1
|
Chen Y, Liu L, Li M, Chen X, Li Y, Tao J, Deng Y. Nanoparticle-enabled In Situ drug potency activation for enhanced tumor-specific therapy. Eur J Pharm Sci 2025; 205:106989. [PMID: 39675436 DOI: 10.1016/j.ejps.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Cancer treatment faces significant challenges including inadequate tumor specificity, drug resistance, and severe side effects, often resulting in unsatisfactory patient outcomes. Nanomedicines offer a transformative platform for tumor-targeted drug delivery and antitumor potency activation, providing an indispensable strategy for overcoming the severe damage to normal tissues caused by the inherent "always-on" cytotoxicity of conventional therapeutic agents. This review focuses on the emerging concept of "nanoparticle-enabled in situ drug potency activation", where inactive or minimally toxic agents are selectively activated within tumors to enhance the therapeutic efficacy and minimize the adverse effects. We systematically analyzed literature from PubMed and Web of Science databases spanning the last two decades, emphasizing experimental evidence supporting this in situ drug potency activation concept. Key strategies including stimuli-responsive prodrug nanoparticles, metal-induced activation, and bioorthogonal reactions are critically evaluated for their potential to overcome limitations in current cancer therapies. The findings highlight the potential of in situ potency activation as a promising alternative to conventional therapeutics, with far-reaching implications for advancing effective and safe cancer treatments.
Collapse
Affiliation(s)
- Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lishan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaolian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yaoqi Li
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jing Tao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Wang Y, Zhou Y, Wang J, Zhang L, Liu C, Guo D, Yu Y, Ye R, Wang Y, Xu B, Luo Y, Chen D. Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma. Int J Pharm 2025; 671:125294. [PMID: 39884591 DOI: 10.1016/j.ijpharm.2025.125294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved. This study has developed a biocompatible nanomedicine delivery system, PA-HM@DOX/ICG, employing hollow mesoporous silica nanoparticles (HMSNs) as the nanocarrier. The nanomedicine incorporates the chemotherapeutic agent doxorubicin (DOX) along with the sonosensitizer indocyanine green (ICG) within its encapsulation, and undergoes additional surface modification using lipid-nucleic acid conjugates (DSPE-PEG-AS1411) to facilitate active targeted delivery. In vitro cellular experiments have validated that PA-HM@DOX/ICG can specifically recognize and be internalized by SU-DHL-4 lymphoma cells due to the overexpression of nucleolin on their surface. The synergistic effects of DOX-induced DNA damage and reactive oxygen species (ROS) generated by ultrasound-activated ICG induce apoptosis in these cells. Furthermore, PA-HM@DOX/ICG displays minimal toxicity towards LO2 normal hepatocytes, indicating a favorable biosafety profile. In vivo animal studies have shown that PA-HM@DOX/ICG effectively accumulates in tumor sites in mice through both the enhanced permeability and retention (EPR) effect and nucleolin-mediated targeting. Under ultrasound irradiation, PA-HM@DOX/ICG significantly inhibits tumor growth. This study introduces a nanoplatform that integrates chemotherapy with sonodynamic therapy, offering a novel approach for the efficient treatment of DLBCL.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China.
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, China.
| | - Lu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Yanlin Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Roumei Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Yun Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; Jiamusi Campus of Heilongjiang University of TCM, Jiamusi 154007, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003 China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Xue F, Zhao H, Liu H, Lou J, Li K, Wang Z, An L, Tian Q. Autophagic cell death induced by pH modulation for enhanced iron-based chemodynamic therapy. J Colloid Interface Sci 2025; 678:13-23. [PMID: 39276684 DOI: 10.1016/j.jcis.2024.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Iron-based chemodynamic therapy (CDT) exhibits commendable biocompatibility and selectivity, but its efficacy is constrained by the intracellular pH of tumors. To overcome this obstacle, we constructed a silica delivery platform loaded with autophagy-inducing reagents (rapamycin, RAPA) and iron-based Fenton reagents (Fe3O4). This platform was utilized to explore a novel strategy that leverages autophagy to decrease tumor acidity, consequently boosting the effectiveness of CDT. Both in vitro and in vivo experiments revealed that RAPA prompted the generation of acidic organelles (e.g., autophagic vacuoles and autophagosomes), effectively changing the intracellular pH in the tumor microenvironment. Furthermore, RAPA-induced tumor acidification significantly amplified the efficacy of Fe3O4-based Fenton reactions, consequently increasing the effectiveness of Fe3O4-based CDT. This innovative approach, which leverages the interplay between autophagy induction and iron-based CDT, shows promise in overcoming the limitations posed by tumor pH, thus offering a more efficient approach to tumor treatments.
Collapse
Affiliation(s)
- Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Huifeng Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hui Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| | - Kailin Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Zikang Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Lu An
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Weng L, Ren H, Xu R, Xu J, Lin J, Shen JW, Zheng Y. Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot. Colloids Surf B Biointerfaces 2025; 245:114340. [PMID: 39476655 DOI: 10.1016/j.colsurfb.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/05/2025]
Abstract
In recent years, as a new type of quasi-zero-dimensional nanomaterials, graphene quantum dots (GQDs) have shown excellent performance in advanced drug targeted delivery and controlled release. In this work, the delivery process of model drugs translocating into POPC lipid membrane with the assistance of GQDs was investigated via molecular dynamics (MD) simulation. Our simulation results demonstrated that a single doxorubicin (DOX) or deoxyadenine (DA) molecule is difficult to penetrate into the cell membrane. GQD7 could form sandwich-like structure with DOX and assist DOX to enter into the POPC membrane. However, due to the weak interaction with DA, both GQD7 and GQD19 can not assist DA translocating the POPC membrane in the limited MD simulation time. The drug delivery process for DOX could be divided into two steps: 1. GQDs and DOX aggregated into a cluster; 2. the aggregates enter into the POPC membrane. In all our simulation systems, if GQDs loaded with model drugs and entered the cell membrane, it had little effect on the cell membrane structure, and the cell membrane could maintain high integrity and stability. These results may promote the molecular design and application of GQD-based drug delivery systems.
Collapse
Affiliation(s)
- Luxi Weng
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiahao Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yongke Zheng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, Zhejiang 310006, China; Department of Intensive Care Unit, Hangzhou Geriatric Hospital, Hangzhou 310022, China.
| |
Collapse
|
5
|
Wang J, Yu N, Tang Y, Cheng Y, Li H. FDA-Approved Hydrogel-Mediated In Situ Sonodynamic and Chemotherapeutic Therapy for Pancreatic Cancer. Pharmaceuticals (Basel) 2024; 17:1666. [PMID: 39770508 PMCID: PMC11678859 DOI: 10.3390/ph17121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects. Methods: Bovine serum albumin (BSA) was conjugated with chlorin e6 and paclitaxel (PTX) to form stable nanoparticles (NPs). These NPs were then incorporated into a biodegradable poly(lactic-co-glycolic acid)-b-polyethylene glycol-b-poly(lactic-co-glycolic acid) hydrogel for targeted drug delivery. The system's stability and drug release profile were analyzed, followed by in vitro studies to evaluate cellular uptake and cancer cell killing efficacy. In vivo evaluation was performed using pancreatic cancer xenograft models, with intratumoral injection of the drug-loaded hydrogel. Results: The developed hydrogel system demonstrated enhanced stability and sustained release of PTX. In vitro analyses revealed significant cellular uptake and synergistic cancer cell killing effects through combined SDT and chemotherapy. In vivo studies showed prolonged intratumoral retention of the drug and remarkable inhibition of tumor growth. Conclusions: This novel nanoplatform offers a promising approach for improving pancreatic cancer treatment by enhancing intratumoral drug retention and minimizing systemic side effects. The synergistic effects of SDT and chemotherapy demonstrate the potential of this strategy in achieving better therapeutic outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Nianhui Yu
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yunpeng Tang
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yingsheng Cheng
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Hui Li
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Liu X, Wang X, Zang D, Chang Y, Su W, Li G, Zhang J, Yang P, Ma X, Guo Y. pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy. J Colloid Interface Sci 2024; 675:1080-1090. [PMID: 39018635 DOI: 10.1016/j.jcis.2024.07.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Premature drug release in chemotherapy and hypoxic conditions in photodynamic therapy (PDT) are perplexing problems in tumor treatment. Thus, it is of great significance to develop the novel therapeutic system with controllable drug release and effective oxygen generation. Herein, a pH-responsive oxygen self-sufficient smart nanoplatform (named DHCCC), integrating hollow mesoporous silica nanoparticles (HMSNs), chitosan (CS), doxorubicin hydrochloride (DOX), chlorin e6 (Ce6) and catalase (CAT), is fabricated to enhance the tumor therapeutic efficacy efficiently through avoiding premature drug release and mitigating hypoxia of tumor microenvironment (TME). The drug DOX can be efficiently loaded into the HMSNs with large cavity and be controllable released because of the pH responsiveness of CS to the weak acidic TME, thereby elevating the chemotherapy efficacy. Meanwhile, CAT can catalyze the decomposition of endogenous hydrogen peroxide in situ generating oxygen to alleviate the hypoxia and enhance the PDT efficiency considerably. In vitro and in vivo results demonstrate that the combined chemo-photodynamic therapy based on the DHCCC nanoplatform exerts more effective antitumor efficacy than chemotherapy or PDT alone. The current study provides a promising inspiration to construct the pH-responsive oxygen self-sufficient smart nanomedicine with potentials to prevent premature drug leakage and overcome hypoxia for efficient tumor therapy.
Collapse
Affiliation(s)
- Xinhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Yi Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Guangyang Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Pengfei Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
Li L, Hu R, Zhang X, Liu G, Liu W, Wang H, Wang B, Guo L, Ma S, Yan L, Zhang B, Zhang C, Diao H. Carboxylesterase-activatable multi-in-one nanoplatform for near-infrared fluorescence imaging guided chemo/photodynamic/sonodynamic therapy toward cervical cancer. Int J Biol Macromol 2024; 283:137899. [PMID: 39571850 DOI: 10.1016/j.ijbiomac.2024.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Traditional tumor treatment faces great challenge owning to inherent drawbacks. Activatable prodrugs with multi-modality therapeutic capacity are highly desired. In this consideration, a responsiveness-released multi-in-one nanoplatform, PLGA-PEG@HC, toward cervical cancer therapy was innovatively developed. Among the nanoplatform, HC was constructed by incorporating chlorambucil, a classic chemotherapy drug into a near-infrared photo- and sono-sensitizer, HCH via ester linker, which can be specifically hydrolyzed by carboxylesterase (CES). HC is scarcely fluorescent and toxic due to the caging of HCH and chlorambucil, thus achieving low background signal and minimal side effects. However, once selectively hydrolyzed by tumor enriched CES, ester bond will be broken. Consequently, HCH and chlorambucil are released so as to achieve near-infrared fluorescence imaging and synergistic photodynamic/sonodynamic/chemo therapy. PLGA-PEG packaging ensures the biocompatibility of HC. The as-obtained nanoplatform, with diameter of 97 nm, achieves tumor targeting capacity via EPR. In vitro and in vivo applications have demonstrated that PLGA-PEG@HC can accumulate in tumor tissues, exhibit CES-activatable near-infrared fluorescence imaging and efficient tumor suppression capacity. Compared with the reported combinational therapy materials which are complex in compositions, PLGA-PEG@HC is simple in formulation but demonstrates near-infrared fluorescence traced and considerable therapy efficacy toward tumors, which may accelerate the clinical translation.
Collapse
Affiliation(s)
- Lihong Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| | - Rongrong Hu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinyu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guangyang Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China
| | - Haojiang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Sufang Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boye Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| |
Collapse
|
9
|
Sengupta J, Hussain CM. Two-dimensional silicene-based technologies in oncology: an emerging avenue. NANOSCALE 2024; 16:20048-20059. [PMID: 39397565 DOI: 10.1039/d4nr03565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Silicene, a two-dimensional allotrope of silicon, has attracted considerable attention due to its distinctive electronic, mechanical, and biochemical properties. This review critically examines the emerging applications of silicene in oncology, emphasising its potential roles in cancer therapy and research. Silicene exhibits exceptional biocompatibility and surface reactivity, positioning it as a promising candidate for oncological applications. This review addresses the current challenges and limitations in the clinical translation of silicene-based technologies, including issues of stability, toxicity, and scalable production. By synthesizing recent research findings, this review aims to provide an assessment of silicene's potential contributions to oncology and delineate future research trajectories in this innovative field.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata - 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
10
|
Barrera-Martínez CL, Meléndez-Ortiz HI, Padilla-Vaca F, Atanase LI, Peralta-Rodríguez RD, Liakos I. Dual Loading of Trans-Cinnamaldehyde and Either Paclitaxel or Curcumin in Chitosan Nanoparticles: Physicochemical Characterization and Biological Evaluation Against MDCK and HeLa Cells. Polymers (Basel) 2024; 16:3087. [PMID: 39518295 PMCID: PMC11548620 DOI: 10.3390/polym16213087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Biopolymer chitosan sub-micron particles (CSMPs) were prepared by the ionic gelation technique crosslinked with sodium tripolyphosphate co-loaded with trans-cinnamaldehyde (TCIN), and either curcumin (CUR) or paclitaxel (PTX). The size of the spherical CSMPs increased from 118 nm to 136 nm and 170 nm after the loading of TCIN and CUR, whereas the loading of PTX led to a slight decrease (114 nm). Polydispersity indexes of all the samples were smaller than 0.4, indicating monodisperse particles. Zeta potential values higher than +40 mV were determined, which is direct proof of the high stability of these nanoparticles. TCIN and PTX release studies in vitro, at pH 6.5 and 7.4, showed a pH dependence on the release rate with a higher value at pH 6.5. However, CUR was not released from CSMPs probably due to strong interactions with CS biopolymer chains. Cytotoxicity studies showed that the systems loaded with TCIN and PTX were more cytotoxic for HeLa cancer cells than for MDCK cells. Moreover, a synergistic effect against HeLa cells was observed for the TCIN-PTX-loaded CSMP samples. The Sensitivity Index indicated that the CSMPs loaded with TCIN have a prospective attraction to carry and release conventional or new chemotherapeutic drugs. This study demonstrates the in vitro efficiency of the obtained drug delivery system, but in vivo studies are necessary to confirm its potential for clinical applications.
Collapse
Affiliation(s)
- Cynthia L. Barrera-Martínez
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San José de los Cerritos, Saltillo C.P. 25294, Mexico;
| | - Héctor I. Meléndez-Ortiz
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San José de los Cerritos, Saltillo C.P. 25294, Mexico;
- Consejo Nacional de Ciencia y Tecnología (CONAHCyT) Investigadoras e Investigadores por México, Commissioned at CIQA, Saltillo C.P. 25294, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n Zona Universitaria, Guanajuato C.P. 36050, Mexico;
| | - Leonard I. Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - René D. Peralta-Rodríguez
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Colonia San José de los Cerritos, Saltillo C.P. 25294, Mexico;
| | - Ioannis Liakos
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
11
|
Pu Y, Zhou B, Bing J, Wang L, Chen M, Shen Y, Gao S, Zhou M, Wu W, Shi J. Ultrasound-triggered and glycosylation inhibition-enhanced tumor piezocatalytic immunotherapy. Nat Commun 2024; 15:9023. [PMID: 39424801 PMCID: PMC11489718 DOI: 10.1038/s41467-024-53392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Nanocatalytic immunotherapy holds excellent potential for future cancer therapy due to its rapid activation of the immune system to attack tumor cells. However, a high level of N-glycosylation can protect tumor cells, compromising the anticancer immunity of nanocatalytic immunotherapy. Here, we show a 2-deoxyglucose (2-DG) and bismuth ferrite co-loaded gel (DBG) scaffold for enhanced cancer piezocatalytic immunotherapy. After the implantation in the tumor, DBG generates both reactive oxygen species (ROS) and piezoelectric signals when excited with ultrasound irradiation, significantly promoting the activation of anticancer immunity. Meanwhile, 2-DG released from ROS-sensitive DBG disrupts the N-glycans synthesis, further overcoming the immunosuppressive microenvironment of tumors. The synergy effects of ultrasound-triggered and glycosylation inhibition enhanced tumor piezocatalytic immunotherapy are demonstrated on four mouse cancer models. A "hot" tumor-immunity niche is produced to inhibit tumor progress and lung metastasis and elicit strong immune memory effects. This work provides a promising piezocatalytic immunotherapy for malignant solid tumors featuring both low immunogenicity and high levels of N-glycosylation.
Collapse
Affiliation(s)
- Yinying Pu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China
| | - Bangguo Zhou
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, P. R. China
| | - Jinhong Bing
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Liang Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Mingqi Chen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Yucui Shen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Shuang Gao
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Min Zhou
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China.
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
12
|
Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res 2024; 64:223-235. [PMID: 38013112 PMCID: PMC11464465 DOI: 10.1016/j.jare.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The microbiota inhabits the epithelial surfaces of hosts, which influences physiological functions from helping digest food and acquiring nutrition to regulate metabolism and shaping host immunity. With the deep insight into the microbiota, an increasing amount of research reveals that it is also involved in the initiation and progression of cancer. Intriguingly, gut microbiota can mediate the biotransformation of drugs, thereby altering their bioavailability, bioactivity, or toxicity. AIM OF REVIEW The review aims to elaborate on the role of gut microbiota and microbial metabolites in the efficacy and adverse effects of chemotherapeutics. Furthermore, we discuss the clinical potential of various ways to harness gut microbiota for cancer chemotherapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that gut microbiota modulates the efficacy and toxicity of chemotherapy agents, leading to diverse host responses to chemotherapy. Thereinto, targeting the microbiota to improve efficacy and diminish the toxicity of chemotherapeutic drugs may be a promising strategy in tumor treatment.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
14
|
Xu X, Lu W, Zhang H, Wang X, Huang C, Huang Q, Xu W, Xu W. Hepatoma-Targeting and ROS-Responsive Polymeric Micelle-Based Chemotherapy Combined with Photodynamic Therapy for Hepatoma Treatment. Int J Nanomedicine 2024; 19:9613-9635. [PMID: 39309184 PMCID: PMC11414760 DOI: 10.2147/ijn.s475531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The combination of nanoplatform-based chemotherapy and photodynamic therapy (PDT) is a promising way to treat cancer. Celastrol (Cela) exhibits highly effective anti-hepatoma activity with low water solubility, poor bioavailability, non-tumor targeting, and toxic side effects. The combination of Cela-based chemotherapy and PDT via hepatoma-targeting and reactive oxygen species (ROS)-responsive polymeric micelles (PMs) could solve the application problem of Cela and further enhance antitumor efficacy. Methods In this study, Cela and photosensitizer chlorin e6 (Ce6) co-loaded glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) PMs (Cela/Ce6/GCTR PMs) were prepared and characterized. The safety, ROS-sensitive drug release, and intracellular ROS production were evaluated. Furthermore, the in vitro anti-hepatoma effect and cellular uptaken in HepG2 and BEL-7402 cells, and in vivo pharmacokinetic, tissue distribution, and antitumor efficacy of Cela/Ce6/GCTR PMs in H22 tumor-bearing mice were then investigated. Results Cela/Ce6/GCTR PMs were successfully prepared with nanometer-scale particle size, favorable drug loading capacity, and encapsulation efficiency. Cela/Ce6/GCTR PMs exhibited a strong safety profile and better hemocompatibility, exhibiting less damage to normal tissues. Compared with Cela-loaded GCTR PMs, the ROS-responsiveness of Cela/Ce6/GCTR PMs was increased, and the release of Cela was accelerated after combination with PDT. Cela/Ce6/GCTR PMs can efficiently target liver tumor cells by uptake and have a high cell-killing effect in response to ROS. The combination of GCTR PM-based chemotherapy and PDT resulted in increased bioavailability of Cela and Ce6, improved liver tumor targeting, and better anti-hepatoma effects in vivo. Conclusion Hepatoma-targeting and ROS-responsive GCTR PMs co-loaded with Cela and Ce6 combined with PDT exhibited improved primary hepatic carcinoma therapeutic effects with lower toxicity to normal tissues, overcoming the limitations of monotherapy and providing new strategies for tumor treatment.
Collapse
Affiliation(s)
- Xueya Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Weili Lu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Hua Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Caixia Huang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Qiuping Huang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Wen Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
15
|
Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:113. [PMID: 39166136 PMCID: PMC11333603 DOI: 10.1038/s41378-024-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 08/22/2024]
Abstract
Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
16
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
17
|
Guo Z, Fu K, Sun J, Du W, Hao Q, Hu X. Near-infrared-responsive Prussian blue nanocages loaded with 5-fluorouracil for combined chemotherapy and photothermal therapy in tumor treatment. RSC Adv 2024; 14:24942-24951. [PMID: 39131498 PMCID: PMC11310659 DOI: 10.1039/d4ra04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Nanodrug delivery systems (NDDS) have been proposed to improve the targeting and bioavailability of chemotherapy drugs. The approach of drug loading via physical adsorption is facile to operate; however, there exists a risk of premature leakage. Coupling the drug molecules with the carrier through chemical reactions can guarantee the stability of the drug delivery process, yet the preparation procedure is relatively intricate. In this research, a kind of Prussian blue nanocage (PB Cage) was fabricated, and the phase change material, 1-pentadecanol, was used as the gating material to solidify 5-fluorouracil (5-FU) inside the nanocage. Upon irradiation with near-infrared (NIR) light, the temperature of the PB Cage can rise rapidly. When the temperature exceeds 43 °C, 1-pentadecanol undergoes a solid-liquid phase transition and subsequently releases 5-FU to inhibit DNA synthesis. Meanwhile, the photothermal therapy (PTT) mediated by the PB Cage is also capable of ablating tumor cells. The NDDS constructed based on PB has achieved the precise release of 5-FU triggered by NIR light, which may avoid side effects on normal tissues. Moreover, the combination of chemotherapy and photothermal therapy can efficaciously suppress the proliferation of tumor cells.
Collapse
Affiliation(s)
- Zhongyi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| | - Kang Fu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| | - Jingyi Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| | - Wenhao Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| | - Qisheng Hao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University Qingdao Shandong 26000 PR China
| |
Collapse
|
18
|
Yang Y, Nan Y, Du Y, Liu W, Ning N, Chen G, Gu Q, Yuan L. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed Pharmacother 2024; 177:117049. [PMID: 38945081 DOI: 10.1016/j.biopha.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.
Collapse
Affiliation(s)
- Yi Yang
- School of Basic Medical, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yuhua Du
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Na Ning
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Guoqing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Qian Gu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
19
|
Jie Z, Xiong B, Shi J. Allicin‒Decorated FeO 1-xOH Nanocatalytic Medicine for Fe 2+/Fe 3+ Cycling‒Promoted Efficient and Sustained Tumor Regression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402801. [PMID: 39031565 PMCID: PMC11348051 DOI: 10.1002/advs.202402801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Indexed: 07/22/2024]
Abstract
In the tumor treatment by Fenton reaction‒based nanocatalytic medicines, the gradual consumption of Fe(II) ions greatly reduces the production of hydroxyl radicals, one of the most active reactive oxygen species (ROS), leading to much deteriorated therapeutic efficacy. Meanwhile, the ROS consumption caused by the highly expressed reduced glutathione (GSH) in the tumor microenvironment further prevents tumor apoptosis. Therefore, using the highly expressed GSH in tumor tissue to promote the Fe(III) reduction to Fe(II) can not only weaken the resistance of tumor to ROS attack, but also generate enough Fe(II) to accelerate the Fenton reaction. In view of this, an allicin‒modified FeO1-xOH nanocatalyst possessing varied valence states (II, III) has been designed and synthesized. The coexistence of Fe(II)/Fe(III) enables the simultaneous occurrence of Fenton reaction and GSH oxidation, and the Fe(III) reduction by GSH oxidation results in the promoted cyclic conversion of Fe ions in tumor and positive catalytic therapeutic effects. Moreover, allicin capable of regulating cell cycle and suppressing tumor growth is loaded on FeO1-xOH nanosheets to activate immune response against tumors and inhibit tumor recurrence, finally achieving the tumor regression efficiently and sustainably. This therapeutic strategy provides an innovative approach to formulate efficient antitumor nanomedicine for enhanced tumor treatment.
Collapse
Affiliation(s)
- Zhongming Jie
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| | - Bingyan Xiong
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
20
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
21
|
Hong Y, Li X, Li J, He Q, Huang M, Tang Y, Chen X, Chen J, Tang KJ, Wei C. H3K27ac acts as a molecular switch for doxorubicin-induced activation of cardiotoxic genes. Clin Epigenetics 2024; 16:91. [PMID: 39014511 PMCID: PMC11251309 DOI: 10.1186/s13148-024-01709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyi He
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manbing Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Zhao S, Sun T, Zhang M, Yan M, Wang K, Li L, Liu J. Efficacy and safety of Shenmai injection for acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1394936. [PMID: 38895632 PMCID: PMC11184089 DOI: 10.3389/fphar.2024.1394936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Background Ischemic stroke is a serious and sudden cerebrovascular condition that significantly affects individual's health and imposes a substantial economic burden on medical management. Despite its widespread use in China, there is still a lack of reliable evidence regarding the efficacy of Shenmai injection (SMI) in acute ischemic stroke (AIS). We aimed to comprehensively assess the effectiveness and safety of SMI in treating AIS through a systematic review and meta-analysis. Methods Randomized controlled studies (RCTs) investigating the efficacy of SMI in treating AIS were searched for in eight databases from the inception of each database till January 2024. We utilized the ROB 2.0 to assess the risk of bias. A meta-analysis was conducted using Review Manager 5.4, while sensitivity analyses and publication bias assessments were conducted using Stata 16.1. Results A total of 17 studies involving 1,603 AIS patients were included in our meta-analysis. Our results showed that SMI plus conventional treatments (CTs) was more effective than CTs alone in improving the total effective rate (RR 1.22, 95% CI: 1.14 to 1.30, p < 0.00001), the Barthel index (BI) (MD 12.18, 95% CI: 10.30 to 14.06, p < 0.00001), and reducing the National Institute of Health Stroke Scale Score (NIHSS) score (MD -3.05, 95% CI: 3.85 to -2.24, p < 0.00001) and Modified Rankin Scale (mRS) (MD -0.68, 95% CI: 0.86 to-0.49, p < 0.00001). In addition, SMI combination therapy was better than CTs alone in decreasing the levels of IL-6, IL-18, and hs-CRP. SMI therapy also enhanced the cerebral hemorheology of patients by reducing levels of fibrinogen and plasma viscosity. However, there was no significant difference in the incidence of adverse events, including elevated transaminase, rash, nausea, bleeding, urticaria, headache, vomiting, chest tightness, and facial flushes. Moreover, no serious adverse effects or life-threatening events were reported. Conclusion Our study shows that combining SMI with CTs effectively enhances the neurological function of patients with acute cerebral infarction. However, our findings should be interpreted considering the significant heterogeneity and suboptimal quality of the analyzed trials. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024504675, Identifier PROSPERO, CRD42024504675.
Collapse
Affiliation(s)
- Shuai Zhao
- Beijing University of Chinese Medicine, Beijing, China
| | - Tianye Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Mingyuan Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lili Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinmin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Liu F, Li Y, Wei Q, Liu J. Degradable bifunctional phototherapy composites based on upconversion nanoparticle-metal phenolic network for multimodal tumor therapy in the near-infrared biowindow. J Colloid Interface Sci 2024; 663:436-448. [PMID: 38417295 DOI: 10.1016/j.jcis.2024.02.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Phototherapy has garnered increasing attention as it allows for precise treatment of tumor sites with its accurate spatiotemporal control. In this study, we have successfully synthesized degradable bifunctional phototherapy agents (UCNPs@mSiO2@MPN-MC540/DOX) based on upconversion nanoparticle (UCNPs) and metal phenolic network (MPN), serving as a novel nanoplatform for multimodal tumor treatment in the near-infrared (NIR) biological window. To address the issue of low light penetration depth, the UCNPs we synthesized exhibited efficient light conversion ability under 808 nm laser irradiation to activate the photosensitizer Merocyanine 540 (MC540) for photodynamic therapy. Simultaneously, the 808 nm NIR light can also excite the MPN layer to achieve photothermal therapy for tumors. Additionally, the MPN layer possesses the capability of self-degradation under weakly acidic conditions. Within the tumor microenvironment, the MPN layer gradually degrades, facilitating the controlled release of the chemotherapy drug doxorubicin (DOX), thus achieving pH-responsive drug release and reducing the side effects of chemotherapy. This study provides an example of NIR-excited multimodal tumor treatment and pH-responsive drug release, offering a therapy model for precise tumor therapy.
Collapse
Affiliation(s)
- Fangfang Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Shouguang, Weifang, China, 262700.
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| |
Collapse
|
24
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
25
|
Zhang H, Wang J, Wu R, Zheng B, Sang Y, Wang B, Song L, Hu Y, Ma X. Self-Supplied Reactive Oxygen Species-Responsive Mitoxantrone Polyprodrug for Chemosensitization-Enhanced Chemotherapy under Moderate Hyperthermia. Adv Healthc Mater 2024; 13:e2303631. [PMID: 38278138 DOI: 10.1002/adhm.202303631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/11/2023] [Indexed: 01/28/2024]
Abstract
Currently, the secondary development and modification of clinical drugs has become one of the research priorities. Researchers have developed a variety of TME-responsive nanomedicine carriers to solve certain clinical problems. Unfortunately, endogenous stimuli such as reactive oxygen species (ROS), as an important prerequisite for effective therapeutic efficacy, are not enough to achieve the expected drug release process, therefore, it is difficult to achieve a continuous and efficient treatment process. Herein, a self-supply ROS-responsive cascade polyprodrug (PMTO) is designed. The encapsulation of the chemotherapy drug mitoxantrone (MTO) in a polymer backbone could effectively reduce systemic toxicity when transported in vivo. After PMTO is degraded by endogenous ROS of the TME, another part of the polyprodrug backbone becomes cinnamaldehyde (CA), which can further enhance intracellular ROS, thereby achieving a sustained drug release process. Meanwhile, due to the disruption of the intracellular redox environment, the efficacy of chemotherapy drugs is enhanced. Finally, the anticancer treatment efficacy is further enhanced due to the mild hyperthermia effect of PMTO. In conclusion, the designed PMTO demonstrates remarkable antitumor efficacy, effectively addressing the limitations associated with MTO.
Collapse
Affiliation(s)
- Hongjie Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Jing Wang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruiying Wu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Benyan Zheng
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Yanxiang Sang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Bibo Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Lei Song
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Yuan Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaopeng Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
26
|
Ronaghi M, Hajibeygi R, Ghodsi R, Eidi A, Bakhtiari R. Preparation of UiO-66 loaded Letrozole nano-drug delivery system: enhanced anticancer and apoptosis activity. AMB Express 2024; 14:38. [PMID: 38622436 PMCID: PMC11018590 DOI: 10.1186/s13568-024-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
The use of drug delivery systems in targeting and achieving the targeting of drugs in treating diseases, especially cancer, has attracted the attention of researchers. Letrozole is one of the drugs for the treatment of breast cancer. In this study, the organic-metallic pharmaceutical porous nanostructure based on zirconium UiO-66 loaded letrozole was synthesized. Its cytotoxicity and effect on apoptosis and migration against breast cancer cell line were investigated. In this experimental study, the UiO-66 nanoparticle-loaded letrozole was synthesized using zirconium chloride (ZrCl4), dimethylformamide (DMF), and HCl. Its characteristics were determined by scanning electron microscopy, and its average size was determined by the DLS method. Also, the rate of letrozole drug release from the nanoparticle was investigated in 24, 48, and 72 h. In addition, its cytotoxicity effects were investigated using the MTT colorimetric method at concentrations of 3.125-100 µg/ml against the breast cancer cell line (MCF-7) in the periods of 48 and 72 h. Also, the expression level of apoptotic genes Bax and Bcl2 was investigated by the Real-Time PCR method. Also, the amount of cell migration was done by the migration assay method. The results showed that UiO-66 bound to letrozole had a spherical morphology and an average size of 9.2 ± 160.1. Also, the letrozole drug was loaded by 62.21 ± 1.80% in UiO-66 nanoparticles and had a slower release pattern than free letrozole in the drug release test, so within 72 h, 99.99% of free letrozole was released in If in UiO-66 containing letrozole, 57.55% of the drug has been released. Also, the cytotoxicity results showed that UiO-66 bound to letrozole has more significant cytotoxic effects than free letrozole (p < 0.05). Also, the results of Bax and Bcl2 gene expression showed that the treatment of MCF-7 cells with UiO-66 nanoparticles attached to letrozole increased the expression of Bax and Bcl2 genes compared to the reference gene Beta-actin in MCF-7 cell line, respectively. (p < 0.05) increased by 3.71 ± 0.42 and (p < 0.01) decreased by 0.636 ± 0.034 (p < 0.05). Cell migration results showed that the concentration of 50 µg/ml of UiO-66 bound to letrozole decreased the migration of MCF-7 cells. Generally, the results of this study showed that UiO-66 loaded letrozole can be used as a suitable drug carrier for cellular purposes, as it has increased the effects of cytotoxicity and the rate of apoptosis in breast cancer cell line (MCF-7), so it can be used with more studies used nanocarriers as a drug delivery system.
Collapse
Affiliation(s)
- Maryam Ronaghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Hajibeygi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Reza Ghodsi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Yu J, Xu J, Jiang R, Yuan Q, Ding Y, Ren J, Jiang D, Wang Y, Wang L, Chen P, Zhang L. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int J Biol Macromol 2024; 265:130709. [PMID: 38462120 DOI: 10.1016/j.ijbiomac.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Renliang Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Qinglan Yuan
- University Hospital, Jiujiang University, Jiujiang 332005, China
| | - Yuanyuan Ding
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Yiqiu Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
28
|
Hong C, Wang A, Xia J, Liang J, Zhu Y, Wang D, Zhan H, Feng C, Jiang X, Pan J, Wang J. Ginsenoside Rh2-Based Multifunctional Liposomes for Advanced Breast Cancer Therapy. Int J Nanomedicine 2024; 19:2879-2888. [PMID: 38525007 PMCID: PMC10961064 DOI: 10.2147/ijn.s437733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Most solid tumors are not diagnosed and treated until the advanced stage, in which tumors have shaped mature self-protective power, leading to off-target drugs and nanomedicines. In the present studies, we established a more realistic large tumor model to test the antitumor activity of a multifunctional ginsenoside Rh2-based liposome system (Rh2-lipo) on advanced breast cancer. Methods Both cholesterol and PEG were substituted by Rh2 to prepare the Rh2-lipo using ethanol-water system and characterized. The effects of Rh2-lipo on cell uptake, penetration of the tumor spheroid, cytotoxicity assay was investigated with 4T1 breast cancer cells and L929 fibroblast cells. The 4T1 orthotopic-bearing large tumor model was established to study the targeting effect of Rh2-lipo and inhibitory effect of paclitaxel loaded Rh2-lipo (PTX-Rh2-lipo) on advanced breast tumors. Results Rh2-lipo exhibit many advantages that address the limitations of current liposome formulations against large tumors, such as enhanced uptake in TAFs and tumor cells, high targeting and penetration capacity, cytotoxicity against TAFs, normalization of the vessel network, and depletion of stromal collagen. In in vivo study, PTX-Rh2-lipo effectively inhibiting the growth of advanced breast tumors and outperformed most reported PTX formulations, including Lipusu® and Abraxane®. Conclusion Rh2-lipo have improved drug delivery efficiency and antitumor efficacy in advanced breast cancer, which offers a novel promising platform for advanced tumor therapy.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Xiamen Ginposome Pharmaceutical Co., Ltd, Xiamen, 361026, People’s Republic of China
| | - Huaxing Zhan
- Xiamen Ginposome Pharmaceutical Co., Ltd, Xiamen, 361026, People’s Republic of China
| | - Chunbo Feng
- R&D Center, Shanghai Jahwa United Co., Ltd, Shanghai, 200082, People’s Republic of China
| | - Xinnan Jiang
- R&D Center, Shanghai Jahwa United Co., Ltd, Shanghai, 200082, People’s Republic of China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
29
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
30
|
Wang S, Liu T, Huang Y, Du C, Wang D, Wang X, Lv Q, He Z, Zhai Y, Sun B, Sun J. The effect of lengths of branched-chain fatty alcohols on the efficacy and safety of docetaxel-prodrug nanoassemblies. Acta Pharm Sin B 2024; 14:1400-1411. [PMID: 38486988 PMCID: PMC10934334 DOI: 10.1016/j.apsb.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 03/17/2024] Open
Abstract
The self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C16, C18, C20, and C24). The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules' sensitivity. The extension of the carbon chains improved the prodrugs' self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity. The use of C20 can balance efficacy and safety. These results provide a great reference for the rational design of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chaoying Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Binzhou 256600, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
31
|
Farooq M, Scalia G, Umana GE, Parekh UA, Naeem F, Abid SF, Khan MH, Zahra SG, Sarkar HP, Chaurasia B. A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions. Brain Sci 2023; 13:1727. [PMID: 38137175 PMCID: PMC10742051 DOI: 10.3390/brainsci13121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management. Nanomedicine, which involves nanoparticles in the 1-100 nm range, shows promise in improving drug delivery and targeting tumor cells. (2) Methods: Following PRISMA guidelines, a systematic search of databases including Google Scholar, NCBI PubMed, Cochrane Library, and ClinicalTrials.gov was conducted to identify clinical trials on GBM and nanomedicine. The primary outcome measures were median overall survival, progression-free survival, and quality of life assessed through Karnofsky performance scores. The safety profile was assessed by adverse events. (3) Results: The analysis included 225 GBM patients, divided into primary and recurrent sub-populations. Primary GBM patients had a median overall survival of 6.75 months, while recurrent GBM patients had a median overall survival of 9.7 months. The mean PFS period was 2.3 months and 3.92 months in primary GBM and recurrent GBM patients, respectively. Nanotherapy showed an improvement in quality of life, with KPS scores increasing after treatment in recurrent GBM patients. Adverse events were observed in 14.2% of patients. Notably, Bevacizumab therapy exhibited better survival outcomes but with a higher incidence of adverse events. (4) Conclusions: Nanotherapy offers a modest increase in survival with fewer severe side effects. It shows promise in improving the quality of life, especially in recurrent GBM patients. However, it falls short in terms of overall survival compared to Bevacizumab. The heterogeneous nature of treatment protocols and reporting methods highlights the need for standardized multicenter trials to further evaluate the potential of nanomedicine in GBM management.
Collapse
Affiliation(s)
- Minaam Farooq
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95123 Catania, Italy
| | - Giuseppe E. Umana
- Department of Neurosurgery, Gamma Knife and Trauma Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Urja A. Parekh
- German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Faiza Naeem
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Sayeda Fatima Abid
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Muhammad Hammad Khan
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Shah Gul Zahra
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Hrishikesh P. Sarkar
- Department of Neurological Sciences, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| |
Collapse
|
32
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
33
|
Guo Z, Wong KH, Li E, Zhou X, Jiang D, Gao J, Chen M. Co-delivery of dimeric camptothecin and chlorin e6 via polypeptide-based micelles for chemo-photodynamic synergistic therapy. Chin Med 2023; 18:133. [PMID: 37833804 PMCID: PMC10576266 DOI: 10.1186/s13020-023-00817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The integration of photodynamic therapy with a chemical drug-delivery system has displayed great potential in enhancing anticancer therapy. However, the solubility and non-specific biodistribution of both chemotherapeutic agents and photosensitizers continue to pose challenges that hinder their clinical applications. METHOD A polypeptide-based nanoscale drug delivery system was fabricated to address the prementioned issues. An amphiphilic polymer was formed by conjugating the photosensitizer chlorin e6 (Ce6) onto a polypeptide poly-(L-lysine)-b-polyphenylalanine (PKF) for encapsulating the model drug dimeric camptothecin (DCPT), and the nanoparticles (PCD) with high drug loading efficiency were further modified with acid-sensitive polyethylene glycol (PEG) to yield the drug delivery sytem (PPCD). RESULTS The DCPT and Ce6 encapsulation efficiency were analyzed as 99% and 73.5%, respectively. In phosphate-buffered saline (PBS) solution at a pH of 7.4, the PEG shell improved the stability of micelles and shielded their positive charge while in the acidic tumor microenvironment, the pH-sensitive PEG layer was removed to expose the cationic nanoparticles, thus facilitating the cellular uptake of PPCD micelles. Benefiting from the enhanced cellular internalization, the amount of intracellular reactive oxygen species (ROS) treated with PCD and PPCD micelles were obviously increased. Furthermore, the enhanced anti-cancer efficacy prompted by PPCD micelles was validated through cellular and animal study. CONCLUSION This study presents a promising method to promote the solubility and biodistribution of both chemotherapeutic agent and photosensitizer, thereby facilitating the further application of chemo-photodynamic cancer therapy.
Collapse
Affiliation(s)
- Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Enze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Xingzhi Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Di Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Jiebing Gao
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
34
|
Zhang W, Li J, Chen L, Chen H, Zhang L. Palladium-based multifunctional nanoparticles for combined chemodynamic/photothermal and calcium overload therapy of tumors. Colloids Surf B Biointerfaces 2023; 230:113529. [PMID: 37708713 DOI: 10.1016/j.colsurfb.2023.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Due to the high mortality and incidence rates associated with tumors and the specificity of the tumor microenvironment (TME), it is difficult to achieve a complete cure for tumors using a single therapy. In this study, calcium carbonate-modified palladium hydride nanoparticles (PdH@CaCO3) were prepared and utilized for the combined treatment of tumors through chemodynamic therapy (CDT)/photothermal therapy (PTT) and calcium overload therapy. After entering tumor cells, PdH@CaCO3 releases calcium ions (Ca2+) and PdH once it reaches the TME due to the pH reactivity of the calcium carbonate coating. The mitochondrial membrane potential is lowered by the Ca2+, leading to irreversible cell damage. Meanwhile, PdH reacts with excessive hydrogen peroxide (H2O2) in the TME via the Fenton reaction, generating hydroxyl radicals (·OH). Moreover, PdH is an excellent photothermal agent that can kill tumor cells under laser irradiation, leading to significant anti-tumor effects. In vitro and in vivo studies have demonstrated that PdH@CaCO3 could combine CDT/PTT and calcium overload therapy, exhibiting great clinical potential in the treatment of tumors.
Collapse
Affiliation(s)
- Wenge Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiangyong Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lamei Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Huan Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
35
|
Zhou T, Chen Y, Luo T, Song J, Qu J. FRET-Modulated Fluorescence Lifetime-Traceable Nanocarriers for Multidrug Release Monitoring and Synergistic Therapy. ACS APPLIED BIO MATERIALS 2023; 6:3823-3831. [PMID: 37653719 DOI: 10.1021/acsabm.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In situ monitoring multidrug release in complex cellular microenvironments is significant, and currently, it is still a great challenge. In this work, a smart nanocarrier with the capability of codelivery of small molecules and gene materials as well as with Förster resonance energy transfer (FRET)-modulated fluorescence lifetime is fabricated by integrating gold nanoparticles (the acceptor) into dual-mesoporous silica loaded with multiple drugs (the donor). Once internalized into tumor cells, in weakly acidic environments, the conformation switch of the polymer grafted on nanocarriers causes its shedding from the mesopores, triggering the release of drugs. Simultaneously, based on the strong overlap between the emission spectrum of donors and the absorption spectrum of the acceptors, any slight fluctuation of the dissociation of the drugs from nanocarriers can result in a change in the FRET-modulated lifetime signal due to the extraordinarily sensitive FRET signal to the separation distance between donors and acceptors. All these implied the potential applications of this nanoplatform in various biomedical fields that require the codelivery and real-time monitoring of multidrug-based synergistic therapy.
Collapse
Affiliation(s)
- Ting Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
| | - Yu Chen
- Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Teng Luo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
| |
Collapse
|
36
|
Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023; 28:6624. [PMID: 37764400 PMCID: PMC10536529 DOI: 10.3390/molecules28186624] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
37
|
Jiang L, Qi Y, Yang L, Miao Y, Ren W, Liu H, Huang Y, Huang S, Chen S, Shi Y, Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci 2023; 18:100852. [PMID: 37920650 PMCID: PMC10618707 DOI: 10.1016/j.ajps.2023.100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
How to effectively transform the pro-oncogenic tumor microenvironments (TME) surrounding a tumor into an anti-tumoral never fails to attract people to study. Small interfering RNA (siRNA) is considered one of the most noteworthy research directions that can regulate gene expression following a process known as RNA interference (RNAi). The research about siRNA delivery targeting tumor cells and TME has been on the rise in recent years. Using siRNA drugs to silence critical proteins in TME was one of the most efficient solutions. However, the manufacture of a siRNA delivery system faces three major obstacles, i.e., appropriate cargo protection, accurately targeted delivery, and site-specific cargo release. In the following review, we summarized the pharmacological actions of siRNA drugs in remolding TME. In addition, the delivery strategies of siRNA drugs and combination therapy with siRNA drugs to remodel TME are thoroughly discussed. In the meanwhile, the most recent advancements in the development of all clinically investigated and commercialized siRNA delivery technologies are also presented. Ultimately, we propose that nanoparticle drug delivery siRNA may be the future research focus of oncogene therapy. This summary offers a thorough analysis and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yao Qi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Jianyang People's Hospital of Sichuan Province, Jianyang 641400, China
| | - Yangbao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
38
|
Zhang S, Gong X, Wei Q, Lv J, Du E, Wang J, Ji W, Li JL. Rationally Designed Enzyme-Resistant Peptidic Assemblies for Plasma Membrane Targeting in Cancer Treatment. Adv Healthc Mater 2023; 12:e2301730. [PMID: 37400071 DOI: 10.1002/adhm.202301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Peptides are being increasingly important for subcellular targeted cancer treatment to improve specificity and reverse multidrug resistance. However, there has been yet any report on targeting plasma membrane (PM) through self-assembling peptides. A simple synthetic peptidic molecule (tF4) is developed. It is revealed that tF4 is carboxyl esterase-resistant and self-assembles into vesical nanostructures. Importantly, tF4 assemblies interact with PM through orthogonal hydrogen bonding and hydrophobic interaction to regulate cancer cellular functions. Mechanistically, tF4 assemblies induce stress fiber formation, cytoskeleton reconstruction, and death receptor 4/5 (DR4/5) expression in cancer cells. DR4/5 triggers extrinsic caspase-8 signaling cascade, resulting in cell death. The results provide a new strategy for developing enzyme-resistant and PM-targeting peptidic molecules against cancer.
Collapse
Affiliation(s)
- Shijin Zhang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuewen Gong
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinchuan Wei
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiarong Lv
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiaqing Wang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ji-Liang Li
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China
| |
Collapse
|
39
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
40
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand, part II: the influence of the substitution pattern. Org Biomol Chem 2023. [PMID: 37401249 DOI: 10.1039/d3ob00879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
41
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
42
|
Bhatia R, Chang J, Munoz JL, Walker ND. Forging New Therapeutic Targets: Efforts of Tumor Derived Exosomes to Prepare the Pre-Metastatic Niche for Cancer Cell Dissemination and Dormancy. Biomedicines 2023; 11:1614. [PMID: 37371709 PMCID: PMC10295689 DOI: 10.3390/biomedicines11061614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor-derived exosomes play a multifaceted role in preparing the pre-metastatic niche, promoting cancer dissemination, and regulating cancer cell dormancy. A brief review of three types of cells implicated in metastasis and an overview of other types of extracellular vesicles related to metastasis are described. A central focus of this review is on how exosomes influence cancer progression throughout metastatic disease. Exosomes are crucial mediators of intercellular communication by transferring their cargo to recipient cells, modulating their behavior, and promoting tumor pro-gression. First, their functional role in cancer cell dissemination in the peripheral blood by facilitating the establishment of a pro-angiogenic and pro-inflammatory niche is described during organotro-pism and in lymphatic-mediated metastasis. Second, tumor-derived exosomes can transfer molecular signals that induce cell cycle arrest, dormancy, and survival pathways in disseminated cells, promoting a dormant state are reviewed. Third, several studies highlight exosome involvement in maintaining cellular dormancy in the bone marrow endosteum. Finally, the clinical implications of exosomes as biomarkers or diagnostic tools for cancer progression are also outlined. Understanding the complex interplay between tumor-derived exosomes and the pre-metastatic niche is crucial for developing novel therapeutic strategies to target metastasis and prevent cancer recurrence. To that end, several examples of how exosomes or other nanocarriers are used as a drug delivery system to inhibit cancer metastasis are discussed. Strategies are discussed to alter exosome cargo content for better loading capacity or direct cell targeting by integrins. Further, pre-clinical models or Phase I clinical trials implementing exosomes or other nanocarriers to attack metastatic cancer cells are highlighted.
Collapse
Affiliation(s)
- Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Chang
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA
| | - Jessian L Munoz
- Division of Perinatal Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Division of Maternal Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nykia D Walker
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA
| |
Collapse
|
43
|
Pan H, Yang S, Cheng W, Cai Q, Shubhra QTH. Alternate-day fasting exacerbates doxorubicin cardiotoxicity in cancer chemotherapy. Trends Endocrinol Metab 2023:S1043-2760(23)00093-0. [PMID: 37246117 DOI: 10.1016/j.tem.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Doxorubicin (Dox) is a highly potent chemotherapy drug. Despite its efficacy, Dox's clinical application is limited due to its association with significant complications, namely cardiotoxicity and the risk of heart failure. Recent intriguing findings by Ozcan et al. indicate that alternate-day fasting (ADF) significantly exacerbates the cardiotoxicity of Dox.
Collapse
Affiliation(s)
- Huachun Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig 04103, Germany
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Quazi T H Shubhra
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Institute of Chemistry, University of Silesia in Katowice, 41-500 Chorzów, Poland.
| |
Collapse
|
44
|
Dahiya M, Awasthi R, Yadav JP, Sharma S, Dua K, Dureja H. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization. Int J Biol Macromol 2023; 242:124919. [PMID: 37196717 DOI: 10.1016/j.ijbiomac.2023.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Biocompatible magnetic nanoparticles are used for various biomedical applications. This study reported the development of nanoparticles with magnetic properties by embedding magnetite particles in the drug-loaded, crosslinked matrix of chitosan. Sorafenib tosylate-loaded magnetic nanoparticles were prepared by a modified ionic-gelation method. Particle size, zeta potential, polydispersity index, and entrapment efficiency of nanoparticles were in the range of 95.6 ± 3.4 nm to 440.9 ± 7.3 nm, 12.8 ± 0.8 mV to 27.3 ± 1.1 mV, 0.289 ± 0.011 to 0.571 ± 0.011, and 54.36 ± 1.26 % to 79.67 ± 1.40 %, respectively. The XRD spectrum of formulation CMP-5 confirmed the amorphous nature of the loaded drug in nanoparticles. TEM image confirmed the spherical shape of nanoparticles. Atomic force microscopic image of formulation CMP-5 indicated a mean surface roughness of 10.3597 nm. The magnetization saturation of formulation CMP-5 was 24.74 emu/g. Electron paramagnetic resonance spectroscopy revealed that formulation CMP-5's g-Lande's factor was 4.27, which was extremely near to the 4.30 (usual for Fe3+ ions). Residual paramagnetic Fe3+ ions may be responsible for paramagnetic origin. The data suggests superparamagnetic nature of particles. Formulations released 28.66 ± 1.22 % to 53.24 ± 1.95 % and 70.13 ± 1.72 % to 92.48 ± 1.32 % of the loaded drug after 24 h in pH 6.8 and pH 1.2, respectively. The IC50 value of formulation CMP-5 was 54.75 μg/mL in HepG2 (human hepatocellular carcinoma cell lines).
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Jaya Parkash Yadav
- Indira Gandhi University, Meerpur, Rewari 123401, Haryana, India; Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Shammi Sharma
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
45
|
Durán-Sampedro G, Xue EY, Moreno-Simoni M, Paramio C, Torres T, Ng DKP, de la Torre G. Glycosylated BODIPY- Incorporated Pt(II) Metallacycles for Targeted and Synergistic Chemo-Photodynamic Therapy. J Med Chem 2023; 66:3448-3459. [PMID: 36802644 PMCID: PMC10009748 DOI: 10.1021/acs.jmedchem.2c01940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 02/23/2023]
Abstract
Pt(II)-BODIPY complexes combine the chemotherapeutic activity of Pt(II) with the photocytotoxicity of BODIPYs. Additional conjugation with targeting ligands can boost the uptake by cancer cells that overexpress the corresponding receptors. We describe two Pt(II) triangles, 1 and 2, built with pyridyl BODIPYs functionalized with glucose (3) or triethylene glycol methyl ether (4), respectively. Both 1 and 2 showed higher singlet oxygen quantum yields than 3 and 4, due to the enhanced singlet-to-triplet intersystem crossing. To evaluate the targeting effect of the glycosylated derivative, in vitro experiments were performed using glucose transporter 1 (GLUT1)-positive HT29 and A549 cancer cells, and noncancerous HEK293 cells as control. Both 1 and 2 showed higher cellular uptake than 3 and 4. Specifically, 1 was selective and highly cytotoxic toward HT29 and A549 cells. The synergistic chemo- and photodynamic behavior of the metallacycles was also confirmed. Notably, 1 exhibited superior efficacy toward the cisplatin-resistant R-HepG2 cells.
Collapse
Affiliation(s)
- Gonzalo Durán-Sampedro
- Department
of Organic Chemistry, Universidad Autónoma
de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad
Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Evelyn Y. Xue
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| | - Marta Moreno-Simoni
- Department
of Organic Chemistry, Universidad Autónoma
de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Celia Paramio
- Department
of Organic Chemistry, Universidad Autónoma
de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Tomás Torres
- Department
of Organic Chemistry, Universidad Autónoma
de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad
Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA
Nanociencia, C/Faraday
9, Cantoblanco, Madrid 28049, Spain
| | - Dennis K. P. Ng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| | - Gema de la Torre
- Department
of Organic Chemistry, Universidad Autónoma
de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad
Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
46
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand. Org Biomol Chem 2023; 21:1958-1966. [PMID: 36762516 DOI: 10.1039/d3ob00013c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A disulfide-functionalized bis-benzo[b]quinolizinium is presented that is transformed quantitatively into its cyclomers in a fast intramolecular [4 + 4] photocycloaddition. Both the bis-quinolizinium and the photocyclomers react with glutathione (GSH) or dithiothreitol (DTT) to give 9-(sulfanylmethyl)benzo[b]quinolizinium as the only product. As all components of this reaction sequence have different DNA-binding properties, it enables the external control and switching of DNA association. Hence, the bis-benzo[b]quinolizinium binds strongly to DNA and is deactivated upon photocycloaddition to the non-binding cyclomers. In turn, the subsequent cleavage of the cyclomers with DTT regains a DNA-intercalating benzoquinolizinium ligand. Notably, this sequence of controlled deactivation and recovery of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
47
|
Younis MR, He Y, Yao X, He G, Liu H, Huang P, Lin J. Acidity/carbon dioxide-sensitive triblock polymer-grafted photoactivated vesicles for programmed release of chemotherapeutic drugs against glioblastoma. Acta Biomater 2023; 157:442-450. [PMID: 36470393 DOI: 10.1016/j.actbio.2022.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Controllable release of chemotherapeutic drugs in tumor sites remains a big challenge for precision therapy. Herein, we developed acidity/carbon dioxide (H+/CO2)-sensitive poly (ethylene glycol)-b-poly (2-(diisopropylamino) ethyl methacrylate)-b-polystyrene triblock polymer (PEG-b-PDPA-b-PS) grafted photoactivated vesicles for programmed release of chemotherapeutic drugs against glioblastoma. In brief, gold nanoparticles (GNPs) were firstly tethered with the H+/CO2-sensitive PEG-b-PDPA-b-PS polymer. Next, the CO2 precursor (ammonium bicarbonate, NH4HCO3) and doxorubicin (DOX) were loaded during self-assembly process of PEG-b-PDPA-b-PS-tethered GNPs, thus obtaining the multifunctional gold vesicles (denoted as GVND). The programmed multi-stimuli responsive drug release by GVND was undergone in multiple steps as follows: 1) the vesicular architecture of GVND was first swelled in tumor acidic microenvironment, 2) the GVND were partially broken under near-infrared (NIR) laser irradiation, 3) the mild hyperthermia generated by GV triggered the thermal decomposition of encapsulated NH4HCO3, leading to the in situ generation of CO2, 4) the generated CO2 reacted with PDPA of PEG-b-PDPA-b-PS, changing the hydrophilicity and hydrophobicity of GVND, thus vastly breaking its vesicular architecture, finally resulting in a "bomb-like" release of DOX in tumor tissues. Such a multi-stimuli responsive programmed drug delivery and mild hyperthermia under NIR laser activation displayed strong antitumor efficacy and completely eradicated U87MG glioblastoma tumor. This work presented a promising strategy to realize precision drug delivery for chemotherapy against glioblastoma. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yaling He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xikuang Yao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China; Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
48
|
Li Y, Ke J, Jia H, Ren J, Wang L, Zhang Z, Wang C. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces 2023; 222:113131. [PMID: 36646005 DOI: 10.1016/j.colsurfb.2023.113131] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Based on the immune escape and homologous adhesion ability of cancer cells, a drug delivery system (DDS) could overcome the dilemma of immune clearance and non-specific binding by coating the cancer cell membrane (CCM). In this study, a biomimetic DDS based on CCM and poly lactic acid-glycolic acid (PLGA) nanoparticles was successfully constructed for tumor active and homologous targeting therapy. The doped CCM on the surface of the nanoparticle enabled the DDS to achieve immune escape and had an affinity for tumor tissues. The cellular uptake and in vivo distribution tests showed a superior cellular affinity of CCM coated PLGA nanoparticles (CCMNPs) than that of PLGA nanoparticles (PLGANPs). All of those results proved that CCMNPs endowed with drug-loaded nanoparticles had the abilities of immune escape and homologous targeting through the biological functional proteins retained on the coated CCM. In addition, the tumor inhibition rate of CCMNPs in tumor-bearing nude mice was 1.3 and 2.0-fold compared to PLGANPs and PTX injection, which showed the capacity to efficiently and accurately deliver drugs to cancer sites improved the therapeutic effect of tumor and achieved accurately targeted therapy.
Collapse
Affiliation(s)
- Yue Li
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Junfang Ke
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongxin Jia
- School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Li Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| | - Chen Wang
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
49
|
Assefa D, Melaku T, Alemu S. Commentary: Nanoparticle-Based Chemotherapy Delivery and Potential Health Risks: Prospects for Effective Clinical Translation. Technol Cancer Res Treat 2023; 22:15330338231220171. [PMID: 38130152 DOI: 10.1177/15330338231220171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
With recent advancements, chemotherapy is one of the most prevalent regimens for cancer treatment. However, the heterogeneity of tumor biology and healthy cell-damaging potential of chemotherapy remain challenges. As a solution, nanoparticle-based delivery is advancing. Besides its promising potential, effective clinical translation and commercialization of nanoparticle-based chemotherapy should get attention to ensure the absence of potential health risks. Specifically, the permeability potential of nanoparticles across biological barriers can lead to drug accumulation in vital organs and produce harm. Therefore, for effective design and clinical application of next-generation nanomedicine, pharmaceutical formulation scientists should conduct intensive studies. They involve studying the properties of drug-loaded nanoparticles in the microenvironment of the target site and the impact of interspecies differences using quantitative and mechanistic studies. It creates a comprehensive understanding of the specific properties of nanoparticles and their interaction potential with biological systems. This commentary justifies the requirement for comprehensive knowledge of the above-mentioned criteria and tests for the success of nanomedicine for chemotherapy delivery.
Collapse
Affiliation(s)
- Desta Assefa
- School of Pharmacy, Institute of Health, Jimma University, Jimma City, Ethiopia
| | - Tsegaye Melaku
- School of Pharmacy, Institute of Health, Jimma University, Jimma City, Ethiopia
| | - Sintayehu Alemu
- School of Pharmacy, Institute of Health, Jimma University, Jimma City, Ethiopia
| |
Collapse
|
50
|
Bonelli J, Velasco-de Andrés M, Isidro N, Bayó C, Chumillas S, Carrillo-Serradell L, Casadó-Llombart S, Mok C, Benítez-Ribas D, Lozano F, Rocas J, Marchán V. Novel Tumor-Targeted Self-Nanostructured and Compartmentalized Water-in-Oil-in-Water Polyurethane-Polyurea Nanocapsules for Cancer Theragnosis. Pharmaceutics 2022; 15:pharmaceutics15010058. [PMID: 36678687 PMCID: PMC9862617 DOI: 10.3390/pharmaceutics15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Neus Isidro
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Cristina Bayó
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Laura Carrillo-Serradell
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Cheryl Mok
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona (UB), Villarroel 170, E-08036 Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|