1
|
Cho YJ, Han BS, Ko S, Park MS, Lee YJ, Kim SE, Lee P, Go HG, Park S, Lee H, Kim S, Park ER, Jung KH, Hong SS. Repositioning of aripiprazole, an anti‑psychotic drug, to sensitize the chemotherapy of pancreatic cancer. Int J Mol Med 2025; 55:17. [PMID: 39540370 PMCID: PMC11573310 DOI: 10.3892/ijmm.2024.5458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited therapeutic options. Cisplatin is a primary chemotherapeutic agent utilized in combination with other drugs or radiotherapy for PDAC treatment. However, the severe side effects of cisplatin often necessitate discontinuation of therapy and drug resistance in tumor cells poses significant clinical challenges. Therefore, the development of effective therapeutic strategies is imperative. The present study investigated whether repositioning of the antipsychotic drug aripiprazole could sensitize the anticancer activity of cisplatin in pancreatic cancer at doses calculated by the combination index. The findings indicated that aripiprazole combined with cisplatin to suppress pancreatic cancer cell growth. Notably, the combination notably increased the expression of apoptosis markers, including cleaved caspase‑3, compared with cisplatin alone. Additionally, this combination effectively decreased XIAP and MCL‑1 expression via mitochondrial membrane potential change as revealed by JC‑1 assay, thereby inducing apoptosis. Furthermore, in fluid shear stress assay, the combination of aripiprazole and cisplatin notably inhibited cell adhesion and tumor spheroid formation. Mechanistically, phospho‑kinase array profiles showed that the enhanced anticancer efficacy of the combination treatment could be attributed to the inhibition of STAT3 signaling, which led to a significant reduction in tumor growth in a pancreatic cancer animal model. The results showed that the repositioning of aripiprazole inhibits cancer cell growth by blocking the STAT3 signaling pathway and effectively enhancing cisplatin‑induced apoptosis, thereby suggesting that the combination of aripiprazole and cisplatin may be a potent chemotherapeutic strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ye Jin Cho
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Shinyoung Park
- Anti-cancer Strategy Research Institute, VSPharmTech, Inc., Seoul Technopark, Seoul 01811, Republic of Korea
| | - Hyunho Lee
- Anti-cancer Strategy Research Institute, VSPharmTech, Inc., Seoul Technopark, Seoul 01811, Republic of Korea
| | - Sohee Kim
- Anti-cancer Strategy Research Institute, VSPharmTech, Inc., Seoul Technopark, Seoul 01811, Republic of Korea
| | - Eun-Ran Park
- Anti-cancer Strategy Research Institute, VSPharmTech, Inc., Seoul Technopark, Seoul 01811, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine and Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
2
|
Rehman OU, Fatima E, Nadeem ZA, Azeem A, Motwani J, Imran H, Mehboob H, Khan A, Usman O. Efficacy of Cisplatin-Containing Chemotherapy Regimens in Patients of Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-analysis. J Gastrointest Cancer 2024; 55:559-571. [PMID: 38315331 DOI: 10.1007/s12029-024-01025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The relative success of cisplatin-based chemotherapy regimens for PDAC in clinical trials warrants a review of the literature to assess the cumulative results. This study aims to assess the efficacy of cisplatin-containing regimens for PDAC in terms of survival and response outcomes using a systematic review and proportional meta-analysis. METHODS In this study, an electronic search was conducted on PubMed, Cochrane Library, Scopus, and Google Scholar to find relevant literature. The random effects model was used to assess pooled overall response rate, stable disease rate, progressive disease rate, 1-year overall survival rate, and their 95% CIs. Publication bias was assessed using funnel plot symmetry and the one-tailed Eggers' test. In all cases, p-value < 0.05 was indicative of significant results. The review is registered with PROSPERO: CRD42023459243. RESULTS A total of 34 studies consisting of 1599 patients were included in this review. All the included studies were of good quality. In total, 906 patients were male, and the median age of the patients was 58-69 years. Overall, 599 patients had cancer of the pancreatic head, 139 had cancer of the pancreatic body, and 102 patients had cancer of the pancreatic tail. The pooled risk ratios (RRs) revealed an overall response rate of 19.2% (95% CI, 14.6-24.2%), a stable disease rate of 42.3% (95% CI, 36.6-48.8), a 1-year overall survival rate of 40% (95% CI, 34.3-45.8), and progressive disease rate of 24.7% (95% CI, 18.8-31.2). Commonly reported adverse events were anemia, thrombocytopenia, abdominal adverse events, neutropenia, fatigue, leukopenia, alopecia, anorexia, mucositis, stomatitis, and hepatobiliary adverse events. CONCLUSION Cisplatin-containing regimens have shown moderate efficacy with significant improvement in overall survival at 1 year, stable disease rate, and progressive disease rate; however, only a small percentage of patients achieved an overall response rate.
Collapse
Affiliation(s)
- Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, 54000, Pakistan.
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, 54000, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Arish Azeem
- University of Warmia and Mazury, Olszytn, Poland
| | - Jatin Motwani
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Habiba Imran
- Department of Medicine, Services Institute of Medical Sciences, Lahore, 54000, Pakistan
| | - Hadia Mehboob
- Department of Medicine, Services Institute of Medical Sciences, Lahore, 54000, Pakistan
| | - Alishba Khan
- Karachi Institute of Medical Sciences, CMH Malir, Karachi, Pakistan
| | - Omer Usman
- Texas Tech University Health Sciences Center El Paso/Transmountain, El Paso, TX, USA
| |
Collapse
|
3
|
Chen Y, Deng Q, Chen H, Yang J, Chen Z, Li J, Fu Z. Cancer-associated fibroblast-related prognostic signature predicts prognosis and immunotherapy response in pancreatic adenocarcinoma based on single-cell and bulk RNA-sequencing. Sci Rep 2023; 13:16408. [PMID: 37775715 PMCID: PMC10541448 DOI: 10.1038/s41598-023-43495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) influence many aspects of pancreatic adenocarcinoma (PAAD) carcinogenesis, including tumor cell proliferation, angiogenesis, invasion, and metastasis. A six-gene prognostic signature was constructed for PAAD based on the 189 CAF marker genes identified in single-cell RNA-sequencing data. Multivariate analyses showed that the risk score was independently prognostic for survival in the TCGA (P < 0.001) and ICGC (P = 0.004) cohorts. Tumor infiltration of CD8 T (P = 0.005) cells and naïve B cells (P = 0.001) was greater in the low-risk than in the high-risk group, with infiltration of these cells negatively correlated with risk score. Moreover, the TMB score was lower in the low-risk than in the high-risk group (P = 0.0051). Importantly, patients in low-risk group had better immunotherapy responses than in the high-risk group in an independent immunotherapy cohort (IMvigor210) (P = 0.039). The CAV1 and SOD3 were highly expressed in CAFs of PAAD tissues, which revealed by immunohistochemical staining. In summary, this comprehensive analysis resulted in the development of a novel prognostic signature, which was associated with immune cell infiltration, drug sensitivity, and TMB, and could predict the prognosis and immunotherapy response of patients with PAAD.
Collapse
Affiliation(s)
- Yajun Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qican Deng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jianguo Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Li
- Department of Surgery, The People's Hospital of Yubei District of Chongqing, Chongqing, China.
| | - Zhongxue Fu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Stefàno E, Cossa LG, De Castro F, De Luca E, Vergaro V, My G, Rovito G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Evaluation of the Antitumor Effects of Platinum-Based [Pt( η1-C 2H 4-OR)(DMSO)(phen)] + (R = Me, Et) Cationic Organometallic Complexes on Chemoresistant Pancreatic Cancer Cell Lines. Bioinorg Chem Appl 2023; 2023:5564624. [PMID: 37727647 PMCID: PMC10506884 DOI: 10.1155/2023/5564624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Erik De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
5
|
Zhang Z, He S, Wang P, Zhou Y. The efficacy and safety of gemcitabine-based combination therapy vs. gemcitabine alone for the treatment of advanced pancreatic cancer: a systematic review and meta-analysis. J Gastrointest Oncol 2022; 13:1967-1980. [PMID: 36092340 PMCID: PMC9459213 DOI: 10.21037/jgo-22-624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Background Gemcitabine (GEM) is used as a standard first-line drug to effectively alleviate symptoms and prolong survival time for advanced pancreatic cancer. Most randomized controlled trials (RCTs) show that GEM-based combination therapy is better than GEM alone, while some RCTs have the opposite conclusion. This study aimed to investigate whether GEM-based combination therapy would be superior to GEM alone by a systematic review and meta-analysis. Methods According to the PICOS principles, RCTs (S) focused on comparing GEM-based combination therapy (I) vs. GEM alone (C) for advanced pancreatic cancer (P) were collected from eight electronic databases, outcome variables mainly include survival status and adverse events (AEs) (O). Review Manager 5.4 was used to evaluate the pooled effects of the results among selected articles. Pooled estimate of hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI) were used as measures of effect sizes. Quality assessment for individual study was performed using the Cochrane tool for risk of bias. Results A total of 17 studies including 5,197 patients were selected in this analysis. The pooled results revealed that GEM-based combination therapy significantly improved the overall survival (OS; HR =0.84; 95% CI: 0.79 to 0.90; P<0.00001), progression-free survival (PFS; HR =0.78; 95% CI: 0.72 to 0.84; P<0.00001), overall response rate (ORR; OR =1.92; 95% CI: 1.61 to 2.30; P<0.00001), 1-year survival rate (OR =1.44; 95% CI: 1.02 to 2.03; P=0.04), respectively. Subgroup analysis showed that the efficacy of GEM plus capecitabine (CAP) and GEM plus S-1 was better than that of GEM alone, while GEM plus cisplatin (CIS) did not achieve an improved effect. GEM-based combination therapy can significantly increase the incidence of AEs, such as leukopenia (P<0.001), neutropenia (P<0.001), anemia (P<0.05), nausea (P<0.001), diarrhea (P<0.05), and stomatitis (P<0.001). No publication bias existed in our meta-analysis (P>0.10). Discussion Our study supported that GEM-based combination therapy was more beneficial to improve patient's survival than GEM alone, while there was no additional benefits in GEM plus CIS. We also found that GEM-based combination therapy increased the incidence of AEs. Clinicians need to choose the appropriate combination therapy according to the specific situation.
Collapse
Affiliation(s)
- Zhaohuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuling He
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ping Wang
- Criminal Technical Detachment, Jiamusi Public Security Bureau, Jiamusi, China
| | - Yibing Zhou
- Department of General Surgery, Jiamusi Central Hospital, Jiamusi, China
| |
Collapse
|
6
|
Nishimoto A. Effective combinations of anti-cancer and targeted drugs for pancreatic cancer treatment. World J Gastroenterol 2022; 28:3637-3643. [PMID: 36161054 PMCID: PMC9372808 DOI: 10.3748/wjg.v28.i28.3637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly aggressive and lethal. Due to the lack of effective methods for detecting the disease at an early stage, pancreatic cancer is frequently diagnosed late. Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years, but its anti-tumor effect is limited. Therefore, FOLFIRINOX (leucovorin, fluorouracil, irinotecan, oxaliplatin) as well as combination therapies using gemcitabine and conventional agents, such as cisplatin and capecitabine, has also been administered; however, these have not resulted in complete remission. Therefore, there is a need to develop novel and effective therapies for pancreatic cancer. Recently, some studies have reported that combinations of gemcitabine and targeted drugs have had significant anti-tumor effects on pancreatic cancer cells. As gemcitabine induced DNA damage response, the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy. Furthermore, KRAS/ RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer. Therefore, these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.
In this minireview, combinations of gemcitabine and targeted drugs to these characteristics, combinations of targeted drugs, combinations of natural products and anti-cancer agents, including gemcitabine, and combinations among natural products are discussed.
Collapse
Affiliation(s)
- Arata Nishimoto
- Division of Basic Pharmaceutical Science, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda City 756-0884, Yamaguchi, Japan
| |
Collapse
|
7
|
Lee S, Hong E, Jo E, Kim ZH, Yim KJ, Woo SH, Choi YS, Jang HJ. Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway. J Microbiol Biotechnol 2022; 32:645-656. [PMID: 35283426 PMCID: PMC9628887 DOI: 10.4014/jmb.2110.10019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.
Collapse
Affiliation(s)
- Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Kyung June Yim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung Hwan Woo
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4563 E-mail:
| |
Collapse
|
8
|
Selvarajoo N, Stanslas J, Islam MK, Sagineedu SR, Lian HK, Lim JCW. Pharmacological Modulation of Apoptosis and Autophagy in Pancreatic Cancer Treatment. Mini Rev Med Chem 2022; 22:2581-2595. [PMID: 35331093 DOI: 10.2174/1389557522666220324123605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic cancer is a fatal malignant neoplasm with infrequent signs and symptoms until a progressive stage. In 2020, GLOBOCAN reported that pancreatic cancer accounts for 4.7% of all cancer deaths. Despite the availability of standard chemotherapy regimens for treatment, the survival benefits are not guaranteed because tumor cells become chemoresistant even due to the development of chemoresistance in tumor cells even with a short treatment course, where apoptosis and autophagy play critical roles. OBJECTIVE This review compiled essential information on the regulatory mechanisms and roles of apoptosis and autophagy in pancreatic cancer, as well as drug-like molecules that target different pathways in pancreatic cancer eradication, with an aim to provide ideas to the scientific communities in discovering novel and specific drugs to treat pancreatic cancer, specifically PDAC. METHOD Electronic databases that were searched for research articles for this review were Scopus, Science Direct, PubMed, Springer Link, and Google Scholar. The published studies were identified and retrieved using selected keywords. DISCUSSION/CONCLUSION Many small-molecule anticancer agents have been developed to regulate autophagy and apoptosis associated with pancreatic cancer treatment, where most of them target apoptosis directly through EGFR/Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. The cancer drugs that regulate autophagy in treating cancer can be categorized into three groups: i) direct autophagy inducers (e.g., rapamycin), ii) indirect autophagy inducers (e.g., resveratrol), and iii) autophagy inhibitors. Resveratrol persuades both apoptosis and autophagy with a cytoprotective effect, while autophagy inhibitors (e.g., 3-methyladenine, chloroquine) can turn off the protective autophagic effect for therapeutic benefits. Several studies showed that autophagy inhibition resulted in a synergistic effect with chemotherapy (e.g., a combination of metformin with gemcitabine/ 5FU). Such drugs possess a unique clinical value in treating pancreatic cancer as well as other autophagy-dependent carcinomas.
Collapse
Affiliation(s)
- Nityaa Selvarajoo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Kaisarul Islam
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ho Kok Lian
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Ouyang G, Wu Y, Liu Z, Lu W, Li S, Hao S, Pan G. Efficacy and safety of gemcitabine-capecitabine combination therapy for pancreatic cancer: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e27870. [PMID: 35049189 PMCID: PMC9191365 DOI: 10.1097/md.0000000000027870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recent randomized controlled trials revealed the combination of gemcitabine and capecitabine (GemCap) regime shows promising efficacy in pancreatic cancer patients. Here, we conducted a meta-analysis to compare the efficacy and safety of gemcitabine (Gem) with GemCap for pancreatic cancer. METHODS The database of MEDLINE (PubMed), EMBASE, Cochrane Central Controster of Controlled Trials, Web of Science was searched for relevant randomized controlled trials before 8 April, 2020. The outcomes were overall survival (OS), 12-month survival rate, progress free survival (PFS), partial response rate (PRR), objective response rate (ORR), and Grade 3/4 toxicities. RESULTS Five randomized controlled trials involving 1879 patients were included in this study. The results showed that GemCap significantly improves the OS (hazard ratio = 1.15, 95% CI: 1.037-1.276, P = .008), PFS (hazard ratio = 1.211, 95% CI 1.09-1.344, P = 0), PRR (relative risk (RR) = 0.649, 95% CI 0.488-0.862, P = .003), ORR (RR = 0.605, 95% CI 0.458-0.799, P = 0), and the overall toxicity (RR = 0.708, 95% CI 0.620-0.808, P = .000) compared to Gem alone. However, no significant difference was found in 12-month survival. CONCLUSIONS Despite a higher incidence of Grade 3/4 toxicity, GemCap was associated with better outcomes of OS, PFS, PRR, ORR, as compared with Gem, which is likely to become a promising therapy for pancreatic cancer.
Collapse
|
10
|
Chen J, Bao Y, Song Y, Zhang C, Qiu F, Sun Y, Xin L, Cao J, Jiang Y, Luo J, Zhang C, Wang G, Li Q, Liu Y, Tong W, Huang P. Hypoxia-alleviated nanoplatform to enhance chemosensitivity and sonodynamic effect in pancreatic cancer. Cancer Lett 2021; 520:100-108. [PMID: 34245853 DOI: 10.1016/j.canlet.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is a severe disease that threatens human health. The hypoxic tumor microenvironment in pancreatic cancer leads to resistance to conventional therapies and helps to maintain tumor malignancy. First-line drugs present the disadvantage of systemic side effects, and a synergistic method with sonodynamic therapy (SDT) has been established as an emerging approach. In this study, we produced hypoxia-alleviating nanoplatforms (denoted as PZGI NPs) with zeolitic imidazolate frameworks-90 (ZIF-90) nanoparticles nucleating on platinum (Pt) nanoparticles and co-loaded with gemcitabine and IR780. This platform can catalyze peroxide to oxygen with loaded Pt nanoparticles to alleviate tumor hypoxia. Moreover, the loaded drugs could be quickly released in the lysosome microenvironment, which has a low pH value and high ATP level microenvironment in the mitochondria. This strategy could enhance the sensitivity of cancer cells to chemotherapy. Further, under ultrasound exposure, it could transfer the produced oxygen into a highly cytotoxic singlet oxygen for the augmented sonodynamic effect. Therefore, this multifunctional hypoxia-alleviating nanoplatform offers a promising strategy for chemo-sonodynamic therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuheng Bao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310007, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yue Song
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Fuqiang Qiu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei Xin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yifan Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qunyin Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yajing Liu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310007, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging (Albany NY) 2020; 12:25767-25777. [PMID: 33232271 PMCID: PMC7803530 DOI: 10.18632/aging.104187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/18/2020] [Indexed: 01/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. The use of a combination of chemotherapy drugs and zinc oxide nanoparticles (ZnO-NPs), which have proven to induce tumor-selective cell death, reduce the drug resistance and reduce the side effects in vitro. In the present study, we developed ZnO-NPs loaded with both cisplatin (Cp) and gemcitabine (Gem) (ZnO-NPs(Cp/Gem)), then the morphologies and the size distribution of ZnO-NPs(Cp/Gem) particles were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Also, MTT, western blot and Annexin V-PI were used to assess the anti-tumor role of ZnO-NPs(Cp/Gem) in A549 cells. The viability for A549 cells showed a significant decrease in the ZnO NPs(Cp/Gem) group, respectively relative to Cp, Gem, the combination of Cp and Gem (Cp+Gem), and ZnO-NPs loaded with Cp (ZnO-NPs(Cp)) or Gem (ZnO-NPs(Gem)). Furthermore, ZnO-NPs(Cp/Gem) remarkably enhanced the apoptosis-promoting effect of Cp and Gem in A549 cells. The xenograft model showed that Zno-NPS (Cp/Gem) significantly enhanced the inhibition of Cp and Gem on tumor formation. The above results suggested that therapy of NSCLC with ZnO-NPs(Cp/Gem) could enhance the cytotoxic action of chemotherapeutic agents synergistically, indicating a promising potential for ZnO-NPs in antitumor applications.
Collapse
|
12
|
Chen YH, Chen YC, Lin CC, Hsieh YP, Hsu CS, Hsieh MC. Synergistic Anticancer Effects of Gemcitabine with Pitavastatin on Pancreatic Cancer Cell Line MIA PaCa-2 in vitro and in vivo. Cancer Manag Res 2020; 12:4645-4665. [PMID: 32606957 PMCID: PMC7306478 DOI: 10.2147/cmar.s247876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with an overall 5-year survival rate of 9.3%, and this malignancy is expected to become the second leading cause of cancer-related death by 2030. Gemcitabine resistance develops within weeks of PDAC patient’s chemotherapeutic initiation. Statins, including pitavastatin, have been indicated to have anticancer effects in numerous human cancer cell lines. Thus, in this study, we hypothesized that a combination of gemcitabine and pitavastatin may have a greater anticancer effect than gemcitabine alone on the human pancreatic carcinoma cell line MIA PaCa-2. Methods The anticancer effects of gemcitabine with pitavastatin were evaluated using human MIA PaCa-2 cell line in vitro and in vivo Balb/c murine xenograft tumor model. Cell viability was assessed with CCK-8, and cell migration was stained by crystal violet. Cell cycle distribution, apoptosis and mitochondrial membrane potential were examined by flow cytometry. Activation of drug transporters (hENTs, hCNTs), intracellular drug activating (dCK) and inhibition of inactivating enzymes (RRMs) pathways were assessed by Western blotting analysis. Molecular mechanisms and signaling pathways of apoptosis, necrosis and autophagy also were assessed by Western blotting. Results We observed that gemcitabine and pitavastatin synergistically suppressed the proliferation of MIA PaCa-2 cells through causing sub-G1 and S phase cell cycle arrest. Activation of apoptosis/necrosis was confirmed by annexin V/propidium iodide double staining, which showed increasing levels of active caspase 3, cleaved poly(ADP-ribose) polymerase and the RIP1–RIP3–MLKL complex. Moreover, gemcitabine–pitavastatin-mediated S phase arrest downregulated cyclin A2/CDK2 and upregulated p21/p27 in MIA PaCa-2 cells. Furthermore, this combination improved drug cellular metabolism pathway, mitochondria function and activated autophagy as part of the cell death mechanism. In vivo, gemcitabine-pitavastatin effectively inhibited tumor growth in a nude mouse mode of Mia PaCa-2 xenografts without observed adverse effect. Conclusion Combined gemcitabine–pitavastatin may be an effective novel treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chun Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan.,Department of Health and Nutrition, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Peng Hsieh
- Division of General Internal Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Chia Hsieh
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Intelligent Diabetes Metabolism and Exercise Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Awad S, Alkashash AM, Amin M, Baker SJ, Rose JB. Biochemical Predictors of Response to Neoadjuvant Therapy in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:620. [PMID: 32477933 PMCID: PMC7235358 DOI: 10.3389/fonc.2020.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is becoming increasingly more common. Treatment for PDAC is dependent not only on stage at diagnosis, but complex anatomical relationships. Recently, the therapeutic approach to this disease has shifted from upfront surgery for technically resectable lesions to a neoadjuvant therapy first approach. Selecting an appropriate regimen and determining treatment response is crucial for optimal oncologic outcome, especially since radiographic imaging has proven unreliable in this setting. Tumor biomarkers have the potential to play a key role in treatment planning, treatment monitoring, and surveillance as an adjunct laboratory test. In this review, we will discuss common chemotherapeutic options, mechanisms of resistance, and potential biomarkers for PDAC. The aim of this paper is to present currently available biomarkers for PDAC and to discuss how these markers may be affected by neoadjuvant chemotherapy treatment. Understanding current chemotherapy regiments and mechanism of resistance can help us understand which markers may be most affected and why; therefore, determining to what ability we can use them as a marker for treatment progression, prognosis, or potential relapse.
Collapse
Affiliation(s)
- Seifeldin Awad
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Ahmad M Alkashash
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Magi Amin
- Department of Gastroenterology, Cairo Fatimid Hospital, Cairo, Egypt
| | - Samantha J Baker
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - J Bart Rose
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
15
|
Gas Plasma-Conditioned Ringer's Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo. Cancers (Basel) 2020; 12:cancers12010123. [PMID: 31906595 PMCID: PMC7017174 DOI: 10.3390/cancers12010123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas.
Collapse
|
16
|
Gurruchaga-Pereda J, Martínez Á, Terenzi A, Salassa L. Anticancer platinum agents and light. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Wang B, Shen C, Li Y, Zhang T, Huang H, Ren J, Hu Z, Xu J, Xu B. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther 2019; 12:5751-5765. [PMID: 31410021 PMCID: PMC6645696 DOI: 10.2147/ott.s208924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Chemotherapy remains a primary treatment method for advanced pancreatic cancer. However, chemotherapy resistance can influence the therapeutic effect of pancreatic cancer. The resistance mechanism of chemotherapeutic agents such as gemcitabine, which is an agent typically used to treat pancreatic cancer, is complicated and can be influenced by genes and the environment. Oridonin is a tetracyclic diterpenoid compound extracted from the traditional Chinese herb Rabdosia labtea. Oridonin may overcome drug resistance in pancreatic cancer, but researching pancreatic cancer drug resistance of chemotherapy by oridonin is not completely understood. Purpose: The present study aimed to assess the impact of oridonin on multidrug resistance proteins, apoptosis-associated proteins and energy metabolism in gemcitabine-resistant PANC-1 (PANC-1/Gem) pancreatic cancer cells. Methods: Gemcitabine resistance in PANC-1/Gem cells was induced using a concentration gradient of gemcitabine. Cell Counting Kit-8 assays were used to detect the impact of gemcitabine and oridonin on the proliferation of PANC-1 and PANC-1/Gem cells. Western blot analysis and immunofluorescence were used to detect the expression of multidrug resistance proteins, apoptosis-associated proteins and low-density lipoprotein receptor protein 1 (LRP1) proteins in PANC-1/Gem cells. The effects of gemcitabine and oridonin on PANC-1/Gem cells apoptosis were detected using flow cytometry. Animal xenograft tumor assays were used to detect the effect of gemcitabine and oridonin on pancreatic cancer in vivo. Furthermore, the ATP Assay kit was used to determine the effects of gemcitabine and oridonin on ATP levels in PANC-1/Gem cells. Immunofluorescence assays were used to detect the effects of gemcitabine and oridonin on the expression of low-density lipoprotein receptor protein 1 (LRP1) in PANC-1/Gem cells. In addition, LRP1 expression was knocked down in PANC-1/Gem cells via lentiviral vector-mediated RNA silencing. Clone formation assays and Western blot analysis were used to detect the effect of LRP1 knockdown on the proliferation of PANC-1/Gem cells. Results: The present results demonstrate that oridonin overcomes PANC-1/Gem cells gemcitabine reistance by regulating GST pi and LRP1/ERK/JNK signaling. Conclusion: In conclusion, the present study indicated that oridonin could overcome gemcitabine resistance in PANC-1/Gem cells by regulating GST pi and LRP1/ ERK/JNK signaling, inducing cell apoptosis. Therefore, oridonin with gemcitabine may be a promising preoperative treatment for patients who suffer from pancreatic cancer.
Collapse
Affiliation(s)
- Bili Wang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Can Shen
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.,Department of Clinical Laboratory, The Affiliated Yinzhou Hospital of Ningbo University, Ningbo 315040, People's Republic of China
| | - Yang Li
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Hui Huang
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Jun Ren
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Jian Xu
- Department of Clinical Laboratory, Medical Technology College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
18
|
Banerjee D, Cieslar-Pobuda A, Zhu GH, Wiechec E, Patra HK. Adding Nanotechnology to the Metastasis Treatment Arsenal. Trends Pharmacol Sci 2019; 40:403-418. [PMID: 31076247 DOI: 10.1016/j.tips.2019.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 01/22/2023]
Abstract
Metastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy. Despite their exciting cytotoxic effects on tumor cells in vitro and antitumor activities in preclinical studies in vivo, only a few have shown potent antimetastatic activities in clinical trials. In this review, we provide a brief overview of current antimetastatic strategies that show clinical efficacy and review nanotechnology-based approaches that are currently being incorporated into these therapies to mitigate challenges associated with treating cancer metastasis.
Collapse
Affiliation(s)
- Debarshi Banerjee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Artur Cieslar-Pobuda
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Emilia Wiechec
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Wolfson College, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Zapata-Benavides P, Thompson-Armendariz FG, Arellano-Rodríguez M, Franco-Molina MA, Mendoza-Gamboa E, Saavedra-Alonso S, Zacarias-Hernández JL, Trejo-Avila LM, Rodríguez-Padilla C. shRNA-WT1 Potentiates Anticancer Effects of Gemcitabine and Cisplatin Against B16F10 Lung Metastases In Vitro and In Vivo. In Vivo 2019; 33:777-785. [PMID: 31028197 PMCID: PMC6559916 DOI: 10.21873/invivo.11539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM High expression level of Wilm's tumor gene (WT1) in several types of tumors appears to confer disruption of apoptosis and resistance to chemotherapeutic drugs, and correlate with poor outcome. The aim of this work was to determine if down-regulation of WT1 expression results in decreased cell proliferation and the increased action of different types of drugs, both in vitro in B16F10 cells, and in vivo in C57BL/6 mice. MATERIALS AND METHODS Inhibition of cell proliferation by short hairpin RNA against WT1 (shRNA-WT1), cisplatin, and gemcitabine in B16F10 cells in vitro was determined by the MTT assay and analysis of clonogenic survival. The apoptosis rate was determined by flow cytometry for annexin-V- fluorescein isothiocyante and propidium iodide. RESULTS Compared to treatment with shRNA-WT1 alone, treatment with shRNA-WT1 in combination with drugs had a synergistic inhibitory effect on B16F10 cell proliferation, particularly for the combination of cisplatin and gemcitabine at their 25% cytotoxic concentrations in vitro. Furthermore, mice treated with shRNA-WT1 in combination with cisplatin and gemcitabine were protected in the same way as those treated with the drugs alone, but were in better physical condition. CONCLUSION Decreased WT1 expression induces cell death and potentiates the action of anticancer drugs by inducing synergistic effects both in vitro and in vivo, which may be an attractive strategy in lung cancer therapy.
Collapse
Affiliation(s)
- Pablo Zapata-Benavides
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | | | - Mariela Arellano-Rodríguez
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Moisés Armides Franco-Molina
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Edgar Mendoza-Gamboa
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Santiago Saavedra-Alonso
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - José Luis Zacarias-Hernández
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Laura María Trejo-Avila
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| |
Collapse
|
20
|
Fiorentini G, Sarti D, Casadei V, Milandri C, Dentico P, Mambrini A, Nani R, Fiorentini C, Guadagni S. Modulated Electro-Hyperthermia as Palliative Treatment for Pancreatic Cancer: A Retrospective Observational Study on 106 Patients. Integr Cancer Ther 2019; 18:1534735419878505. [PMID: 31561722 PMCID: PMC6767725 DOI: 10.1177/1534735419878505] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic adenocarcinoma has a poor prognosis, resulting in a <10% survival rate at 5 years. Modulated electro-hyperthermia (mEHT) has been increasingly used for pancreatic cancer palliative care and therapy. Objective: To monitor the efficacy and safety of mEHT for the treatment of advanced pancreatic cancer. Methods: We collected data retrospectively on 106 patients affected by stage III-IV pancreatic adenocarcinoma. They were divided into 2 groups: patients who did not receive mEHT (no-mEHT) and patients who were treated with mEHT. We performed mEHT applying a power of 60 to 150 W for 40 to 90 minutes. The mEHT treatment was associated with chemotherapy and/or radiotherapy for 33 (84.6%) patients, whereas 6 (15.4%) patients received mEHT alone. The patients of the no-mEHT group received chemotherapy and/or radiotherapy in 55.2% of cases. Results: Median age of the sample was 65.3 years (range = 31-80 years). After 3 months of therapy, the mEHT group had partial response in 22/34 patients (64.7%), stable disease in 10/34 patients (29.4%), and progressive disease in 2/34 patients (8.3%). The no-mEHT group had partial response in 3/36 patients (8.3%), stable disease in 10/36 patients (27.8%), and progressive disease in 23/36 patients (34.3%). The median overall survival of the mEHT group was 18.0 months (range = 1.5-68.0 months) and 10.9 months (range = 0.4-55.4 months) for the non-mEHT group. Conclusions: mEHT may improve tumor response and survival of pancreatic cancer patients.
Collapse
Affiliation(s)
| | - Donatella Sarti
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord,” Pesaro, Italy
| | - Virginia Casadei
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord,” Pesaro, Italy
| | | | | | | | - Roberto Nani
- University of Milano Bicocca, ASST Papa
Giovanni XXIII, Bergamo, Italy
| | | | | |
Collapse
|
21
|
Masu T, Atsukawa M, Nakatsuka K, Shimizu M, Miura D, Arai T, Harimoto H, Kondo C, Kaneko K, Futagami S, Kawamoto C, Takahashi H, Iwakiri K. Anti-CD137 monoclonal antibody enhances trastuzumab-induced, natural killer cell-mediated cytotoxicity against pancreatic cancer cell lines with low human epidermal growth factor-like receptor 2 expression. PLoS One 2018; 13:e0200664. [PMID: 30596643 PMCID: PMC6312288 DOI: 10.1371/journal.pone.0200664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Because human epidermal growth factor-like receptor (HER) 2 is expressed on the surface of human pancreatic carcinoma cells to varying degrees, trastuzumab, an anti-HER2 monoclonal antibody (mAb), is expected to exert antibody-dependent, natural killer (NK) cell-mediated cytotoxicity (ADCC) against the cells. However, some reports found that the effect of trastuzumab against human pancreatic carcinoma cells was limited because most express only limited HER2. We examined whether anti-CD137 stimulating mAb could enhance trastuzumab-mediated ADCC against Panc-1, a human pancreatic cancer cell line with low HER2 expression, in vitro. Supplementation of anti-CD137 mAb could improve trastuzumab-mediated ADCC against Panc-1 which was insufficient without this stimulating antibody. The ADCC differed in individual cells, and this was related to the expression of CD137 on the surface of NK cells after trastuzumab stimulation in association with the Fcγ-RIIIA polymorphism. NK cells with Fcγ-RIIIA-VV/VF showed high levels of ADCC against Panc-1, but those with Fcγ-RIIIA-FF did not show optimal ADCC. In addition, trastuzumab-mediated ADCC against the human pancreatic cancer cell line Capan-1 with high HER2 expression was generally high and not affected by the Fcγ-RIIIA polymorphism. These results demonstrated that in Fcγ-RIIIA-VV/VF-carrying healthy individuals, trastuzumab plus αCD137 mAb could induce effective ADCC against HER2-low-expressing pancreatic cancer cell lines, and that such an approach may result in similar findings in patients with pancreatic cancer.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunity, Cellular/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Polymorphism, Genetic
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Trastuzumab/pharmacology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Takushi Masu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
- * E-mail:
| | - Katsuhisa Nakatsuka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Daishu Miura
- Division of Breast and Thyroid Surgery, Toranomon Hospital, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirotomo Harimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Chisa Kondo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Keiko Kaneko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Seiji Futagami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Chiaki Kawamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
22
|
Chandana S, Babiker HM, Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Investig Drugs 2018; 28:161-177. [DOI: 10.1080/13543784.2019.1557145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sreenivasa Chandana
- Phase I program, START Midwest, Grand Rapids, MI, USA
- Department of Gastrointestinal Medical Oncology, Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Hani M. Babiker
- Early Phase Therapeutics Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Daruka Mahadevan
- Early Phase Therapeutics Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
23
|
Biological activity of Pt IV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis. Sci Rep 2018; 8:17198. [PMID: 30464209 PMCID: PMC6249213 DOI: 10.1038/s41598-018-35655-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such photoactivation mode occurs to a considerable extent intracellularly, as demonstrated for 1 by uptake and cell viability experiments. 195Pt NMR, DNA binding studies using circular dichroism, mass spectrometry and immunofluorescence microscopy were performed using the Rf-1 catalyst-substrate pair and indicated that cell death is associated with the efficient light-induced formation of cisplatin. Accordingly, Western blot analysis revealed signs of DNA damage and activation of cell death pathways through Rf-mediated photochemical activation. Phosphorylation of H2AX as indicator for DNA damage, was detected for Rf-1 in a strictly light-dependent fashion while in case of free cisplatin also in the dark. Photochemical induction of nuclear pH2AX foci by Rf-1 was confirmed in fluorescence microscopy again proving efficient light-induced cisplatin release from the prodrug system.
Collapse
|
24
|
Nesbitt H, Sheng Y, Kamila S, Logan K, Thomas K, Callan B, Taylor MA, Love M, O'Rourke D, Kelly P, Beguin E, Stride E, McHale AP, Callan JF. Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer. J Control Release 2018; 279:8-16. [DOI: 10.1016/j.jconrel.2018.04.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
|
25
|
Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops ( Humulus lupulus L.). Front Pharmacol 2018; 9:530. [PMID: 29872398 PMCID: PMC5972274 DOI: 10.3389/fphar.2018.00530] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
It has been observed that many phytochemicals, frequently present in foods or beverages, show potent chemopreventive or therapeutic properties that selectively affect cancer cells. Numerous studies have demonstrated the anticancer activity of xanthohumol (Xn), a prenylated flavonoid isolated from hops (Humulus lupulus L.), with a concentration up to 0.96 mg/L in beer. This review aims to summarize the existing studies focusing on the anticancer activity of Xn and its effects on key signaling molecules. Furthermore, the limitations of current studies and challenges for the clinical use of Xn are discussed.
Collapse
Affiliation(s)
- Chuan-Hao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao-Li Sun
- Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy, Changsha Medical University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Shan-Shan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| |
Collapse
|
26
|
Wang XF, Huang WF, Nie J, Zhou Y, Tan DW, Jiang JH. Toxicity of chemotherapy regimens in advanced and metastatic pancreatic cancer therapy: A network meta-analysis. J Cell Biochem 2018; 119:5082-5103. [PMID: 28681936 DOI: 10.1002/jcb.26266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023]
Abstract
This network meta-analysis is adopted in order to compare the toxicity of different chemotherapy regimens in the treatment of advanced/metastatic pancreatic cancer (PC). Randomized controlled trials (RCTs) about different chemotherapy regimens for advanced/metastatic PC were included in this network meta-analysis using Cochrane Library and PubMed electronic databases. The network meta-analysis was performed to combine direct and indirect evidence in order to calculate the odd ratios (OR) and draw a surface under the cumulative ranking (SUCRA) curve. A total of 19 RCTs were enrolled in this network meta-analysis including 12 chemotherapy regimens (Gemcitabine, Gemcitabine + S-1 [tegafur], Gemcitabine + nab-paclitaxel, Gemcitabine + Capecitabine, Gemcitabine + Cisplatin, FOLFIRINOX [oxaliplatin + irinotecan + fluorouracil + leucovorin], Gemcitabine + oxaliplatin, Gemcitabine + irinotecan, Gemcitabine + Exatecan, Gemcitabine + pemetrexed, Gemcitabine + 5-FU, S-1). The incidence of anemia of Gemcitabine + Capecitabine regimen was higher compared with Gemcitabine regimen, Gemcitabine + pemetrexed regimen exhibited the highest incidence rates of anemia and neutropenia; while Gemcitabine + S-1, Gemcitabine + Cisplatin and FOLFIRINOX regimens exhibited the highest incidence rates of neutropenia. However, S-1 regimen exhibited lower incidence rates of leukopenia and thrombocytopenia. Moreover, the incidence rates of nausea/vomiting and rash of Gemcitabine + S-1 regimen were higher compared with Gemcitabine regimen, while Gemcitabine + Cisplatin regimen had the highest incidence rate of nausea/vomiting. This study demonstrated that the hematologic toxicity of S-1 regimen was the lowest, while Gemcitabine regimen exhibited the lowest incidence rate of non-hematologic toxicity, providing guidance for the treatment of advanced/metastatic PC.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| | - Wen-Feng Huang
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| | - Jian Nie
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| | - Yong Zhou
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| | - Ding-Wu Tan
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| | - Ji-Hao Jiang
- Department of Hepatobiliary Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, P. R. China
| |
Collapse
|
27
|
The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomed Pharmacother 2017; 96:650-658. [DOI: 10.1016/j.biopha.2017.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
|
28
|
Dynamic Rearrangement of Cell States Detected by Systematic Screening of Sequential Anticancer Treatments. Cell Rep 2017; 20:2784-2791. [DOI: 10.1016/j.celrep.2017.08.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
|
29
|
Woo SM, Kim MK, Joo J, Yoon KA, Park B, Park SJ, Han SS, Lee JH, Hong EK, Kim YH, Moon H, Kong SY, Kim TH, Lee WJ. Induction Chemotherapy with Gemcitabine and Cisplatin Followed by Simultaneous Integrated Boost-Intensity Modulated Radiotherapy with Concurrent Gemcitabine for Locally Advanced Unresectable Pancreatic Cancer: Results from a Feasibility Study. Cancer Res Treat 2017; 49:1022-1032. [PMID: 28111423 PMCID: PMC5654154 DOI: 10.4143/crt.2016.495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study assessed the feasibility and compliance of induction chemotherapy with gemcitabine and cisplatin followed by simultaneous integrated boost-intensity modulated radiotherapy (SIB-IMRT) with concurrent gemcitabine in patients with locally advanced unresectable pancreatic cancer. MATERIALS AND METHODS In this trial, patients received induction chemotherapy consisting of gemcitabine (1,000 mg/m2) and cisplatin (25 mg/m2) on days 1, 8, and 15 of each treatment cycle. Patients were subsequently treated with gemcitabine (300 mg/m2/wk) during SIB-IMRT. The patients received total doses of 55 and 44 Gy in 22 fractions to planning target volume 1 and 2, respectively. As an ancillary study, digital polymerase chain reaction was performed to screen for the seven most common mutations in codons 12 and 13 of the KRAS oncogene of circulating cell free DNA (cfDNA). RESULTS Forty-four patients were enrolled between 2012 and 2015. Of these, 33 (75%) completed the treatment. The most common toxicities during induction chemotherapy were grades 3 and 4 neutropenia (18.2%), grade 3 nausea (6.8%) and vomiting (6.8%). The most common toxicities during SIB-IMRT were grade 3 neutropenia (24.2%) and grade 3 anemia (12.1%). Ten patients (23%) underwent a curative resection after therapy. Median overall survival was significantly longer in patients who underwent curative resection (16.8 months vs. 11 months, p < 0.01). The median cfDNA concentration was significantly lower after treatment (108.5 ng/mL vs. 18.4 ng/mL, p < 0.001). CONCLUSION Induction chemotherapy with gemcitabine and cisplatin followed by concurrent SIB-IMRT was well tolerated and active.
Collapse
Affiliation(s)
- Sang Myung Woo
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Min Kyeong Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Biometric Research Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Goyang, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Boram Park
- Biometric Research Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Goyang, Korea
| | - Sang-Jae Park
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Sung-Sik Han
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Ju Hee Lee
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Eun Kyung Hong
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Yun-Hee Kim
- Molecular Imaging and Therapy Branch, Research Institute National Cancer Center, Goyang, Korea
| | - Hae Moon
- Emergency Department, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Goyang, Korea
| | - Tae Hyun Kim
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| | - Woo Jin Lee
- Center for Liver Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|