1
|
Joseph S, Patil K, Rahate N, Shah J, Mukherjee S, Mahale SD. Integrated data driven analysis identifies potential candidate genes associated with PCOS. Comput Biol Chem 2024; 113:108191. [PMID: 39243549 DOI: 10.1016/j.compbiolchem.2024.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common anovulatory disorder observed in women presenting with infertility. Several high and low throughput studies on PCOS have led to accumulation of vast amount of information on PCOS. Despite the availability of several resources which index the advances in PCOS, information on its etiology still remains inadequate. Analysis of the existing information using an integrated evidence based approach may aid identification of novel potential candidate genes with a role in PCOS pathophysiology. This work focuses on integrating existing information on PCOS from literature and gene expression studies and evaluating the application of gene prioritization and network analysis to predict missing novel candidates. Further, it assesses the utility of evidence-based scoring to rank genes for their association with PCOS. The results of this study led to identification of ∼2000 plausible candidate genes associated with PCOS. Insilico validation of these identified candidates confirmed the role of 938 genes in PCOS. Further, experimental validation was carried out for four of the potential candidate genes, a high-scoring (PROS1), two mid-scoring (C1QA and KNG1), and a low-scoring gene (VTN) involved in the complement and coagulation pathway by comparing protein levels in follicular fluid in women with PCOS and healthy controls. While the expression of PROS1, C1QA, and KNG1 was found to be significantly downregulated in women with PCOS, the expression of VTN was found to be unchanged in PCOS. The findings of this study reiterate the utility of employing insilico approaches to identify and prioritize the most promising candidate genes in diseases with a complex pathophysiology like PCOS. Further, the study also helps in gaining clearer insights into the molecular mechanisms associated with the manifestation of the PCOS phenotype by contributing to the existing repertoire of genes associated with PCOS.
Collapse
Affiliation(s)
- Shaini Joseph
- Genetic Research Center, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai 400012, India
| | - Krutika Patil
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai 400012, India
| | - Niharika Rahate
- Genetic Research Center, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai 400012, India
| | - Jatin Shah
- Mumbai Fertility Clinic & IVF Centre, Kamala Polyclinic and Nursing Home, Mumbai 400026, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai 400012, India.
| | - Smita D Mahale
- ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
2
|
Wang S, Wu X, Yang J, Peng Y, Miao F, Li M, Zeng J. Sterigmatocystin declines mouse oocyte quality by inducing ferroptosis and asymmetric division defects. J Ovarian Res 2024; 17:175. [PMID: 39198920 PMCID: PMC11351269 DOI: 10.1186/s13048-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Yuwan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Fulu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Seenan V, Hsu CF, Subramani K, Chen PC, Ding DC, Chu TY. Ovulation provides excessive coagulation and hepatocyte growth factor signals to cause postoperative intraabdominal adhesions. iScience 2024; 27:109788. [PMID: 38770140 PMCID: PMC11103365 DOI: 10.1016/j.isci.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Postoperative adhesions show a higher occurrence in females aged 16-60, especially after pelvic surgeries. This study explores the role of ovulation in adhesion formation in mice. Ovarian surgery in mice with normal- or super-ovulation led to pronounced adhesions, whereas ovulation-defective Pgr-KO mice showed minimal adhesions. Specifically, exposure to ovulatory follicular fluid (FF) markedly increased the adhesion. The hazardous exposure time window was one day before to 2.5 days after the surgery. Mechanistically, early FF exposure triggered adhesions via the blood coagulation cascade, while later exposure relied on the HGF/cMET signaling pathway. Prophylactic administration of a thrombin inhibitor pre-operatively or a cMET inhibitor postoperatively effectively mitigated FF-induced adhesions, while COX inhibitor treatment exhibited no discernible effect. These findings underscore ovulation as a pivotal factor in the development of pelvic wound adhesions and advocate for targeted preventive strategies such as c-MET inhibition, scheduling surgeries outside the ovulatory period, or employing oral contraceptive measures.
Collapse
Affiliation(s)
- Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Kanchana Subramani
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
- Department of Life Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
4
|
Lledó B, Piqueras JJ, Lozano FM, Hortal M, Morales R, Ortiz JA, Guerrero J, Benabeu A, Bernabeu R. Exome sequencing in genuine empty follicle syndrome: Novel candidate genes. Eur J Obstet Gynecol Reprod Biol 2024; 297:221-226. [PMID: 38691974 DOI: 10.1016/j.ejogrb.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE(S) Empty follicle syndrome (EFS) is a condition in which no oocytes are retrieved in an IVF cycle despite apparently normal follicular development and meticulous follicular aspiration following ovulation induction. The EFS is called genuine (gEFS) when the trigger administration is correct. The existence of gEFS is a subject of controversy, and it is quite rare with an undetermined etiology. Genetic defects in specific genes have been demonstrated to be responsible for this condition in some patients. Our objective was to identify novel genetic variants associated with gEFS. STUDY DESIGN We conducted a prospective observational study including 1,689 egg donors from July 2017 to February 2023. WES were performed in patients suffering gEFS. RESULTS Only 7 patients (0.41 %) exhibited gEFS after two ovarian stimulation cycles and we subsequently performed whole exome sequencing (WES) on these patients. Following stringent filtering, we identified 6 variants in 5 affected patients as pathogenic in new candidate genes which have not been previously associated with gEFS before, but which are involved in important biological processes related to folliculogenesis. These genetic variants included c.603_618del in HMMR, c.1025_1028del in LMNB1, c.1091-1G > A in TDG, c.607C > T in HABP2, c.100 + 2 T > C in HAPLN1 and c.3592_3593del in JAG2. CONCLUSION As a conclusion, we identified new candidate genes related to gEFS that expand the mutational spectrum of genes related to gEFS.This study show that WES might be an efficient tool to identify the genetic etiology of gEFS and provide further understanding of the pathogenic mechanism of gEFS.
Collapse
Affiliation(s)
- Belen Lledó
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain.
| | - Juan J Piqueras
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | | | - Mónica Hortal
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Ruth Morales
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - José A Ortiz
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Jaime Guerrero
- Reproductive Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Andrea Benabeu
- Reproductive Medicine Department, Instituto Bernabeu, Alicante, Spain; Chair Community Medicine UMH and Health Reproductive, Miguel Hernández University, Alicante, Spain
| | - Rafael Bernabeu
- Reproductive Medicine Department, Instituto Bernabeu, Alicante, Spain; Chair Community Medicine UMH and Health Reproductive, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
5
|
Mok JH, Park DY, Han JC. Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis. Biofactors 2024. [PMID: 38818964 DOI: 10.1002/biof.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.
Collapse
Affiliation(s)
- Jeong-Hun Mok
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Luis-Calero M, Marinaro F, Fernández-Hernández P, Ortiz-Rodríguez JM, G Casado J, Pericuesta E, Gutiérrez-Adán A, González E, Azkargorta M, Conde R, Bizkarguenaga M, Embade N, Elortza F, Falcón-Pérez JM, Millet Ó, González-Fernández L, Macías-García B. Characterization of preovulatory follicular fluid secretome and its effects on equine oocytes during in vitro maturation. Res Vet Sci 2024; 171:105222. [PMID: 38513461 DOI: 10.1016/j.rvsc.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 μg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.
Collapse
Affiliation(s)
- Marcos Luis-Calero
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Pablo Fernández-Hernández
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Javier G Casado
- Unidad de inmunología, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
| | | | | | | | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | | | - Óscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Lauro González-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| | - Beatriz Macías-García
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| |
Collapse
|
7
|
Tang Z, Gaskins AJ, Hood RB, Ford JB, Hauser R, Smith AK, Everson TM. Former smoking associated with epigenetic modifications in human granulosa cells among women undergoing assisted reproduction. Sci Rep 2024; 14:5009. [PMID: 38424222 PMCID: PMC10904848 DOI: 10.1038/s41598-024-54957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Smoking exposure during adulthood can disrupt oocyte development in women, contributing to infertility and possibly adverse birth outcomes. Some of these effects may be reflected in epigenome profiles in granulosa cells (GCs) in human follicular fluid. We compared the epigenetic modifications throughout the genome in GCs from women who were former (N = 15) versus never smokers (N = 44) undergoing assisted reproductive technologies (ART). This study included 59 women undergoing ART. Smoking history including time since quitting was determined by questionnaire. GCs were collected during oocyte retrieval and DNA methylation (DNAm) levels were profiled using the Infinium MethylationEPIC BeadChip. We performed an epigenome-wide association study with robust linear models, regressing DNAm level at individual loci on smoking status, adjusting for age, ovarian stimulation protocol, and three surrogate variables. We performed differentially methylated regions (DMRs) analysis and over-representation analysis of the identified CpGs and corresponding gene set. 81 CpGs were differentially methylated among former smokers compared to never smokers (FDR < 0.05). We identified 2 significant DMRs (KCNQ1 and RHBDD2). The former smoking-associated genes were enriched in oxytocin signaling, adrenergic signaling in cardiomyocytes, platelet activation, axon guidance, and chemokine signaling pathway. These epigenetic variations have been associated with inflammatory responses, reproductive outcomes, cancer development, neurodevelopmental disorder, and cardiometabolic health. Secondarily, we examined the relationships between time since quitting and DNAm at significant CpGs. We observed three CpGs in negative associations with the length of quitting smoking (p < 0.05), which were cg04254052 (KCNIP1), cg22875371 (OGDHL), and cg27289628 (LOC148145), while one in positive association, which was cg13487862 (PLXNB1). As a pilot study, we demonstrated epigenetic modifications associated with former smoking in GCs. The study is informative to potential biological pathways underlying the documented association between smoking and female infertility and biomarker discovery for smoking-associated reproductive outcomes.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alicia K Smith
- Department of Obstetrics and Gynecology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Niribili R, Jeyakumar S, Kumaresan A, Lavanya M, Sinha MK, Kausik M, Elango K, Patil S, Allu T, Veerappa VG, Manimaran A, Das DN, Bhuyan M, Ramesha KP. Prolonged follicular dominance is associated with dysregulated proteomic profile of the follicular fluid in Bos indicus cows. Theriogenology 2024; 213:34-42. [PMID: 37793223 DOI: 10.1016/j.theriogenology.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Prolonged follicular dominance is one of the conditions associated with disconcerted follicular dynamics that result in substantial economic losses to the farmers through low reproductive efficiency in cattle. Hormonal aberrations associated with prolonged follicular dominance may affect the follicular microenvironment and composition of follicular fluid. The current study focused on proteome changes of follicular fluid in prolonged follicular dominance compared to physiological follicular dominance. Prolonged dominance was induced in Deoni cows (n = 6) by using CIDR (previously used for 7 days) from day 4-8 of estrus, with PGF2 injection on day 6 and day 7 at 12 h intervals. Follicular fluid was collected by ultrasound guided transvaginal follicular aspiration method. Global proteomic analysis of follicular fluid revealed 217 proteins in the Deoni cow, with the majority of proteins involved in 21 pathways, 42 molecular functions, and 106 biological processes. Complement and coagulation cascades (22.8%) and cholesterol metabolism (4.68%) were the major pathways in which identified proteins were involved. Comparison of physiological and prolonged dominant follicular fluid revealed differential expression of 26 proteins, of which 15 were upregulated and 11 were downregulated. Proteins involved in complement and coagulation cascades, and vitamin digestion and absorption were found to be dysregulated in PFD. The present study suggests that the expression of proteins involved in inflammation, oocyte metabolism, and ovulation cascade were found to be dysregulated in the follicular fluid of prolonged follicular dominance consequently resulting in delayed ovulation or anovulation.
Collapse
Affiliation(s)
- Rajbangshi Niribili
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Sakthivel Jeyakumar
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India.
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Maharajan Lavanya
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Majumder Kausik
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Shivanagouda Patil
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Teja Allu
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Vedamurthy G Veerappa
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Ayyasamy Manimaran
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - D N Das
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Manjyoti Bhuyan
- Department of ARGO, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781 022, India
| | - K P Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
9
|
Ji J, Zhu X, Zhang Y, Shui L, Bai S, Huang L, Wang H, Fan S, Zhang Z, Luo L, Xu B. A Proteomic Analysis of Human Follicular Fluid: Proteomic Profile Associated with Embryo Quality. Reprod Sci 2024; 31:199-211. [PMID: 37607985 DOI: 10.1007/s43032-023-01293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
Embryo selection is a key point of in vitro fertilization (IVF). The most commonly used method for embryo selection is morphological assessment. However, it is sometimes inaccurate. Follicular fluid (FF) contains a complex mixture of proteins that are essential for follicle development and oocyte maturation. Analyzing human FF proteomic profiles and identifying predictive biomarkers might be helpful for evaluating embryo quality. A total of 22 human FF samples were collected from 19 infertile women who underwent IVF/intracytoplasmic sperm injection (ICSI) treatment between October 2021 and November 2021. FFs were grouped into two categories on the basis of the day 3 embryo quality, grade I or II in the hqFF group and grade III in the nhqFF group. FF was analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The key differentially expressed proteins (DEPs) were validated by parallel reaction monitoring (PRM) and enzyme-linked immunosorbent assay (ELISA). Differentially expressed proteins were further analyzed using DAVID software. A total of 558 proteins were identified, of which 50 proteins were differentially expressed in the hqFF versus nhqFF group, including 32 upregulated proteins (> 1.20-fold, P < 0.05) and 18 downregulated proteins (< 0.67-fold, P < 0.05). Bioinformatics analyses showed that the upregulated DEPs were enriched in components of the coagulation and complement systems and negative regulation of peptidase activity, while the downregulated DEPs were enriched in molecular function of extracellular matrix structural and constituent collagen binding. Our results suggested that a number of protein biomarkers in FF were associated with embryo quality. It may help develop an effective and noninvasive method for embryo selection.
Collapse
Affiliation(s)
- Jingjuan Ji
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xinyi Zhu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yan Zhang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Lijun Shui
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Lingli Huang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haoyu Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shiwei Fan
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zelin Zhang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Lihua Luo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
10
|
Priya Aarthy A, Sen S, Srinivasan M, Muthukumar S, Madhanraj P, Akbarsha MA, Archunan G. Ectopic pregnancy: search for biomarker in salivary proteome. Sci Rep 2023; 13:16828. [PMID: 37803047 PMCID: PMC10558548 DOI: 10.1038/s41598-023-43791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ectopic pregnancy (EP) is associated with high maternal morbidity and mortality. Ultrasonography is the only dependable diagnostic tool for confirming an ectopic pregnancy. In view of inadequate early detection methods, women suffer from a high-life risk due to the severity of EP. Early detection of EP using pathological/molecular markers will possibly improve clinical diagnosis and patient management. Salivary proteins contain potential biomarkers for diagnosing and detecting various physiological and/or pathological conditions. Therefore, the present investigation was designed to explore the salivary proteome with special reference to EP. Gel-based protein separation was performed on saliva, followed by identification of proteins using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Totally, 326 proteins were identified in the salivary samples, among which 101 were found to be specific for ruptured ectopic pregnancy (EPR). Reactome analysis revealed innate immune system, neutrophil degranulation, cell surface interactions at the vascular wall, and FCERI-mediated NF-kB activation as the major pathways to which the salivary proteins identified during EPR are associated. Glutathione-S-transferase omega-1 (GSTO1) is specific for EPR and has been reported as a candidate biomarker in the serum of EPR patients. Therefore, saliva would be a potential source of diagnostic non-invasive protein biomarker(s) for EP. Intensive investigation on the salivary proteins specific to EP can potentially lead to setting up of a panel of candidate biomarkers and developing a non-invasive protein-based diagnostic kit.
Collapse
Affiliation(s)
- Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India.
- Department of Obstetrics and Gynecology, Saveetha Medical College and Hospital, Deemed University, Chennai, India.
| | - Sangeetha Sen
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India
| | - Mahalingam Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Subramanian Muthukumar
- Deparment of Biotechnology, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pakirisamy Madhanraj
- Department of Microbiology, Marudupandiyar College, Thanjavur, Tamil Nadu, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, India
- Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Marudupandiyar College, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
11
|
Kanaka V, Drakakis P, Loutradis D, Tsangaris GT. Proteomics in the study of female fertility: an update. Expert Rev Proteomics 2023; 20:319-330. [PMID: 37874610 DOI: 10.1080/14789450.2023.2275683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
12
|
All that glitters is not gold: a stereological study of human donor oocytes. ZYGOTE 2023; 31:253-265. [PMID: 36938666 DOI: 10.1017/s0967199423000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Here we report a quantitative analysis of human metaphase II (MII) oocytes from a 22-year-old oocyte donor, retrieved after ovarian-controlled hyperstimulation. Five surplus donor oocytes were processed for transmission electron microscopy (TEM), and a stereological analysis was used to quantify the distribution of organelles, using the point-counting technique with an adequate stereological grid. Comparisons between means of the relative volumes (Vv) occupied by organelles in the three oocyte regions, cortex (C), subcortex (SC) and inner cytoplasm (IC), followed the Kruskal-Wallis test and Mann-Whitney U-test with Bonferroni correction. Life cell imaging and TEM analysis confirmed donor oocyte nuclear maturity. Results showed that the most abundant organelles were smooth endoplasmic reticulum (SER) elements (26.8%) and mitochondria (5.49%). Significant differences between oocyte regions were found for lysosomes (P = 0.003), cortical vesicles (P = 0.002) and large SER vesicles (P = 0.009). These results were quantitatively compared with previous results using prophase I (GV) and metaphase I (MI) immature oocytes. In donor MII oocytes there was a normal presence of cortical vesicles, SER tubules, SER small, medium and large vesicles, lysosomes and mitochondria. However, donor MII oocytes displayed signs of cytoplasmic immaturity, namely the presence of dictyosomes, present in GV oocytes and rare in MI oocytes, of SER very large vesicles, characteristic of GV oocytes, and the rarity of SER tubular aggregates. Results therefore indicate that the criterion of nuclear maturity used for donor oocyte selection does not always correspond to cytoplasmic maturity, which can partially explain implantation failures with the use of donor oocytes.
Collapse
|
13
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Dabaja MZ, Dos Santos AA, Christofolini DM, Barbosa CP, de Oliveira DN, de Oliveira AN, Melo CFOR, Guerreiro TM, Catharino RR. Comparative metabolomic profiling of women undergoing in vitro fertilization procedures reveals potential infertility-related biomarkers in follicular fluid. Sci Rep 2022; 12:20531. [PMID: 36446837 PMCID: PMC9709069 DOI: 10.1038/s41598-022-24775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Infertility is a worldwide concern, affecting one in six couples throughout their reproductive period. Therefore, enhancing the clinical tools available to identify the causes of infertility may save time, money, and emotional distress for the involved parties. This study aims to annotate potential biomarkers in follicular fluid that are negatively affecting pregnancy outcomes in women suffering infertility-related diseases such as endometriosis, tuboperitoneal factor, uterine factor, and unexplained infertility, using a metabolomics approach through high-resolution mass spectrometry. Follicular fluid samples collected from women who have the abovementioned diseases and managed to become pregnant after in vitro fertilization procedures [control group (CT)] were metabolically compared with those from women who suffer from the same diseases and could not get pregnant after the same treatment [infertile group (IF)]. Mass spectrometry analysis indicated 10 statistically relevant differential metabolites in the IF group, including phosphatidic acids, phosphatidylethanolamines, phosphatidylcholines, phosphatidylinositol, glucosylceramides, and 1-hydroxyvitamin D3 3-D-glucopyranoside. These metabolites are associated with cell signaling, cell proliferation, inflammation, oncogenesis, and apoptosis, and linked to infertility problems. Our results indicate that understanding the IF's metabolic profile may result in a faster and more assertive female infertility diagnosis, lowering the costs, and increasing the probability of a positive pregnancy outcome.
Collapse
Affiliation(s)
- Mohamed Ziad Dabaja
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | | | - Denise Maria Christofolini
- Instituto Ideia Fértil de Saúde Reprodutiva, Santo André, SP, 09060-650, Brazil
- Centro Universitário FMABC, Santo André, SP, 09060-870, Brazil
| | - Caio Parente Barbosa
- Instituto Ideia Fértil de Saúde Reprodutiva, Santo André, SP, 09060-650, Brazil
- Centro Universitário FMABC, Santo André, SP, 09060-870, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Carlos Fernando Odir Rodrigues Melo
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
15
|
Cao XL, Xu NX, Zhou XY, Xu CM. Association of urinary bisphenol A concentrations with in vitro fertilisation outcomes: a systematic review and meta-analysis protocol. BMJ Open 2022; 12:e063930. [PMID: 36319056 PMCID: PMC9628666 DOI: 10.1136/bmjopen-2022-063930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Bisphenol A (BPA) is a common environmental endocrine disruptor. BPA has been reported to be associated with female infertility, which may not only affect natural pregnancy and natural fertility but also affect the outcomes of in vitro fertilisation (IVF). BPA exposure may help to partly explain the unsatisfactory IVF outcomes, but the relationship between the concentrations of BPA in urine and IVF outcomes remains controversial. Therefore, we will perform a meta-analysis to identify and review the relationship between urinary BPA concentrations and IVF outcomes. METHODS AND ANALYSIS A comprehensive literature search will be performed in PubMed, Web of Science and the Cochrane central register of controlled trials for relevant articles using MeSH terms and related entry terms (up to 20 April 2022). The language will be restricted to English. Articles will be screened for inclusion in or exclusion from the study independently by two reviewers after removing the duplicates. The titles and abstracts followed by full-text screening will also be conducted independently by two reviewers. In addition, the references of the included literature will also be traced to supplement our search results and to obtain all relevant literature. The Newcastle-Ottawa Scale will be used to assess the methodological quality of the included studies using a star rating system ranging from 0 to 9 stars. Heterogeneity in estimates from different articles will be quantified, and publication bias will be investigated using funnel plots. Finally, a sensitivity analysis will also be conducted to estimate whether our results could have been markedly affected by a single included study. ETHICS AND DISSEMINATION Ethical approval is not required for this protocol, as participants are not included. Findings will be disseminated through peer-reviewed publications and conference presentations.
Collapse
Affiliation(s)
- Xian-Ling Cao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Nai-Xin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan-You Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chen-Ming Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Schon SB, Yang K, Schindler R, Jiang L, Neff LM, Seeley RJ, Marsh EE. Obesity-related alterations in protein expression in human follicular fluid from women undergoing in vitro fertilization. F&S SCIENCE 2022; 3:331-339. [PMID: 36096447 DOI: 10.1016/j.xfss.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare the proteomic composition of follicular fluid from women with normal weight vs. women with obesity but without a history of polycystic ovary syndrome or known ovarian dysfunction undergoing in vitro fertilization. DESIGN Cross-sectional. SETTING Academic medical center. PATIENT(S) Eight women with normal weight and 8 women with obesity undergoing in vitro fertilization and without a history of polycystic ovary syndrome, ovulatory dysfunction, diminished ovarian reserve, or known endometriosis were included in the analysis. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Proteomic assessment using liquid chromatography-mass spectrometry analysis. RESULT(S) The mean age of women with normal weight was similar to that of women with obesity (32.9 vs. 32.6 years, not significant). The mean body mass index of women with normal weight was 21.2 kg/m2 compared with a body mass index of 37.1 kg/m2 in women with obesity. A total of 1,174 proteins were identified with ≥2 peptides present. Twenty-five proteins were found to be significantly altered in the follicular fluid from women with obesity. Of these 25 proteins, 19 were up-regulated and 6 were down-regulated. Notably, C-reactive protein was 11-fold higher in the follicular fluid from women with obesity than in the follicular fluid from women with normal weight. CONCLUSION(S) Obesity is associated with dysregulation at the level of the follicle, including alterations in proteins related to inflammation and metabolism. These include proteins with emerging roles in energy homeostasis and follicular regulation.
Collapse
Affiliation(s)
- Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Kun Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Ronald Schindler
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Li Jiang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
17
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
18
|
Ishak GM, Feugang JM, Pechanova O, Pechan T, Peterson DG, Willard ST, Ryan PL, Gastal EL. Follicular-fluid proteomics during equine follicle development. Mol Reprod Dev 2022; 89:298-311. [PMID: 35762042 DOI: 10.1002/mrd.23622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.
Collapse
Affiliation(s)
- Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
19
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
20
|
Sysoeva AP, Makarova NP, Silachev DN, Lobanova NN, Shevtsova YA, Bragina EE, Kalinina EA, Sukhikh GT. Influence of Extracellular Vesicles of the Follicular Fluid on Morphofunctional Characteristics of Human Sperm. Bull Exp Biol Med 2021; 172:254-262. [PMID: 34855079 DOI: 10.1007/s10517-021-05372-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/14/2023]
Abstract
We studied the effect of extracellular vesicles of the follicular fluid on morphofunctional characteristics of human spermatozoa using CASA (computer-assisted sperm analysis) analytical system. The vesicles were obtained by sequential centrifugation at different rotational speeds and frozen at -80°C in the Sydney IVF Gamete Buffer medium. The sperm fraction was isolated from the seminal fluid of 21 patients aged 27-36 years by differential centrifugation in a density gradient. The precipitate was suspended in Sydney IVF Gamete Buffer to a concentration of 106/ml and incubated with vesicles (1:2) at 37°C in a CO2 incubator for 30 min and 1 h. Sperm fraction incubated without vesicles served as the control. After incubation, some sperm samples were centrifuged at 700g for 5 min and fixed in 2.5% glutaraldehyde in 0.1 M buffer for transmission electron microscopy. After 30-min and 1-h incubation, the progressive and total sperm motility improved, the curvilinear and linear velocity of spermatozoa did not change significantly. Incubation with vesicles significantly changed the trajectory of sperm movement, which can attest to an increase in their hyperactivation and, probably, fertilizing capacity. Analysis of the effect of extracellular vesicles of follicular fluid on sperm motility will help to improve the effectiveness of assisted reproductive technology programs with male infertility factor by improving sperm characteristics in patients with asthenozoospermia and increasing the fertilizing ability of the sperm.
Collapse
Affiliation(s)
- A P Sysoeva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N P Makarova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.,A. N. Belozersky Research Institute of Physical and Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N N Lobanova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E E Bragina
- A. N. Belozersky Research Institute of Physical and Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - E A Kalinina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
DNase activity in human seminal plasma and follicular fluid and its inhibition by follicular fluid chelating agents. Reprod Biomed Online 2021; 43:1079-1086. [PMID: 34753679 DOI: 10.1016/j.rbmo.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
RESEARCH QUESTION What is the mechanism by which human follicular fluid inhibits seminal plasma DNase activity? DESIGN Human genomic DNA was incubated with human follicular fluid and seminal plasma (reaction mixture) under different experimental conditions; increasing volumes of human follicular fluid; proteinase K digested or heat inactivated human follicular fluid; and the addition of Ca2+ or Mg2+ to the reaction mixture. RESULTS Increasing volume of human follicular fluid resulted in a dose-dependent inhibition of seminal plasma DNase activity. Inhibition was not caused by proteins in the human follicular fluid as digestion with proteinase K or heat inactivation of human follicular fluid failed to abolish its inhibitory effect. Addition of divalent cations resulted in a reversion of the inhibitory effect, providing evidence that human follicular fluid inhibition of seminal plasma DNase activity seems to be mediated by a compound with chelating activity. Furthermore, incubation of genomic DNA with human follicular fluid in the presence of divalent cations served to elicit the existence of DNase activity. CONCLUSIONS Human follicular fluid seems to contain a molecule or molecules with chelating capacity that inhibits DNase activity of both follicular fluid and seminal plasma. Our findings provide new insight to understanding sperm preservation and the physiology of fertilization biology.
Collapse
|
22
|
Huang HS, Chu SC, Chen PC, Lee MH, Huang CY, Chou HM, Chu TY. Insuline-Like Growth Factor-2 (IGF2) and Hepatocyte Growth Factor (HGF) Promote Lymphomagenesis in p53-null Mice in Tissue-specific and Estrogen-signaling Dependent Manners. J Cancer 2021; 12:6021-6030. [PMID: 34539876 PMCID: PMC8425200 DOI: 10.7150/jca.60120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/31/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Trp53-/- mice are prone to develop lymphomas at old ages. Factors promoting this tumorigenesis are unknown. Here, we showed human ovulatory follicular fluid (FF) largely promotes lymphomagenesis in Trp53-/- mice at earlier ages. Meanwhile, we clarified that IGF2 and HGF are important cell transforming factors within FF. Methods: To induce tumor formation, 5% FFs, 100 ng/ml IGF2, 20 ng/ml HGF, or both IGF2 and HGF in a volume of 200 µl PBS, was injected into 8-wk-old female Trp53 -/- mice at the mammary fat pad. The injection was repeated weekly for up to 7 weeks or extending to 13 weeks to observe the accumulative incidence of lymphomagenesis. Immunohistochemistry staining and gene rearrangement analysis were used to identify the tumor type. Results: By injecting FF into the mammary fat pad weekly, lymphomas developed in 8/16 (50%) of mice by seven weeks. We identified IGF2 and HGF in FF is largely responsible for this activity. The same weekly injection of IGF2, HGF, and their combination induced lymphomas in 4/11 (36%), 3/8 (38%), and 6/9 (67%) mice, respectively. Interestingly, tumorigenesis was induced only when those were injected into the adipose tissues in the mammary gland, but not when injected into non-adipose sites. We also found this tumor-promoting activity is estradiol (E2)-dependent and relies on estrogen receptor (ER) α expression in the adipose stroma. No tumor or only tiny tumor was yielded when the ovaries were resected or when ER is antagonized. Finally, an extension of the weekly FF-injection to 13 weeks did not further increase the lymphomagenesis rate, suggesting an effect on pre-initiated cancer cells. Conclusions: Taken together, the study disclosed a robust tumor-promoting effect of IGF2 and HGF in the p53 loss-initiated lymphomagenesis depending on an adipose microenvironment in the presence of E2. In light of the clarity of this spontaneous tumor promotion model, we provide a new tool for studying p53-mediated lymphomagenesis and suggest that, as a chemoprevention test, this is a practical model to perform.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Ming-Hsun Lee
- Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Chi-Ya Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Hsien-Ming Chou
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
23
|
Afedi PA, Larimore EL, Cushman RA, Raynie D, Perry GA. iTRAQ-based proteomic analysis of bovine pre-ovulatory plasma and follicular fluid. Domest Anim Endocrinol 2021; 76:106606. [PMID: 33784582 DOI: 10.1016/j.domaniend.2021.106606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
Bovine follicular fluid (FF) creates a unique microenvironment in follicles necessary for follicle growth, oocyte maturation, and estradiol (E2) production. The objective of this study was to analyze changes in proteins in FF and plasma (PL) from animals with high E2 (HE2) or low E2 (LE2) during the preovulatory period. Beef cows were synchronized, and follicular dynamics and ovulatory response were monitored using transrectal ultrasonography. Nine cows were selected and slaughtered, blood samples were collected at slaughter and FF was aspirated from dominant follicles (DF; >10 mm). Abundant proteins (albumin, IgG, IgA, and alpha-1-antitrypsin) were depleted from both PL and FF. Peptides were labeled with iTRAQ reagents and quantified using 2-dimentional liquid chromatography ESI-based mass spectrometry. Estradiol was associated with protein changes in PL and FF. Protein expression changes between FF HE2 and FF LE2 were greater than between PL HE2 and PL LE2. There were 15 up-regulated proteins and 10 down-regulated proteins in FF HE2 compared to FF LE2, and 7 proteins up-regulated and 9 proteins down-regulated in PL HE2 compared to PL LE2. Several of the differentially expressed proteins function in follicle development and were mainly categorized under cellular process and metabolic process. Pathway analysis identified the up- and down-regulated proteins were predominantly associated with the complement and coagulation cascades. The data demonstrate E2 regulates a wide range of reproductive associated proteins in bovine PL and FF and can provide the basis for further investigation of specific processes involved in such regulation.
Collapse
Affiliation(s)
- P A Afedi
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - E L Larimore
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - R A Cushman
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - D Raynie
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
24
|
Pla I, Sanchez A, Pors SE, Pawlowski K, Appelqvist R, Sahlin KB, Poulsen LLC, Marko-Varga G, Andersen CY, Malm J. Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod 2021; 36:756-770. [PMID: 33313811 PMCID: PMC7891813 DOI: 10.1093/humrep/deaa335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected FF from hSAF of ovaries that had been surgically removed from 31 women (∼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S) The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Krzysztof Pawlowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warszawa 02-787, Poland
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - K Barbara Sahlin
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| | - Liv La Cour Poulsen
- Fertility Clinic, Department of Gynaecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.,First Department of Surgery, Tokyo Medical University, Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden
| |
Collapse
|
25
|
Pan B, Liu C, Zhan X, Li J. Protegrin-1 Regulates Porcine Granulosa Cell Proliferation via the EGFR-ERK1/2/p38 Signaling Pathway in vitro. Front Physiol 2021; 12:673777. [PMID: 34093234 PMCID: PMC8176212 DOI: 10.3389/fphys.2021.673777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are traditionally known to be essential components in host defense via their broad activities against bacteria, fungi, viruses, and protozoa. Their immunomodulatory properties have also recently received considerable attention in mammalian somatic tissues of various species. However, little is known regarding the role of AMPs in the development and maturation of ovarian follicles. Protegrin-1 (PG-1) is an antimicrobial peptide which is known to have potent antimicrobial activity against both gram positive and negative bacteria. Here we report that the PG-1 is present in the porcine ovarian follicular fluid. Treatment of granulosa cell with PG-1 enhanced granulosa cell proliferation in a dose-dependent manner. This is accompanied by increased expression of cell-cycle progression-related genes such as cyclin D1(CCND1), cyclin D2 (CCND2), and cyclin B1(CCNB1). Additionally, Western blot analysis showed that PG-1 increased phosphorylated epidermal growth factor receptor (EGFR), and the phosphorylated-/total extracellular signal-regulated kinase (ERK)1/2 ratio. Pretreatment with either U0126, a specific ERK1/2 phosphorylation inhibitor, or EGFR kinase inhibitor, AG1478, blocked the PG-1 induced proliferation. Moreover, luciferase reporter assay revealed that ETS domain-containing protein-1 (Elk1) C/EBP homologous protein (CHOP), and the transcription activators downstream of the MAPK pathway, were activated by PG-1. These data collectively suggest that PG-1 may regulate pig granulosa cell proliferation via EGFR-MAPK pathway., Hence, our finding offers insights into the role of antimicrobial peptides on follicular development regulation.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| | - Canying Liu
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoshu Zhan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
26
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
27
|
Ravisankar S, Hanna CB, Brooks KE, Murphy MJ, Redmayne N, Ryu J, Kinchen JM, Chavez SL, Hennebold JD. Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency. Sci Rep 2021; 11:6506. [PMID: 33753762 PMCID: PMC7985310 DOI: 10.1038/s41598-021-85704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin administration during infertility treatment stimulates the growth and development of multiple ovarian follicles, yielding heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. To determine how the intrafollicular environment affects oocyte competency, 74 individual rhesus macaque follicles were aspirated and the corresponding oocytes classified as failed to cleave, cleaved but arrested prior to blastulation, or those that formed blastocysts following in vitro fertilization. Metabolomics analysis of the follicular fluid (FF) identified 60 unique metabolites that were significantly different between embryo classifications, of which a notable increase in the intrafollicular ratio of cortisol to cortisone was observed in the blastocyst group. Immunolocalization of the glucocorticoid receptor (GR, NR3C1) revealed translocation from the cytoplasm to nucleus with oocyte maturation in vitro and, correlation to intrafollicular expression of the 11-hydroxy steroid dehydrogenases that interconvert these glucocorticoids was detected upon an ovulatory stimulus in vivo. While NR3C1 knockdown in oocytes had no effect on their maturation or fertilization, expansion of the associated cumulus granulosa cells was inhibited. Our findings indicate an important role for NR3C1 in the regulation of follicular processes via paracrine signaling. Further studies are required to define the means through which the FF cortisol:cortisone ratio determines oocyte competency.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental and Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Kelsey E Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Melinda J Murphy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nash Redmayne
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Shawn L Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA. .,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
28
|
Lai TH, Chen HT, Wu WB. TGFβ1 induces in-vitro and ex-vivo angiogenesis through VEGF production in human ovarian follicular fluid-derived granulosa cells during in-vitro fertilization cycle. J Reprod Immunol 2021; 145:103311. [PMID: 33812317 DOI: 10.1016/j.jri.2021.103311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
A growing body of evidence indicates that angiogenesis in folliculogenesis contributes to oocyte developmental competence in natural and in-vitro fertilization (IVF) cycle of animals. Among the known angiogenic factors, vascular endothelial growth factor (VEGF) has an important role involved in angiogenesis. However, its expression level and regulatory mechanism in ovarian follicular fluid (FF) in patients undergoing IVF with controlled ovarian stimulation (COS) remains to be explored. In this study, the primary cultured human ovarian follicular granulosa cells (GCs) were prepared from FF and their identity was characterized by the presence of the GC specific markers. The transforming growth factor β1 (TGFβ1) was found to induce a significant increase in VEGF mRNA level and protein expression/secretion in GCs. In line with these observations, TGFβ1 could be detected in the ovarian FF, ranging from about 400 to 2000 pg/mL among three IVF patient groups with different patient's serum Anti-Müllerian hormone level. The cellular signaling analysis revealed that TGFβ1 induced VEGF production through TGFβ receptor (TGFβR), Smad2/3, PI3 K/AKT, and JNK1/2-related signaling pathways. Finally, in a functional study, the TGFβ1-primed GC VEGF secretion promoted in-vitro angiogenesis in vascular endothelial cells and ex-vivo vessel sprouting in aortic ring. Taken together, we demonstrated here that TGFβ1 expressed in ovarian FF is an inducer for promoting VEGF production in follicular GCs through TGFβR-mediated signaling pathways and the released VEGF subsequently leads to angiogenesis. This possibly contributes to oocyte developmental competence in folliculogenesis of IVF patients with a COS protocol.
Collapse
Affiliation(s)
- Tsung-Hsuan Lai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsuan-Ting Chen
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Ph.D. Program in Biopharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
29
|
Klobučar M, Pavlić SD, Car I, Severinski NS, Milaković TT, Badovinac AR, Pavelić SK. Mass spectrometry-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from follicular fluid. Biomol Concepts 2020; 11:153-171. [PMID: 33099516 DOI: 10.1515/bmc-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Couples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.
Collapse
Affiliation(s)
- Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sanja Dević Pavlić
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Iris Car
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Neda Smiljan Severinski
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Tamara Tramišak Milaković
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Anđelka Radojčić Badovinac
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | | |
Collapse
|
30
|
Walter J, Monthoux C, Fortes C, Grossmann J, Roschitzki B, Meili T, Riond B, Hofmann-Lehmann R, Naegeli H, Bleul U. The bovine cumulus proteome is influenced by maturation condition and maturational competence of the oocyte. Sci Rep 2020; 10:9880. [PMID: 32555221 PMCID: PMC7303117 DOI: 10.1038/s41598-020-66822-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) of oocytes has still a negative impact on the developmental competence of oocytes. Therefore, this study analysed the cumulus proteome of individual cumulus-oocyte complexes (COCs) with and without maturational competence, matured under in vivo or in vitro conditions (n = 5 per group). A novel, ultrasensitive mass spectrometry (MS) based protein profiling approach, using label-free quantification, was applied. The detected cumulus proteome included 2226 quantifiable proteins and was highly influenced by the maturation condition (479 differentially expressed proteins) as well as maturational competence of the corresponding oocyte (424 differentially expressed proteins). Enrichment analysis showed an overrepresentation of the complement and coagulation cascades (CCC), ECM-receptor interaction and steroid biosynthesis in cumulus of COCs that matured successfully under in vivo conditions. Verification of the origin of CCC proteins was achieved through detection of C3 secretion into the maturation medium, with significantly increasing concentrations from 12 (48.4 ng/ml) to 24 hours (68 ng/ml: p < 0.001). In relation, concentrations in follicular fluid, reflecting the in vivo situation, were >100x higher. In summary, this study identified important pathways that are impaired in IVM cumulus, as well as potential markers of the maturational competence of oocytes.
Collapse
Affiliation(s)
- J Walter
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - C Monthoux
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, (SIB), Zurich, Switzerland
| | - B Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - T Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - B Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - R Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - H Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - U Bleul
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Liu X, Wang Y, Zhu P, Wang J, Liu J, Li N, Wang W, Zhang W, Zhang C, Wang Y, Shen X, Liu F. Human follicular fluid proteome reveals association between overweight status and oocyte maturation abnormality. Clin Proteomics 2020; 17:22. [PMID: 32528235 PMCID: PMC7282111 DOI: 10.1186/s12014-020-09286-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background Human follicular fluid (HFF), which is composed by essential proteins required for the follicle development, provides an important microenvironment for oocyte maturation. Recently, overweight status has been considered as a detrimental impact factor on oocyte maturation, but whether HFF proteome could provide protein markers for assessing overweight-based oocyte maturation deficiency is still unknown. Methods To reveal the HFF-based molecular characteristics associated with abnormal oocyte maturation, an iTRAQ-based comparative proteomic analysis was performed to investigate different HFF protein expression profiles from normal weight women and overweight status women. Results Two hundred HFF proteins were quantified in our data, of which 43% have not been overlapped by two previous publications. Compared with the HFF proteins of normal weight women, 22 up-regulated HFF proteins and 21 down-regulated HFF proteins were found in the overweight status women. PANTHER database showed these altered HFF proteins participated in development, metabolism, immunity, and coagulation, and STRING database demonstrated their complicated interaction networks. The confidence of proteomic outcome was verified by Western blot analysis of WAP four-disulfide core domain protein 2 (WFDC2), lactotransferrin (LTF), prostate-specific antigen (KLK3), fibronectin (FN1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Further, ELISA assay indicated WFDC2 might be a potentially useful candidate HFF marker for the diagnosis of oocyte maturation arrest caused by overweight status. Conclusions Our work provided a new complementary high-confidence HFF dataset involved in oocyte maturation, and these altered HFF proteins might have clinical relevance and diagnostic and prognostic value for abnormal oocyte maturation in overweight status women.
Collapse
Affiliation(s)
- Xin Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Yanhua Wang
- Department of Medical Records Room, Weifang People's Hospital, Weifang, 261041 Shandong People's Republic of China
| | - Peng Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Juan Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Ning Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Wendi Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Chengli Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Yanwei Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| | - Xiaofang Shen
- Reproductive Center, Beijing BaoDao Obstetrics and Gynecology Hospital, Beijing, 100000 People's Republic of China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong People's Republic of China
| |
Collapse
|
32
|
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We have been Succeeded. Cells 2020; 9:E557. [PMID: 32120836 PMCID: PMC7140496 DOI: 10.3390/cells9030557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
33
|
Rispoli LA, Edwards JL, Pohler KG, Russell S, Somiari RI, Payton RR, Schrick FN. Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows. PLoS One 2019; 14:e0227095. [PMID: 31887207 PMCID: PMC6936800 DOI: 10.1371/journal.pone.0227095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
We hypothesized that heat-induced perturbations in cumulus cells surrounding the maturing oocyte may extend to the mural granulosa of the periovulatory follicle in the heat-stressed cow to subsequently the follicular fluid proteome. Lactating Holsteins were pharmacologically stimulated to have a dominant follicle that was capable of responding to a gonadotropin releasing hormone-induced luteinizing hormone surge. Following gonadotropin releasing hormone administration, cows were maintained at ~67 temperature humidity index (THI; thermoneutral conditions) or exposed to conditions simulating an acute heat stress event (71 to 86 THI; heat stress for ~12 h). Dominant follicle collection was conducted in the periovulatory period ~16 h after gonadotropin releasing hormone. Follicular fluid proteome from thermoneutral (n = 5) and hyperthermic (n = 5) cows was evaluated by quantitative tandem mass spectrometry (nano LC-MS/MS). We identified 35 differentially-abundant proteins. Functional annotation revealed numerous immune-related proteins. Subsequent efforts revealed an increase in levels of the proinflammatory mediator bradykinin in follicular fluid (P = 0.0456) but not in serum (P = 0.9319) of hyperthermic cows. Intrafollicular increases in transferrin (negative acute phase protein) in hyperthermic cows (P = 0.0181) coincided with a tendency for levels to be increased in the circulation (P = 0.0683). Nine out of 15 cytokines evaluated were detected in follicular fluid. Heat stress increased intrafollicular interleukin 6 levels (P = 0.0160). Whether hyperthermia-induced changes in the heat-stressed cow's follicular fluid milieu reflect changes in mural granulosa, cumulus, other cell types secretions, and/or transudative changes from circulation remains unclear. Regardless of origin, heat stress/hyperthermia related changes in the follicular fluid milieu may have an impact on components important for ovulation and competence of the cumulus-oocyte complex contained within the periovulatory follicle.
Collapse
Affiliation(s)
- Louisa A. Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Ky G. Pohler
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Stephen Russell
- ITSI–Biosciences, LLC, Johnstown, PA, United States of America
| | | | - Rebecca R. Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - F. Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| |
Collapse
|
34
|
Co-incubation of spermatozoa with human follicular fluid reduces sperm DNA fragmentation by mitigating DNase activity in the seminal plasma. J Assist Reprod Genet 2019; 37:63-69. [PMID: 31808045 DOI: 10.1007/s10815-019-01643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To examine the effect of co-incubating spermatozoa with human follicular fluid (HFF) on the rate of sperm DNA fragmentation. METHODS This prospective study used semen (n = 23) and HFF from oocyte donors (n = 23). Liquified semen was divided into four aliquots: (1) neat semen (NEAT), (2) seminal plasma removed and replaced with sperm media (HTF) containing 0% (FF0), (3) 20% (FF20), or (4) 50% (FF50) HFF. Sperm motility and DNA fragmentation (SDF) were assessed following 24 h of incubation at 37 °C. Pro-oxidant capacity of HFF and seminal plasma and the effect of HFF on seminal plasma DNase activity was assessed in a sub-sample of 10 ejaculates. RESULTS Sperm motility was higher after 3 h of incubation in media that contained HFF compared to the NEAT sample or when sperm was diluted in media without HFF. r-SDF (increase of SDF per time unit) values after 24 h of incubation for NEAT, FF0, FF20 and FF50 were 0.91, 0.69, 0.25 and 0.36, respectively. While pro-oxidant capacity of seminal plasma samples showed large variation (mean: 94.6 colour units; SD 65.4), it was lower and more homogeneous in FF samples (mean: 29.9 colour units; SD: 6.3). Addition of HFF to seminal plasma appeared to inhibit DNase activity. CONCLUSION While differences exist in the pro-oxidant capacity of seminal plasma of patients, sperm DNA integrity was preserved with addition of HFF to sperm media, irrespective of the level of pro-oxidant capacity. DNase activity in the original seminal plasma was abolished after HFF co-incubation.
Collapse
|
35
|
Poulsen LLC, Pla I, Sanchez A, Grøndahl ML, Marko-Varga G, Yding Andersen C, Englund ALM, Malm J. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol 2019; 495:110522. [PMID: 31356852 DOI: 10.1016/j.mce.2019.110522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) acts as a vehicle for paracrine signalling between somatic cells of the follicle and the oocyte. To investigate changes in the protein composition of FF during ovulation, we conducted a prospective cohort study including 25 women undergoing fertility treatment. Follicular fluid was aspirated either before or 12, 17, 32 or 36 h after induction of ovulation (five patients per time point). Liquid chromatography-mass spectrometry was used to identify and quantify FF proteins. In total, 400 proteins were identified and the levels of 40 proteins changed significantly across ovulation, evaluated by analysis of covariance (adjusted p < 0.05) and on-off expression patterns. The majority peaked after 12-17 h, e.g., AREG (p < 0.0001), TNFAIP6 (p < 0.0001), and LDHB (p = 0.0316), while some increased to peak after 36 h e.g., ACPP (p < 0.0001), TIMP1 (p < 0.0001) and SERPINE1 (p = 0.0002). Collectively, this study highlights proteins and pathways of importance for ovulation and oocyte competence in humans.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Marie Louise Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | | | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| |
Collapse
|
36
|
Ouni E, Vertommen D, Amorim CA. The Human Ovary and Future of Fertility Assessment in the Post-Genome Era. Int J Mol Sci 2019; 20:E4209. [PMID: 31466236 PMCID: PMC6747278 DOI: 10.3390/ijms20174209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Proteomics has opened up new avenues in the field of gynecology in the post-genome era, making it possible to meet patient needs more effectively and improve their care. This mini-review aims to reveal the scope of proteomic applications through an overview of the technique and its applications in assisted procreation. Some of the latest technologies in this field are described in order to better understand the perspectives of its clinical applications. Proteomics seems destined for a promising future in gynecology, more particularly in relation to the ovary. Nevertheless, we know that reproductive biology proteomics is still in its infancy and major technical and ethical challenges must first be overcome.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit, Institut de Duve, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
37
|
Liu F, Liu X, Liu X, Li T, Zhu P, Liu Z, Xue H, Wang W, Yang X, Liu J, Han W. Integrated Analyses of Phenotype and Quantitative Proteome of CMTM4 Deficient Mice Reveal Its Association with Male Fertility. Mol Cell Proteomics 2019; 18:1070-1084. [PMID: 30867229 PMCID: PMC6553932 DOI: 10.1074/mcp.ra119.001416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is a gene family that has been implicated in male reproduction. CMTM4 is an evolutionarily conserved member that is highly expressed in the testis. However, its function in male fertility remains unknown. Here, we demonstrate that CMTM4 is associated with spermatogenesis and sperm quality. Using Western blotting and immunohistochemical analyses, we found CMTM4 expression to be decreased in poor-quality human spermatozoa, old human testes, and testicular biopsies with nonobstructive azoospermia. Using CRISPR-Cas9 technology, we knocked out the Cmtm4 gene in mice. These Cmtm4 knockout (KO) mice showed reduced testicular daily sperm production, lower epididymal sperm motility and increased proportion of abnormally backward-curved sperm heads and bent sperm midpieces. These mice also had an evident sub-fertile phenotype, characterized by low pregnancy rates on prolonged breeding with wild type female mice, reduced in vitro fertilization efficiency and a reduced percentage of acrosome reactions. We then performed quantitative proteomic analysis of the testes, where we identified 139 proteins to be downregulated in Cmtm4-KO mice, 100 (71.9%) of which were related to sperm motility and acrosome reaction. The same proteomic analysis was performed on sperm, where we identified 3588 proteins with 409 being differentially regulated in Cmtm4-KO mice. Our enrichment analysis showed that upregulated proteins were enriched with nucleosomal DNA binding functions and the downregulated proteins were enriched with actin binding functions. These findings elucidate the roles of CMTM4 in male fertility and demonstrates its potential as a promising molecular candidate for sperm quality assessment and the diagnosis or treatment of male infertility.
Collapse
Affiliation(s)
- FuJun Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - XueXia Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Xin Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Ting Li
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Peng Zhu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - ZhengYang Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Hui Xue
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - WenJuan Wang
- ‖Reproduction Medical Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - XiuLan Yang
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Juan Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - WenLing Han
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China;
| |
Collapse
|
38
|
Dutra GA, Ishak GM, Pechanova O, Pechan T, Peterson DG, Jacob JCF, Willard ST, Ryan PL, Gastal EL, Feugang JM. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol 2019; 17:29. [PMID: 30841911 PMCID: PMC6404268 DOI: 10.1186/s12958-019-0473-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. METHODS This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. RESULTS Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SUM, and FOV seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SUM, and plasminogen/complement C3 in both SOV and FOV seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SUM differs from other seasons, with FF having high fluidity (low viscosity). CONCLUSIONS The balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SUM) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SUM season.
Collapse
Affiliation(s)
- G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - O Pechanova
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - T Pechan
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - D G Peterson
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - J C F Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - S T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - P L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA.
| |
Collapse
|
39
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
40
|
Pérez-Ruiz I, Meijide S, Hérnandez ML, Navarro R, Larreategui Z, Ferrando M, Ruiz-Larrea MB, Ruiz-Sanz JI. Analysis of Protein Oxidative Modifications in Follicular Fluid from Fertile Women: Natural Versus Stimulated Cycles. Antioxidants (Basel) 2018; 7:antiox7120176. [PMID: 30486406 PMCID: PMC6315688 DOI: 10.3390/antiox7120176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is associated with obstetric complications during ovarian hyperstimulation in women undergoing in vitro fertilization. The follicular fluid contains high levels of proteins, which are the main targets of free radicals. The aim of this work was to determine specific biomarkers of non-enzymatic oxidative modifications of proteins from follicular fluid in vivo, and the effect of ovarian stimulation with gonadotropins on these biomarkers. For this purpose, 27 fertile women underwent both a natural and a stimulated cycle. The biomarkers, glutamic semialdehyde (GSA), aminoadipic semialdehyde (AASA), Nε-(carboxymethyl)lysine (CML), and Nε-(carboxyethyl)lysine (CEL), were measured by gas-liquid chromatography coupled to mass spectrometry. Results showed that follicular fluid contained products of protein modifications by direct metal-catalyzed oxidation (GSA and AASA), glycoxidation (CML and CEL), and lipoxidation (CML). GSA was the most abundant biomarker (91.5%). The levels of CML amounted to 6% of the total lesions and were higher than AASA (1.3%) and CEL (1.2%). In the natural cycle, CEL was significantly lower (p < 0.05) than in the stimulated cycle, suggesting that natural cycles are more protected against protein glycoxidation. These findings are the basis for further research to elucidate the possible relevance of this follicular biomarker of advanced glycation end product in fertility programs.
Collapse
Affiliation(s)
- Irantzu Pérez-Ruiz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Susana Meijide
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| | - María-Luisa Hérnandez
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Rosaura Navarro
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Zaloa Larreategui
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - Marcos Ferrando
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940 Leioa, Spain.
| | - María-Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
- BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| |
Collapse
|
41
|
Liu X, Wang W, Zhu P, Wang J, Wang Y, Wang X, Liu J, Li N, Wang X, Lin C, Liu F. In-depth quantitative proteome analysis of seminal plasma from men with oligoasthenozoospermia and normozoospermia. Reprod Biomed Online 2018; 37:467-479. [DOI: 10.1016/j.rbmo.2018.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
|
42
|
Fleszar AJ, Walker A, Porubsky V, Flanigan W, James D, Campagnola PJ, Weisman PS, Kreeger PK. The Extracellular Matrix of Ovarian Cortical Inclusion Cysts Modulates Invasion of Fallopian Tube Epithelial Cells. APL Bioeng 2018; 2:031902. [PMID: 30556046 PMCID: PMC6294138 DOI: 10.1063/1.5022595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of research supports the idea that the fallopian tube epithelium (FTE) is the precursor for most high-grade serous ovarian canacers (HGSOC) but that the ovary plays a critical role in tumor metastasis. Cortical inclusion cysts (CICs) in the ovarian cortex have been hypothesized to create a niche environment that plays a role in HGSOC progression. Through histological analysis of pathology samples from human ovaries, we determined that collagen I and III were elevated near CICs and that the collagen fibers in this dense region were oriented parallel to the cyst boundary. Using this information from human samples as design parameters, we engineered an in vitro model that recreates the size, shape, and extracellular matrix (ECM) properties of CICs. We found that FTE cells within our model underwent robust invasion that was responsive to stimulation with follicular fluid, while ovarian surface epithelial (OSE) cells, the native cells of the ovary, were not invasive. We provide experimental evidence to support a role of the extracellular matrix in modulating FTE cell invasion, as decreased collagen I concentration or the addition of collagen III to the matrix surrounding FTE cells increased FTE cell invasion. Taken together, we show that an in vitro model of CICs informed by the analysis of human tissue can act as an important tool for understanding FTE cell interactions with their environment.
Collapse
Affiliation(s)
- Andrew J. Fleszar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alyssa Walker
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Veronica Porubsky
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Will Flanigan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Darian James
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | - Paul S. Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
43
|
Lewandowska AE, Macur K, Czaplewska P, Liss J, Łukaszuk K, Ołdziej S. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. J Proteomics 2018. [PMID: 29530678 DOI: 10.1016/j.jprot.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of proteomic composition of human follicular fluid (hFF) has been previously proposed as a potential tool of oocyte quality evaluation. In order to develop an efficient method to investigate the hFF proteome and peptidome components, we applied and tested a few prefractionation schemes of hFF material consisting of ultrafiltration, optional immunodepletion, and high pH RP-HPLC separation by building spectral libraries and comparing their quantification capabilities of unfractionated samples. Low Molecular-Weight Fraction peptides (LMWF, <10 kDa) and High Molecular-Weight Fraction proteins (HMWF, >10 kDa) resulting from ultrafiltration were analyzed separately. We identified 302 proteins in HMWF and 161 proteins in LMWF in all qualitative experiments. All LMWF peptidomic libraries turned out to be of poor quantification quality, however they enabled measurement of higher numbers of peptides with increasing input of experiment data, in contrast to HMWF proteomic libraries. We were able to quantify a total of 108 HMWF proteins and 250 LMWF peptides (from 84 proteins) in all experiments. Employment of high RP-HPLC fractionation allowed for identification of a much broader set of proteins, however did not significantly improve the quantification capabilities of the applied method. Data are available via ProteomeXchange with identifier PXD008073. SIGNIFICANCE: In the search of biomarkers for assessment of oocyte quality in assisted reproductive technology, many studies are devoted to analysis of follicular fluid composition. Candidates for such biomarkers can be located in both the proteome and the recently investigated peptidome of hFF. Reliable qualitative and especially quantitative analysis of complex mixtures such as hFF, requires development of a fast and preferably inexpensive analytical procedure. The powerful SWATH-MS technique is well suited for quantitative label-free analysis of complex protein and peptide mixtures. However, for efficient usage it needs well designed and constructed MS-spectral libraries as well as a proper protocol for sample preparation. We investigated the influence of the size and quality of MS-spectral libraries (different spectral libraries are constructed using various sample prefractionation protocols) on SWATH experiments on hFF proteome and peptidome. In the case of peptidome investigation, increasing the size of spectral libraries led to quantification of more peptides in a single experiment. For the proteome, increasing the size of spectral libraries improved quantification only to a limited extend, and further extension of spectral libraries even worsened results. Nevertheless, using the best selected prefractionation schemes and spectral libraries we were able to quantify as many as 79 proteins of hFF proteome and 106 peptides (from 53 proteins) of hFF peptidome in single experiments. The spectral libraries and prefractionation protocols we developed allow for a large scale fast scan of hundreds of clinical hFF samples in the search for biomarkers for evaluation of oocyte quality.
Collapse
Affiliation(s)
- Aleksandra E Lewandowska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland.
| | - Katarzyna Macur
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland
| | - Joanna Liss
- INVICTA Fertility and Reproductive Center, Trzy Lipy 3, Gdańsk 80-172, Poland
| | - Krzysztof Łukaszuk
- INVICTA Fertility and Reproductive Center, Trzy Lipy 3, Gdańsk 80-172, Poland; Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Dębinki 7, Gdańsk 80-211, Poland; Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, Warsaw 00-315, Poland
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland.
| |
Collapse
|