1
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Adeleke BS, Olowe OM, Ayilara MS, Fasusi OA, Omotayo OP, Fadiji AE, Onwudiwe DC, Babalola OO. Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon 2024; 10:e39636. [PMID: 39553612 PMCID: PMC11564013 DOI: 10.1016/j.heliyon.2024.e39636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The concept of this review underscores a significant shift towards sustainable agricultural practices, particularly from the view point of microbial biotechnology and nanotechnology. The global food insecurity that causes increasing ecological imbalances is exacerbating food insecurity, and this has necessitated eco-friendly agricultural innovations. The chemical fertilizers usage aims at boosting crop yields, but with negative environmental impact, thus pushing for alternatives. Microbial biotechnology and nanotechnology fields are gaining traction for their potential in sustainable agriculture. Endophytic fungi promise to synthesize nanoparticles (NPs) that can enhance crop productivity and contribute to ecosystem stability. Leveraging on endophytic fungi could be key to achieving food security goals. Endophytic fungi explore diverse mechanisms in enhancing plant growth and resilience to environmental stresses. The application of endophytic fungi in agricultural settings is profound with notable successes. Hence, adopting interdisciplinary research approaches by combining mycology, nanotechnology, agronomy, and environmental science can meaningfully serve as potential pathways and hurdles for the commercialization of these biotechnologies. Therefore, setting regulatory frameworks for endophytic nanomaterials use in agriculture, by considering their safety and environmental impact assessments will potentially provide future research directions in addressing the current constraints and unlock the potential of endophytic fungi in agriculture.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Microbiology Programme, Department of Biological Sciences, School of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwaseun Adeyinka Fasusi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwadara Pelumi Omotayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Hawkesbury Institute for Environment, Western Sydney University, Penrith, Australia
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
3
|
Sun P, Zhao J, Sha G, Zhou Y, Zhao M, Li R, Kong X, Sun Q, Li Y, Li K, Bi R, Yang L, Qin Z, Huang W, Wang Y, Gao J, Chen G, Zhang H, Adnan M, Yang L, Zheng L, Chen XL, Wang G, Ishikawa T, Li Q, Xu JR, Li G. Inhibitor of cardiolipin biosynthesis-related enzyme MoGep4 confers broad-spectrum anti-fungal activity. PLANT, CELL & ENVIRONMENT 2024; 47:4259-4274. [PMID: 38946254 DOI: 10.1111/pce.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Gan Sha
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Mengfei Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Renjian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Kong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yun Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ke Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wenzheng Huang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Long Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Venzhik Y, Deryabin A, Dykman L. Nanomaterials in plant physiology: Main effects in normal and under temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112148. [PMID: 38838991 DOI: 10.1016/j.plantsci.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health. Nanotechnology, which allows the production of a wide range of nanomaterials (NM), provides novel techniques in this direction. NM include structures less than 100 nm. The review presents data on the methods of NM production, their properties, pathways for arrival in plants and their use in human life. It is shown that NM, due to their unique physical and chemical properties, can cross biological barriers and accumulate in cells of live organisms. The influence of NM on plant organism can be both positive and negative, depending on the NM chemical nature, their size and dose, the object of study, and the environmental conditions. This review provides a comparative analysis of the effect of artificial metal nanoparticles (NPm), the commonly employed NMs in plant physiology, on two important aspects of plant life: photosynthetic apparatus activity and antioxidant system function. According to studies, NM affect not only the functional activity of photosynthetic apparatus, but also structural organization of chloroplats. In addition, the literature analysis reflects the dual action of NM on oxidative processes, and antioxidant status of plants. These facts considerably complicate the ideas about possible mechanisms and further use of NPm in biology. In this regard, data on the effects of NM on plants under abiotic stressors are of great interest. Separate section is devoted to the use of NM as adaptogens that increase plant stress tolerance to unfavorable temperatures. Possible mechanisms of NM effects on plants are discussed, as well as the strategies for their further use in basic science and sustainable agriculture.
Collapse
Affiliation(s)
- Yliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
5
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
6
|
Masood HA, Qi Y, Zahid MK, Li Z, Ahmad S, Lv JM, Shahid MS, Ali HE, Ondrasek G, Qi X. Recent advances in nano-enabled immunomodulation for enhancing plant resilience against phytopathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1445786. [PMID: 39170781 PMCID: PMC11336869 DOI: 10.3389/fpls.2024.1445786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Plant diseases caused by microbial pathogens pose a severe threat to global food security. Although genetic modifications can improve plant resistance; however, environmentally sustainable strategies are needed to manage plant diseases. Nano-enabled immunomodulation involves using engineered nanomaterials (ENMs) to modulate the innate immune system of plants and enhance their resilience against pathogens. This emerging approach provides unique opportunities through the ability of ENMs to act as nanocarriers for delivering immunomodulatory agents, nanoprobes for monitoring plant immunity, and nanoparticles (NPs) that directly interact with plant cells to trigger immune responses. Recent studies revealed that the application of ENMs as nanoscale agrochemicals can strengthen plant immunity against biotic stress by enhancing systemic resistance pathways, modulating antioxidant defense systems, activating defense-related genetic pathways and reshaping the plant-associated microbiomes. However, key challenges remain in unraveling the complex mechanisms through which ENMs influence plant molecular networks, assessing their long-term environmental impacts, developing biodegradable formulations, and optimizing targeted delivery methods. This review provides a comprehensive investigation of the latest research on nano-enabled immunomodulation strategies, potential mechanisms of action, and highlights future perspectives to overcome existing challenges for sustainable plant disease management.
Collapse
Affiliation(s)
- Hafiza Ayesha Masood
- Xianghu Laboratory, Hangzhou, China
- MEU Research Unit, Middle East University, Amman, Jordan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | | | | | | | - Salman Ahmad
- Department of Plant Pathology, Faculty of Agriculture, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hamada E. Ali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | | |
Collapse
|
7
|
Venzhik Y, Deryabin A, Naraikina N, Zhukova K, Dykman L. The influence of Au-based nanoparticles on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108837. [PMID: 38878389 DOI: 10.1016/j.plaphy.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 μg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Naraikina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya Zhukova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
8
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
9
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
10
|
Singh P, Mijakovic I. Harnessing barley grains for green synthesis of gold and silver nanoparticles with antibacterial potential. DISCOVER NANO 2024; 19:101. [PMID: 38862699 PMCID: PMC11166622 DOI: 10.1186/s11671-024-04042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
11
|
Moulick D, Majumdar A, Choudhury A, Das A, Chowardhara B, Pattnaik BK, Dash GK, Murmu K, Bhutia KL, Upadhyay MK, Yadav P, Dubey PK, Nath R, Murmu S, Jana S, Sarkar S, Garai S, Ghosh D, Mondal M, Chandra Santra S, Choudhury S, Brahmachari K, Hossain A. Emerging concern of nano-pollution in agro-ecosystem: Flip side of nanotechnology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108704. [PMID: 38728836 DOI: 10.1016/j.plaphy.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture. Human exposure from various components of agro-environmental sectors (soil, crops) NMs residues are likely to upsurge with exposure paths may stimulates bioaccumulation in food chain. With the aim to achieve sustainability, nanotechnology (NTs) do exhibit its potentials in various domains of agriculture also have its flip side too. In this review article we have opted a fusion approach using bibliometric based analysis of global research trend followed by a holistic assessment of pros and cons i.e. toxicological aspect too. Moreover, we have also tried to analyse the current scenario of policy associated with the application of NMs in agro-environment.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| | - Abir Choudhury
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh, 792103, India.
| | - Binaya Kumar Pattnaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune-411043, Maharastra, India.
| | - Goutam Kumar Dash
- Department of Biochemistry and Crop Physiology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Gajapati, Odisha, India.
| | - Kanu Murmu
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Karma Landup Bhutia
- Deptt. Agri. Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848 125, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Pradeep Kumar Dubey
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| | - Sidhu Murmu
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, Neotia University, Sarisha, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Koushik Brahmachari
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
12
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
13
|
Biswas A, Pal S. Plant-nano interactions: A new insight of nano-phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108646. [PMID: 38657549 DOI: 10.1016/j.plaphy.2024.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.
Collapse
Affiliation(s)
- Ankita Biswas
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India
| | - Suparna Pal
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India.
| |
Collapse
|
14
|
Hussain U, Afza R, Gul I, Sajad MA, Shah GM, Muhammad Z, Khan SM. Phytoremediation of heavy metals spiked soil by Celosia argentea L.: effect on plant growth and metal stabilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15339-15347. [PMID: 38294656 DOI: 10.1007/s11356-024-32176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Soil contaminated with heavy metals cause serious threat to the soil quality, biota, and human. The removal or stabilization of heavy metals through plants is an environment friendly approach. The aim of study was to assess the potential of Celosia argentea L. for the phytoremediation of heavy metals contaminated soil. Soil was spiked with different levels (0, 100, 200, 300, and 400 mg/kg) of chromium (Cr), copper (Cu), lead (Pb), and Zn (Zn). Experiment was carried out in greenhouse and impact of heavy metals was evaluated on plant by assessing the germination rate and plant growth. To evaluate either plant has potential to extract/stabilize the heavy metals, concentration in roots and shoot, translocation factor (TF), bioconcentration factor (BCF), and bioaccumulation factor (BAF) were determined. Application of heavy metals significantly affected the germination rate and minimum (26.6%) was observed in Cr spiked soil (400 mg/kg). Moreover, the biomass of C. argentea was also affected by the application of heavy metals. However, the concentration of heavy metals in roots and shoots were low. The BCF and BAF of C. argentea was lower than 1 except at lower levels of Pb and Zn, but the TF was greater than 1. The TF showed that plants have capability to transfer heavy metals to shoots once they are taken up by roots. However, based on the BCF and concentrations of heavy metals in shoots, it is evident that plant could play important role in the phytostabilization of heavy metals polluted soil.
Collapse
Affiliation(s)
- Umer Hussain
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Rabia Afza
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Iram Gul
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan.
| | | | | | - Zahir Muhammad
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|