considerably. Herein, an AIE photosensitizer, DPA-SCP, with a strong ability to generate singlet oxygen, is proposed for use as an antibacterial application in infected RCs. The antimicrobial activity of DPA-SCP against Enterococcus faecalis suspensions was tested. To explore the antibacterial ability of this photosensitizer against bacterial-biofilm colonization on the inner walls of RCs, we established a model of bacterial biofilm infection. PDT mediated by DPA-SCP had a significant germicidal effect on E. faecalis suspensions and 21-day biofilms in human RCs. PDT mediated by DPA-SCP could achieve efficiency equivalent to that observed using 1% NaOCl, and lead to no significant change in the dentin surface, chemical corrosion, or cytotoxicity.
Collapse
Affiliation(s)
- Xuewen Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Zhijun Xue
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Hongshan Wu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Jun Li
- Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hanlin Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Wang Y, Liu S, Yu W. Functionalized Graphene Oxide-Reinforced Chitosan Hydrogel as Biomimetic Dressing for Wound Healing. Macromol Biosci 2021; 21:e2000432. [PMID: 33599084 DOI: 10.1002/mabi.202000432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Indexed: 11/07/2022]
Abstract
A novel chitosan composite hydrogel by combining functionalized graphene oxide (CGO) is fabricated. The introduction of CGO significantly improves the mechanical property of CS hydrogel owing to the enhanced interaction between chitosan and CGO sheets. In comparison to the CS-GO composite hydrogel, the compressive stress of the CS-CGO composite hydrogel increases from 1.9 MPa at strain of 70.4% to 4.2 MPa at strain of 78.4%, the tensile stress and strain improve from 141.2 kPa and 134.6% to 300.2 kPa and 165.9%, respectively. An interconnected porous structure is formed in the CS-CGO composite hydrogel and the pore size decreases as the CGO loading increases, which is desirable in improving its mechanical property. Furthermore, the cytotoxicity tests indicate that the CS-CGO composite hydrogel possesses an excellent biocompatibility and can promote the adhesion and proliferation of fibroblasts. In vivo evaluation on full-thickness excision wounds in experimental rat shows that the CS-CGO composite hydrogel significantly accelerates wound healing, and the wound closure rate reaches up to 92.2% after 21 days. A feasible strategy to fabricate an enhanced chitosan composite hydrogel for application in wound healing is offered.
Collapse
Affiliation(s)
- Yanjie Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
26
|
Emerging trends in aggregation induced emissive luminogens as bacterial theranostics. J Drug Target 2021; 29:793-807. [PMID: 33583291 DOI: 10.1080/1061186x.2021.1888111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emergence and spread of pathogenic bacteria, particularly antibiotic-resistant strains pose grave global concerns worldwide, which demand for the rapid development of highly selective and sensitive strategies for specific bacterial detection, identification, imaging and therapy. The fascinating feature of aggregation-induced emissive molecules (AIEgens) to display fluorescence in aggregate form can be suitably coupled with nanotechnology for developing theranostic AIE dots that can offer convenient and customised functions such as sensing, imaging, detection, discrimination and cell kill of different bacterial types. The initial section of the article reveals the necessity for incorporating diagnostic imaging with antibacterial therapy, while the latter part delivers mechanistic insights on the benefits of AIE fluorophores in theranostic applications. Further, the review illustrates the recent advancements of AIEgens as theranostic nanolights in bacterial detection, identification and eradication. The review is organised according to the different classes of AIE-active bacterial theranostics such as carrier-free nanoprodrugs, nanomachines for synergistic imaging-guided cancer treatment and bacterial kill, AIE polymers, bioconjugates and nanoparticle carriers. By elucidating their design principles and applications, as well as highlighting the recent trends and perspectives that can be further explored, we hope to instill more research interest in AIE bacterial theranostics for future translational research.HighlightsCombination of aggregation induced emissive fluorophores and nanotechnology for developing bacterial theranostics.AIE theranostics with customised functions for bacterial imaging, detection, discrimination and cell kill.
Collapse
|
27
|
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev 2021; 50:8762-8789. [PMID: 34159993 DOI: 10.1039/d1cs00074h] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Due to the emerging bacterial resistance and the protection of tenacious biofilms, it is hard for the single antibacterial modality to achieve satisfactory therapeutic effects nowadays. In recent years, photothermal therapy (PTT)-derived multimodal synergistic treatments have received wide attention and exhibited cooperatively enhanced bactericidal activity. PTT features spatiotemporally controllable generation of hyperthermia that could eradicate bacteria without inducing resistance. The synergy of it with other treatments, such as chemotherapy, photo-dynamic/catalytic therapy (PDT/PCT), immunotherapy, and sonodynamic therapy (SDT), could lower the introduced laser density in PTT and avoid undesired overheating injury of normal tissues. Simultaneously, by heat-induced improvement of the bacterial membrane permeability, PTT is conducive for accelerated intracellular permeation of chemotherapeutic drugs as well as reactive oxygen species (ROS) generated by photosensitizers/sonosensitizers, and could promote infiltration of immune cells. Thereby, it could solve the currently existing sterilization deficiencies of other combined therapeutic modes, for example, bacterial resistance for chemotherapy, low drug permeability for PDT/PCT/SDT, adverse immunoreactions for immunotherapy, etc. Admittedly, PTT-derived synergistic treatments are becoming essential in fighting bacterial infection, especially those caused by antibiotic-resistant strains. This review firstly presents the classical and newly reported photothermal agents (PTAs) in brief. Profoundly, through the introduction of delicately designed nanocomposite platforms, we systematically discuss the versatile photothermal-derived multimodal synergistic therapy with the purpose of sterilization application. At the end, challenges to PTT-derived combinational therapy are presented and promising synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
28
|
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 2020; 328:251-262. [DOI: 10.1016/j.jconrel.2020.08.055] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
29
|
Zhao J, Huang S, Ravisankar P, Zhu H. Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS APPLIED BIO MATERIALS 2020; 3:8188-8210. [DOI: 10.1021/acsabm.0c00950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhao
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shuyi Huang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming Guangdong, 525000, P. R. China
| |
Collapse
|