1
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Li Y, Yao B, Men J, Pang Y, Gao J, Bai Y, Wang H, Zhang J, Zhao L, Xu X, Dong J, Li C, Peng R. Oxidative stress and energy metabolism in male reproductive damage from single and combined high-power microwave exposure at 1.5 and 4.3GHz. Reprod Toxicol 2025; 132:108759. [PMID: 39617305 DOI: 10.1016/j.reprotox.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024]
Abstract
The effect of multi-frequency electromagnetic environments on male reproduction has attracted the medical community's interest. Studies have investigated the effects and mechanisms of single-frequency microwave exposure on male reproduction, but comparative research on high-power microwave (HPM) composite and single exposure remains scarce. This study aimed to examine the effects and mechanisms of combined 1.5 GHz and 4.3 GHz microwave exposure on male reproduction. Male Wistar rats were exposed to 1.5 GHz (L-band) and 4.3 GHz (C-band) electromagnetic radiation for 15 minutes. The four groups were: sham, 10 mW/cm² L-band, 10 mW/cm² C-band, and 5 mW/cm² L-band and 5 mW/cm² C-band compound. Assessments were made on the pathological structures of testes, sperm viability, serum sex hormones, oxidative stress, and energy metabolism levels after radiation. Exposure to 1.5 GHz and 4.3 GHz microwaves individually resulted in testicular tissue damage and reduced sperm quality. There was little difference between the damage caused by HPM composite and single exposure. The exposed groups showed histological and ultrastructural changes, with reduced spermatozoa viability, motility parameters, and serum testosterone, luteinizing hormone, follicle-stimulating hormone, and serum inhibin-B on days 1 and 7 after exposure. These tended to recover partially by day 14. Adenosine triphosphate content and lactate dehydrogenase and succinate dehydrogenase activities in the exposed testicular tissue decreased, corresponding to decreased superoxide dismutase activity and increased malondialdehyde content. Both single and combined exposure to L- and C-band HPM affect the male reproductive system. Exposure to single and compound HPM shows no significant difference in risks, with oxidative stress and energy metabolism disturbances playing key roles.
Collapse
Affiliation(s)
- Yanyang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Junqi Men
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yueyue Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jingchao Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yanxin Bai
- Department of Electromagnetic Radiation, Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, PR China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Congsheng Li
- China Academy of Information and Communications Technology, 100083, PR China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
3
|
Zheng Z, Huang L, Shang T, Ma Y, Xu Y. Effects of long-term low-dose 2.45 GHz microwave electromagnetic radiation on vulnerable organs in humans: a retrospective study based on patients receiving microwave diathermies in the Department of Rehabilitation Medicine. Int J Radiat Biol 2025:1-7. [PMID: 40009800 DOI: 10.1080/09553002.2025.2467671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE To retrospectively observe the effects of long-term low-dose 2.45 GHz microwave electromagnetic radiation on human vulnerable organs. METHODS This single-center, retrospective cohort study investigated patients who received long-term (20-100 times of microwave therapy within three months) low-dose (≤20 W) microwave therapy in our department five years ago. Patients were identified and followed up using a rehabilitation treatment management system. Adverse events or diseases that developed after microwave treatment were collected. Based on the number of microwave exposures, patients were divided into two groups: the multiple irradiation group (20-50 sessions) and the ultra-multiple irradiation group (50-100 sessions). The incidence of irreversible damage (ocular lesions, nervous system diseases, reproductive system diseases, cardiovascular system diseases, tumors, or early precancerous lesions) within five years after treatment completion was compared between the two groups. RESULTS A total of 113 valid cases were analyzed. Sixteen adverse events occurred, including two cases related to tumors, nine cases related to cardiovascular and cerebrovascular diseases, five cases related to metabolic diseases, and one case related to nervous system diseases. One patient had multiple conditions. There was no significant difference in the incidence of adverse events between the multiple irradiation group and the ultra-multiple irradiation group (p = .161, OR = 0.307, 95% CI 0.088-1.025). Logistics regression analysis revealed that the number of microwave treatments, treatment frequency per week, and patient gender was not a significant risk factor for adverse events (p = .100, OR = 0.972, 95% CI 0.938-1.006; p = .896, OR = 1.028, 95% CI 0.679-1.575; p = .960, OR = 1.039, 95% CI 0.212-4.609). Advanced age and obesity might be contributing factors for adverse events (p = .001, OR = 0.923, 95% CI 0.877-0.965; p = .002, OR = 0.064, 95% CI 0.009-0.348). CONCLUSIONS Based on this study, receiving less than 100 sessions of low-dose microwave therapy within three months appears to be safe. Advanced age and obesity might increase the risk of adverse events. Due to the deviation that may be caused by the small sample size of this study, it is necessary to carry out prospective randomized controlled studies with larger samples in the future for further verification.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Huang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Shang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Yanhong Ma
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University School of Medicine affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Fu X, Li H. Mechanisms of oxidative stress-induced sperm dysfunction. Front Endocrinol (Lausanne) 2025; 16:1520835. [PMID: 39974821 PMCID: PMC11835670 DOI: 10.3389/fendo.2025.1520835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Oxidative stress plays a pivotal role in male infertility by impairing sperm function through various molecular mechanisms. This review explores the impact of excessive reactive oxygen species (ROS) on spermatozoa, particularly focusing on lipid peroxidation, DNA fragmentation, and protein oxidation. Lipid peroxidation damages sperm membranes, reducing fluidity and motility. ROS-induced DNA fragmentation compromises genetic integrity, potentially leading to infertility and adverse offspring outcomes. Protein oxidation alters key structural proteins, impairing sperm motility and the ability to fertilize an egg. The primary sources of oxidative stress in sperm include leukocyte activity, mitochondrial dysfunction, and environmental factors such as smoking and pollution. Despite the presence of natural antioxidant defenses, spermatozoa are particularly vulnerable due to limited repair mechanisms. The review highlights the importance of early intervention through antioxidant therapies and lifestyle changes to mitigate the detrimental effects of oxidative stress on male fertility. Further research is essential to enhance therapeutic approaches and improve reproductive outcomes.
Collapse
Affiliation(s)
| | | | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| |
Collapse
|
5
|
Cheng Y, Shang Y, Zhang S, Fan S. The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review. Cancer Biol Med 2025; 21:j.issn.2095-3941.2024.0415. [PMID: 39831771 PMCID: PMC11745087 DOI: 10.20892/j.issn.2095-3941.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N6-methyladenosine (m6A), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes. The interplay between m6A modification and radiobiology of cancerous and non-cancerous tissues merits in-depth investigation. This review summarizes the roles of m6A in the biological effects induced by ionizing radiation and ultraviolet (UV) radiation. It begins with an overview of m6A modification and its detection methods, followed by a detailed examination of how m6A dynamically regulates the sensitivity of cancerous tissues to RT, the injury response in non-cancerous tissues, and the toxicological effects of UV exposure. Notably, this review underscores the importance of novel regulatory mechanisms of m6A and their potential clinical applications in identifying epigenetically modulated radiation-associated biomarkers for cancer therapy and estimation of radiation dosages. In conclusion, enzyme-mediated m6A-modification triggers alterations in target gene expression by affecting the metabolism of the modified RNAs, thus modulating progression and radiosensitivity in cancerous tissues, as well as radiation effects on normal tissues. Several promising avenues for future research are further discussed. This review highlights the importance of m6A modification in the context of radiation biology. Targeting epi-transcriptomic molecules might potentially provide a novel strategy for enhancing the radiosensitivity of cancerous tissues and mitigating radiation-induced injury to normal tissues.
Collapse
Affiliation(s)
- Yajia Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yue Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shuqin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Kaltsas A, Markou E, Kyrgiafini MA, Zikopoulos A, Symeonidis EN, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes (Basel) 2025; 16:93. [PMID: 39858640 PMCID: PMC11765119 DOI: 10.3390/genes16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose-response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, UK;
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
7
|
Dehghanbanadaki H, Jimbo M, Fendereski K, Kunisaki J, Horns JJ, Ramsay JM, Gross KX, Pastuszak AW, Hotaling JM. Transgenerational effects of paternal exposures: the role of germline de novo mutations. Andrology 2025; 13:101-118. [PMID: 38396220 DOI: 10.1111/andr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Jason Kunisaki
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kelli X Gross
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Kumar R, Kumari P, Gaurav N, Kumar R, Singh D, Malhotra P, Singh SK, Bhatta RS, Kumar A, Nagarajan P, Singh S, Dalal N, Roy BG, Bhatt AN, Chandna S. N-acetyl-L-tryptophan provides radioprotection to mouse and primate models by antagonizing the TRPV1 receptor and substance P inhibition. Int J Radiat Biol 2024; 101:118-143. [PMID: 39680789 DOI: 10.1080/09553002.2024.2435330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE The present study was carried out to evaluate the radioprotective activities of N-acetyl-L-tryptophan (L-NAT) using rodent and non-human primate (NHP) models. MATERIALS AND METHODS The antagonistic effect of L-NAT on the Transient receptor potential vanilloid-1 (TRPV1) receptor and substance P inhibition was determined using molecular docking and Elisa assays. The in vivo radioprotective activity of L-NAT was evaluated using whole-body survival assays in mice and NHPs. Radioprotective activity of L-NAT was also determined at the systemic level using quantitative histological analysis of bone marrow, jejunum, and seminiferous tubules of irradiated mice. RESULTS Molecular docking studies revealed a strong binding of L-NAT with TRPV1 receptor at similar binding pockets to which capsaicin, an agonist of the TRPV1 receptor, binds. Further, capsaicin and gamma radiation were found to induce substance P levels in the intestines and serum of the mice, while L-NAT pretreatment was found to inhibit it. Significant whole-body survival (>80%) was observed in irradiated (9.0 Gy) mice that pretreated with L-NAT (150 mg/kg, b.wt. im) compared to 0% survival in irradiated mice that not pretreated with L-NAT. The quantitative histology of the hematopoietic, gastrointestinal, and male reproductive systems demonstrated significant protection against radiation-induced cellular degeneration. Interestingly, 100% survival was observed with irradiated NHPs (6.5 Gy) that pretreated with L-NAT (37.5 mg/kg, b.wt.im). Significant improvement in the hematology profile was observed after days 10-20 post-treatment periods in irradiated (6.5 Gy) NHPs that were pretreated with L-NAT. CONCLUSION L-NAT demonstrated excellent radioprotective activity in the mice and NHP models, probably by antagonizing TRPV1 receptor and subsequently inhibiting substance P expression.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Pratibha Kumari
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Neelanshu Gaurav
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ravi Kumar
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Darshana Singh
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Malhotra
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Shravan Kumar Singh
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | - Anil Kumar
- National Institute of Immunology (NII), Delhi
| | | | | | - Nishu Dalal
- National Institute of Immunology (NII), Delhi
| | - Bal Gangadhar Roy
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sudhir Chandna
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
9
|
Keskin I, Karabulut S, Kaplan AA, Alagöz M, Akdeniz M, Tüfekci KK, Davis DL, Kaplan S. Preliminary study on the impact of 900 MHz radiation on human sperm: An in vitro molecular approach. Reprod Toxicol 2024; 130:108744. [PMID: 39505052 DOI: 10.1016/j.reprotox.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
The use of technologies that produce and emit electromagnetic fields (EMF) is growing exponentially worldwide. The biological effects of EMF-emitting equipment, such as mobile phones and other wireless devices, have been studied in the last decade using in vitro and in vivo methods. Infertility is a growing health problem, and nearly half of cases are because of male-factor. This study investigated the direct in vitro effects of 900 MHz radiation exposure on sperm parameters, genetic status, apoptotic markers, and the PI3K/AKT signaling pathway in healthy normozoospermic men. Semen samples were divided into four groups, two control (30 min and 1 h) and two EMF exposure (30 min and 1 h). Sperm parameters (motility, progressive motility, acrosomal index, morphology), genetic status (DNA fragmentation and chromatin integrity), apoptotic markers (cytokine-c and caspase-3 expression) and the PI3K/AKT signaling pathway (phosphoinoitide 3-kinase-PI3K- and phosphorylated AKT- p-AKT-) were analysed. Sperm motility were significantly reduced in 30 min EMF exposure while a significant increase in the expression of p-AKT were observed in 1 h EMF exposure group. An increased vacuolisation, acrosomal defect, extension of subacrosomal space, uncondensed chromatin structure, apoptotic signs and disrupted axoneme were observed in both EMF groups which were not observed in the control group. Other sperm parameters (morphology and acrosomal index), genetic status, apoptotic markers and the PI3K expression rates had no significant change.
Collapse
Affiliation(s)
- I Keskin
- School of Medicine, Department of Histology and Embryology, Istanbul Medipol University, Istanbul 34810, Turkiye; Medical Research Center (MEDITAM), İstanbul Medipol University, Istanbul 34810, Turkiye.
| | - S Karabulut
- School of Medicine, Department of Histology and Embryology, Istanbul Medipol University, Istanbul 34810, Turkiye; Medical Research Center (MEDITAM), İstanbul Medipol University, Istanbul 34810, Turkiye.
| | - A A Kaplan
- School of Medicine, Department of Histology and Embryology, Istanbul Medipol University, Istanbul 34810, Turkiye; Medical Research Center (MEDITAM), İstanbul Medipol University, Istanbul 34810, Turkiye.
| | - M Alagöz
- IVF Center, Samsun Medical Park Hospital, Samsun, Turkiye.
| | - M Akdeniz
- IVF Center, Samsun Medical Park Hospital, Samsun, Turkiye.
| | - K K Tüfekci
- School of Medicine, Department of Histology and Embryology, Kastamonu University, Kastamonu, Turkiye.
| | - D L Davis
- Environmental Health Trust, Teton Village, WY 83025, USA; School of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkiye.
| | - S Kaplan
- School of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkiye; Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
10
|
Núñez R, Guijarro A, Alberola P, Santamaría N, Poveda M, Mora A, Masip M, Sánchez S, Alonso S, Rubio T, Barros I, González P, Gili S, Santiago Álvarez I. Study of Seminal Quality Variations in Men Across 12 Geographical Locations in Spain. Arch Med Res 2024; 55:103140. [PMID: 39615375 DOI: 10.1016/j.arcmed.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE This study aimed to evaluate possible variations in semen quality among patients undergoing fertility evaluation in 12 different geographical locations in Spain. METHODS The study was conducted in 12 assisted reproduction centers located in different regions of Spain. Semen samples from 2,336 men seeking fertility assessment were analyzed. Seminal parameters-including semen volume, sperm concentration, motility, morphology, vitality, and total motile sperm count (TMS) were compared by geographic location. All parameters were evaluated using standardized methodologies, with interlaboratory quality controls to ensure consistency. RESULTS No significant differences in patient age were found between centers (ANOVA, p >0.05). However, statistically significant variations in semen volume, sperm concentration, total motility, and TMS were observed between the centers (p = 0.020, 0.004, 0.000, and 0.008, respectively). Men from Asturias exhibited the highest values for sperm concentration (mean: 59.8 ± 48.7 × 106 sperm/mL), motility (mean total motility: 54.3 ± 20.7%), and TMS (mean: 101.2 ± 107.5 × 10^6), with statistically significant differences compared to other regions. Patients from Cataluña, Almería, and Málaga followed in these metrics. In contrast, men from Granada presented the lowest sperm concentration and TMS (mean concentration: 43.1 ± 35.8 × 10^6 sperm/mL; mean TMS: 43.1 ± 34.6 × 10^6), followed by individuals from Alicante and Madrid. No significant differences in sperm morphology or vitality were observed between centers. CONCLUSION Since all seminal parameters were assessed using standardized methodologies, the observed differences in semen quality between regions are unlikely to be due to laboratory variability.
Collapse
Affiliation(s)
- Rocío Núñez
- Reproductive Unit International Group, Alicante, Spain.
| | | | | | | | | | - Ada Mora
- Unidad de Reprodución Puerta del Sur, Jerez, Cadiz, Spain
| | | | | | - Sara Alonso
- Unidad de Reprodución El Angel, Málaga, Spain
| | | | | | | | - Sonia Gili
- Unidad de Reprodución Lleida, Lérida, Spain
| | | |
Collapse
|
11
|
Valizade K, Bayram H, Donmez Cakil Y, Selam B, Cincik M. Age related semen parameters and ICSI pregnancy outcomes of 8046 men in Turkey over a 9-year period. Aging Male 2024; 27:2374724. [PMID: 38992941 DOI: 10.1080/13685538.2024.2374724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The effect of paternal age on fertility remains unclear. This retrospective study aims to examine the impact of male age on semen parameters and the reproductive outcomes of men admitted to an infertility center over a 9-year period. A total of 8046 patients were included in the study. Men were divided into four age groups. The groups were evaluated for semen parameters and reproductive outcome. The 21-30 year group presented lower sperm concentrations in comparison to those aged 31-40 and 41-50, yet shared a similar concentration to those over 50 years of age. Moreover, grades A and B decreased significantly in men aged over 50 years. The highest progressive motility and normozoospermia were observed in the age group 31-40 years while men over 50 years of age had the highest rates of asthenozoospermia and oligoasthenozoospermia. Furthermore, live birth results were reported in 5583 of the patients who underwent intracytoplasmic sperm injection (ICSI) and were found highest between 31-40 years of age. To our knowledge, this is the largest study in Turkey focusing on male age-related semen parameters and ICSI pregnancy outcomes. The study demonstrates that age is a significant factor for semen quality and live birth.
Collapse
Affiliation(s)
- Khayala Valizade
- Institute of Graduate Studies Clinical Embryology Master Program, Maltepe University, Istanbul, Turkey
| | - Hale Bayram
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Yaprak Donmez Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| |
Collapse
|
12
|
Butković I, Vince S, Lojkić M, Folnožić I, Tur SM, Vilić M, Malarić K, Berta V, Samardžija M, Kreszinger M, Žaja IŽ. Effects of 5G radiofrequency electromagnetic radiation on indicators of vitality and DNA integrity of in vitro exposed boar semen. Theriogenology 2024; 230:243-249. [PMID: 39342826 DOI: 10.1016/j.theriogenology.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The effects of radiofrequency electromagnetic radiation (RF-EMR) on semen quality have been in the spotlight in recent years, though research results to date have been contradictory. The effects of RF-EMR amongst others depend upon frequency, and there is currently no literature concerning the influence of 5G frequencies on both DNA integrity and spermatozoa vitality in males. The aim of this study was to investigate the effect of 5G RF-EMR on sperm membrane integrity, mitochondrial potential, and DNA integrity of in vitro exposed semen of breeding boars. The study included semen samples of eight breeding boars of the Pietren breed and four breeding boars of the German Landrace breed, from 1.5 to 3.5 years in age. Freshly diluted semen of each boar was divided into a control (n = 12) and experimental group (n = 12). The samples of the experimental group were exposed for 2 hours to continuous RF-EMR at a single frequency (700 MHz, 2500 MHz and 3500 MHz) and an electromagnetic field strength of 10 V/m using a transverse gigahertz electromagnetic cell. Sperm DNA fragmentation was assessed using a Halomax® kit and sperm membrane integrity and mitochondrial potential was assessed using a PI⁄SYBR-14 LIVE⁄DEAD viability kit with JC-1. A significantly higher proportion of spermatozoa with DNA fragmentation was found in exposed semen samples for all frequencies compared to the control group. The highest DNA damage was recorded in semen samples exposed to 5G RF-EMR at 2500 MHz (p < 0.01) and 3500 MHz (p < 0.05) vs. control semen samples. A significantly higher proportion of spermatozoa with damaged cell membrane and good mitochondrial potential was recorded in semen samples exposed with 3500 MHz. In vitro exposure of breading boar semen to 5G RF-EMR significantly increases the proportion of DNA fragmentation. The harmful effect of 5G RF-EMR on the proportion of spermatozoa with damaged DNA was frequency dependent. The 3500 MHz frequency displayed the most harmful effects due to significant impacts on DNA integrity and spermatozoa vitality indicators.
Collapse
Affiliation(s)
- Ivan Butković
- Clinic for Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Silvijo Vince
- Clinic for Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Martina Lojkić
- Clinic for Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Ivan Folnožić
- Clinic for Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| | - Suzana Milinović Tur
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Marinko Vilić
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Krešimir Malarić
- Department of Communication and Space Technologies, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
| | | | - Marko Samardžija
- Clinic for Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Mario Kreszinger
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Ivona Žura Žaja
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| |
Collapse
|
13
|
Simson DK, Vashistha A, Sethi JS. Invisible Waves, Visible Consequences: Environmental Radiation's Role in Human Fertility. Integr Med (Encinitas) 2024; 23:10-13. [PMID: 39830429 PMCID: PMC11737223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Environmental radiation is one of the key causes of the increased prevalence of infertility among couples. This type of radiation can be ionizing or non-ionizing. While ionizing radiation is known to cause sterility in both males and females, the role of low-energy non-ionizing radiation is still debated. This article will discuss the various types of environmental radiation and its consequences on male and female fertility. Recent studies suggest that continuous exposure to low-energy, non-ionizing radiation might also result in infertility. The sources of this type of radiation are generally man-made, including mobile phones, television broadcasts, radio, radars, etc. The ever-increasing use of these devices in our daily lives has introduced a new type of pollution called electropollution. The mechanisms of action by which electropollution causes infertility are still being investigated. In males, prolonged exposure to this type of radiation might negatively impact sperm parameters, such as count, motility, morphology, and viability. The evidence for female infertility caused by non-ionizing radiation is still evolving.
Collapse
Affiliation(s)
- David K Simson
- Consultant Radiation Oncologist at Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Apoorv Vashistha
- Clinical Scientist, Department of Radiotherapy Physics, Maidstone and Tunbridge Wells NHS Trust, Maidstone, United Kingdom
| | - Jaskaran Singh Sethi
- Senior Consultant Radiation Oncologist at Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
14
|
Dehdari Ebrahimi N, Sadeghi A, Falamarzi K, Shahlaee MA, Azarpira N. Radio-protective effects of melatonin therapy against testicular oxidative stress: a systematic review and meta-analysis of rodent models. Ann Med Surg (Lond) 2024; 86:7062-7071. [PMID: 39649857 PMCID: PMC11623811 DOI: 10.1097/ms9.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 12/11/2024] Open
Abstract
Background Radiation exposure is a concern in today's world, given the widespread use of electronic devices and medical procedures involving ionizing and non-ionizing radiation. Radiations may cause male infertility by inducing oxidative stress in testicular tissue. Melatonin has antioxidant properties. Methods The authors systematically reviewed the literature for the studies that have investigated the effects of melatonin therapy on radiation-induced oxidative stress in rodents' testicular tissue. PubMed, Scopus, and Web of Science were searched for relevant animal trials. Standardized mean difference and 95% CIs were used to pool the data. Subgroup and sensitivity analyses were done. The risk of bias was assessed using SYRCLE tool. Results Outcomes: histopathology and sperm analyses (testicular apoptotic cells, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular diameter, sperm motility, viability, count, and morphology, concentration of spermatid, spermatocyte, and spermatogonia), body and testes weights (absolute and relative body and testicular weights), reproductive hormones (serum prolactin, FSH, and testosterone), and oxidative stress tissue markers (TBARS, CAT, GSH, GSH-Px, MDA, SOD, and XO, and total antioxidant capacity). Rats and mice were exposed to electromagnetic radiations (gamma, roentgen, microwave, radiofrequency, and high-power line energy) and particle waves (radioiodine and carbon-ion). Melatonin therapy was significantly associated with improved male reproduction. Conclusion Radiation exposure harms male fertility, but melatonin, as an antioxidant, is potentially associated with improved male reproductive function in rodents. Inconsistencies in research require further investigations.
Collapse
Affiliation(s)
| | - Alireza Sadeghi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Wang D, Xu R, Wang Z. Protective Role of Sphingosine-1-Phosphate During Radiation-Induced Testicular Injury. Antioxidants (Basel) 2024; 13:1322. [PMID: 39594464 PMCID: PMC11591009 DOI: 10.3390/antiox13111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The impact of ionizing radiation on the male reproductive system is gaining increasing attention, particularly when it comes to testicular damage, which may result in decreased sperm quality and hormonal imbalances. Finding effective protective measures to mitigate testicular damage caused by radiation has become a focal point in the biomedical field. S1P, an essential biological signaling molecule, has garnered significant interest due to its multiple roles in regulating cellular functions and its protective effects against radiation-induced testicular injury. S1P not only effectively reduces the generation of ROS induced by radiation but also alleviates oxidative stress by enhancing the activity of antioxidant enzymes. Furthermore, S1P inhibits radiation-induced cell apoptosis by regulating the expression of anti-apoptotic and pro-apoptotic proteins. Additionally, S1P alleviates radiation-induced inflammation by inhibiting the production of inflammatory factors, thereby further protecting testicular tissue. In summary, S1P effectively reduces radiation-induced testicular damage through multiple mechanisms, offering a promising therapeutic approach to safeguard male reproductive health. Future research should explore the specific mechanisms of action and clinical application potential of S1P, aiming to contribute significantly to the prevention and treatment of radiation damage.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| |
Collapse
|
16
|
Kalo D, Yaacobi-Artzi S, Manovich S, Michaelov A, Komsky-Elbaz A, Roth Z. Environmental Stress-Induced Alterations in Embryo Developmental Morphokinetics. J Xenobiot 2024; 14:1613-1637. [PMID: 39449428 PMCID: PMC11503402 DOI: 10.3390/jox14040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development. However, less is known about the effect of environmental stressors on embryo morphokinetics. The current review discusses the effect of the most concerning environmental stressors on embryo morphokinetics. These stresses include heat stress and human-made chemicals such as phthalates (e.g., bis-(2-ethylhexyl phthalate, dibutyl phthalate, dimethyl phthalate, and their primary metabolites), herbicides (e.g., diaminochlorotriazine, the primary metabolite of atrazine), pharmaceutical compounds (e.g., carbamazepine, nocodazole) and pro-oxidant agents (cumene hydroperoxide, Triton X-100), as well as naturally occurring toxins such as mycotoxin (e.g., aflatoxin B1 and its metabolite, and ochratoxin A). In addition, this review discusses the effect of ionizing or non-ionizing radiation and viral infections (e.g., SARS-CoV-2, papillomavirus). Finally, it points out some potential mechanisms that underlie the impairment of embryo morphokinetics, and it suggests protective compounds, mainly the supplementation of antioxidants to improve the morphokinetics, and consequently, the embryo developmental competence.
Collapse
Affiliation(s)
| | | | | | | | | | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel; (D.K.)
| |
Collapse
|
17
|
Yang W, Nong W, Liu K, Lei X, Chen X, Jiang P, Tang J, Hu C, Hu Z, Li M. Nicotinamide mononucleotide ameliorates ionizing radiation-induced spermatogenic dysfunction in mice by modulating the glycolytic pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 57:274-285. [PMID: 39420833 DOI: 10.3724/abbs.2024167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Radiotherapy, a common cancer treatment, leads to infertility in male cancer survivors, particularly young and middle-aged patients. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD +), plays crucial roles in energy metabolism, DNA repair, and gene expression. The purpose of this study is to investigate the protective effects and underlying mechanisms of NMN against ionizing radiation (IR)-induced testicular injury and spermatogenic dysfunction in an adult male mouse model. To assess the effects of NMN, single whole-body γ-ray irradiation is used to induce testicular injury and spermatogenic dysfunction in adult male mice. NMN is orally administered at 500 mg/kg before and after IR exposure. The structural and cellular damage to the testes caused by 5 Gy γ-ray irradiation, as well as the protective effect of NMN on testicular spermatogenic dysfunction, are evaluated. The serum hormone testosterone, LH, and FSH levels, as well as testicular NAD +, lactate, and pyruvate levels, are detected. Furthermore, the expressions of the apoptosis-related genes Bcl-2, Bax, and Caspase-3 and the rate-limiting enzymes HK2, PKM2, and LDHA, which are potentially associated with the mechanism of injury, are examined. The results demonstrate that 5 Gy γ-ray irradiation exposure causes a decrease in the serum testosterone, LH, and FSH levels in adult male mice, as well as in the testicular NAD +, lactate, and pyruvate levels, and causes damage to the testicular structure and cells. Morphometric analysis reveal a decrease in the testis mass, seminiferous tubule diameter, and height of the germinal epithelium. The sperm quantity, motility, and testicular volume are reduced in the 5 Gy group but are restored by NMN supplementation. NMN intervention downregulates the expressions of proapoptotic genes ( Bax and Caspase-3) and upregulates the expression of an antiapoptotic gene ( Bcl- 2). Sertoli cells marker genes ( WT-1, GATA-4, SOX9, and vimentin) and glycolysis rate-limiting enzyme-encoding genes ( HK2, PKM2, and LDHA) are significantly upregulated. In summary, NMN has a positive regulatory effect on testicular spermatogenic dysfunction in male mice induced by ionizing radiation. This positive effect is likely achieved by promoting the proliferation of spermatogenic cells and activating glycolytic pathways. These findings suggest that NMN supplementation may be a potential protective strategy to prevent reproductive damage to male subjects from ionizing radiation.
Collapse
Affiliation(s)
- Wenqin Yang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise 533300, China
| | - Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise 533300, China
| | - Xiaping Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Pei Jiang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jiayi Tang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cong Hu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zecheng Hu
- the First Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
18
|
Gharib TM, Almekaty K, Abdel Aal AM, Abdel-Al I, Deif H, Hassan GM, Haty A, Alhefnawy MA. Effect of radiofrequency electromagnetic waves of mobile phone stations on male fertility. Arch Ital Urol Androl 2024; 96:12595. [PMID: 39356024 DOI: 10.4081/aiua.2024.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/22/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE To determine the effect of electromagnetic waves of mobile phone stations on several sperm parameters and the male reproductive system. METHODS This observational study was performed on 216 subjects, aged 18-60 years. Two equal groups of subjects were assigned to group A (study group) if they were living close to cell phone tower stations for at least 6 months and group B (control group) formed from individuals living 100 meters away from cell phone tower stations. Every subject underwent a comprehensive history taking, a clinical assessment, and laboratory testing. RESULTS Regarding morphology index in the studied groups, the exposed group exhibited a trend of reduced percentage of normal morphology compared to the non-exposed group, with no statistical difference between the two groups. Regarding the total sperm motility (A+B+C) and progressive sperm motility (A+B) in the studied groups, the exposed group showed a trend of decreased total sperm motility and of progressive sperm motility in contrast to the non-exposed group, with no statistical difference between the two groups. CONCLUSIONS Personal wrong lifestyles with exposure to electromagnetic waves have shown a trend towards a reduced percentage of normal morphology and reduced motility although nonstatistically significant compared with non-exposed populations.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Abdel-Al
- Urology Department, Faculty of Medicine, Al-Azhar University, Assiut Branch.
| | - Hazem Deif
- Urology Department, Faculty of Medicine, Al-Azhar University, Assiut Branch.
| | - Gamal M Hassan
- Urology Department, Faculty of Medicine, Al-Azhar University, Assiut Branch.
| | - Ahmed Haty
- Urology Department, Faculty of Medicine, Al-Azhar University, Cairo.
| | | |
Collapse
|
19
|
Nagesh PKB, Monette S, Shamu T, Giralt S, Jean SCS, Zhang Z, Fuks Z, Kolesnick R. Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies. Int J Radiat Oncol Biol Phys 2024; 120:558-569. [PMID: 37815783 PMCID: PMC10947531 DOI: 10.1016/j.ijrobp.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. METHODS AND MATERIALS For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GI-ARS lethal dose for this mouse strain. RESULTS Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these findings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. CONCLUSIONS Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tambudzai Shamu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Division of Hematologic Malignancies, Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha C St Jean
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Champalimaud Center, Lisbon, Portugal
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
20
|
Calamai C, Chelli E, Ammar O, Tanturli M, Vignozzi L, Muratori M. Reliable Detection of Excessive Sperm Ros Production in Subfertile Patients: How Many Men with Oxidative Stress? Antioxidants (Basel) 2024; 13:1123. [PMID: 39334782 PMCID: PMC11429313 DOI: 10.3390/antiox13091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Sperm oxidative stress has been extensively associated to male infertility. However, tests to detect this parameter have not been yet introduced in clinical practice and no definitive data are present on the extent of oxidative stress in male infertility. In this study, we used a novel and reliable flow cytometric method to reveal sperm ROS production in subfertile patients (n = 131) and in healthy donors (n = 31). Oxidative stress was higher in subfertile patients (14.22 [10.21-22.08]%) than in healthy donors (9.75 [8.00-14.90]% (p < 0.01)), but no correlation was found with age, semen quality or sDF. We also failed to detect an increase in sperm ROS production with semen viscosity or leukocytospermia, but a sharp impact of semen bacteria was evident (with bacteria: 31.61 [14.08-46.78]% vs. without bacteria: 14.20 [10.12-22.00]%, p < 0.01). Finally, after establishing a threshold as the 95th percentile in healthy donors, we found that 29% of subfertile patients exceeded this threshold. The percentage decreased to 25.56% when we excluded subjects with bacteriospermia and increased to 60.87% when only these patients were considered. In conclusion, 29% of subfertile patients showed an excessive sperm ROS production. Surprisingly, this parameter appears to be independent from routine semen analysis and even sDF determination, promising to provide additional information on male infertility.
Collapse
Affiliation(s)
- Costanza Calamai
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Elena Chelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Oumaima Ammar
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, I-50134 Florence, Italy
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, AOU Careggi, I-50134 Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| |
Collapse
|
21
|
Yang Y, Xue X, Zhou J, Qiu Z, Wang B, Yin Z, Ou G, Zhou Q. L-carnitine combined with traditional Chinese medicine for male infertility: A systematic review and meta-analysis. Heliyon 2024; 10:e36680. [PMID: 39263096 PMCID: PMC11388790 DOI: 10.1016/j.heliyon.2024.e36680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Background Fertility rates are declining globally, and male infertility is increasingly recognized as a significant challenge. This study aims to present the latest findings on the effectiveness and safety of combining traditional Chinese medicine (TCM) with L-carnitine (LC) for treating male infertility. Methods We searched 8 databases. Randomized controlled trials of TCM combined with LC therapy versus LC alone in the treatment of male infertility. The outcome included: pregnancy rate, sperm motility, concentration, volume, viability and liquefaction time. Subgroup analyses were also performed according to type of TCM, type of dosage form, and different TCM treatments, and the source of the high heterogeneity was explored. The study is registered on PROSPERO (CRD42023421497). Results 1129 subjects from 12 of the 1833 eligible studies fulfilled the criteria. Compared with LC treatment alone, the combination of TCM and LC significantly improved pregnancy rate [RR = 1.65, 95 % CI (1.37-2.00)], grade (a+b) sperm motility [SMD = 1.56, 95 % CI (1.12, 2.01)], grade (a) sperm motility [SMD = 1.04, 95 % CI (0.69, 1.38)], sperm concentration [SMD = 1.39, 95 % CI (0.91, 1.86)], and sperm viability [SMD = 1.72, 95 % CI (0.83, 2.60)]. Subgroup analyses indicated that Compound Xuanju Capsule and Yougui Capsule demonstrated better efficacy. And the decoction and not-decoction each had their own advantages. Conclusions The combination of TCM with LC can have a dual effect: increasing pregnancy rates and sperm quality. Therefore, this combination is a recommended therapeutic strategy and a more appropriate type of TCM can be selected according to the patient's own characteristics.
Collapse
Affiliation(s)
- Yang Yang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinyu Xue
- Hunan University of Chinese Medicine, Changsha, China
| | - Jun Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zerui Qiu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Biao Wang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ziwei Yin
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guangyang Ou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
22
|
Johnson EE, Kenny RPW, Adesanya AM, Richmond C, Beyer F, Calderon C, Rankin J, Pearce MS, Toledano M, Craig D, Pearson F. The effects of radiofrequency exposure on adverse female reproductive outcomes: A systematic review of human observational studies with dose-response meta-analysis. ENVIRONMENT INTERNATIONAL 2024; 190:108816. [PMID: 38880062 DOI: 10.1016/j.envint.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND To inform radiofrequency electromagnetic field (RF-EMF) exposure guidelines the World Health Organization (WHO) is bringing together evidence on RF-EMF in relation to health outcomes prioritised for evaluation by experts in this field. Given this, a network of topic experts and methodologists have conducted a series of systematic reviews collecting, assessing, and synthesising data of relevance to these guidelines. Here we present a systematic review of the effect of RF-EMF exposure on adverse pregnancy outcomes in human observational studies which follows the WHO handbook for guideline development and the COSTER conduct guidelines. METHODS We conducted a broad, sensitive search for potentially relevant records within the following bibliographic databases: MEDLINE; Embase; and the EMF Portal. Grey literature searches were also conducted through relevant databases (including OpenGrey), organisational websites and via consultation of RF-EMF experts. We included quantitative human observational studies on the effect of RF-EMF exposure in adults' preconception or pregnant women on pre-term birth, small for gestational age (SGA; associated with intrauterine growth restriction), miscarriage, stillbirth, low birth weight (LBW) and congenital anomalies. In blinded duplicate, titles and abstracts then full texts were screened against eligibility criteria. A third reviewer gave input when consensus was not reached. Citation chaining of included studies was completed. Two reviewers' data extracted and assessed included studies for risk of bias using the Office of Health Assessment and Translation (OHAT) tool. Random effects meta-analyses of the highest versus the lowest exposures and dose-response meta-analysis were conducted as appropriate and plausible. Two reviewers assessed the certainty in each body of evidence using the OHAT GRADE tool. RESULTS We identified 18 studies in this review; eight were general public studies (with the general public as the population of interest) and 10 were occupational studies (with the population of interest specific workers/workforces). General public studies. From pairwise meta-analyses of general public studies, the evidence is very uncertain about the effects of RF-EMF from mobile phone exposure on preterm birth risk (relative risk (RR) 1.14, 95% confidence interval (CI): 0.97-1.34, 95% prediction interval (PI): 0.83-1.57; 4 studies), LBW (RR 1.14, 95% CI: 0.96-1.36, 95% PI: 0.84-1.57; 4 studies) or SGA (RR 1.13, 95% CI: 1.02-1.24, 95% PI: 0.99-1.28; 2 studies) due to very low-certainty evidence. It was not feasible to meta-analyse studies reporting on the effect of RF-EMF from mobile phone exposure on congenital anomalies or miscarriage risk. The reported effects from the studies assessing these outcomes varied and the studies were at some risk of bias. No studies of the general public assessed the impact of RF-EMF exposure on stillbirth. Occupational studies. In occupational studies, based on dose-response meta-analyses, the evidence is very uncertain about the effects of RF-EMF amongst female physiotherapists using shortwave diathermy on miscarriage due to very low-certainty evidence (OR 1.02 95% CI 0.94-1.1; 2 studies). Amongst offspring of female physiotherapists using shortwave diathermy, the evidence is very uncertain about the effects of RF-EMF on the risk of congenital malformations due to very low-certainty evidence (OR 1.4, 95% CI 0.85 to 2.32; 2 studies). From pairwise meta-analyses, the evidence is very uncertain about the effects of RF-EMF on the risk of miscarriage (RR 1.06, 95% CI 0.96 to 1.18; very low-certainty evidence), pre-term births (RR 1.19, 95% CI 0.32 to 4.37; 3 studies; very low-certainty evidence), and low birth weight (RR 2.90, 95% CI: 0.69 to 12.23; 3 studies; very low-certainty evidence). Results for stillbirth and SGA could not be pooled in meta-analyses. The results from the studies reporting these outcomes were inconsistent and the studies were at some risk of bias. DISCUSSION Most of the evidence identified in this review was from general public studies assessing localised RF-EMF exposure from mobile phone use on female reproductive outcomes. In occupational settings, each study was of heterogenous whole-body RF-EMF exposure from radar, short or microwave diathermy, surveillance and welding equipment and its effect on female reproductive outcomes. Overall, the body of evidence is very uncertain about the effect of RF-EMF exposure on female reproductive outcomes. Further prospective studies conducted with greater rigour (particularly improved accuracy of exposure measurement and using appropriate statistical methods) are required to identify any potential effects of RF-EMF exposure on female reproductive outcomes of interest.
Collapse
Affiliation(s)
| | - Ryan P W Kenny
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Adenike M Adesanya
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Catherine Richmond
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Fiona Beyer
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | | | - Judith Rankin
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Mark S Pearce
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | | | - Dawn Craig
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Fiona Pearson
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| |
Collapse
|
23
|
Pw Kenny R, Evelynne Johnson E, Adesanya AM, Richmond C, Beyer F, Calderon C, Rankin J, Pearce MS, Toledano M, Craig D, Pearson F. The effects of radiofrequency exposure on male fertility: A systematic review of human observational studies with dose-response meta-analysis. ENVIRONMENT INTERNATIONAL 2024; 190:108817. [PMID: 38880061 DOI: 10.1016/j.envint.2024.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The World Health Organization (WHO) is bringing together evidence on radiofrequency electromagnetic field (RF-EMF) exposure in relation to health outcomes, previously identified as priorities for research and evaluation by experts in the field, to inform exposure guidelines. A suite of systematic reviews have been undertaken by a network of topic experts and methodologists to collect, assess and synthesise data relevant to these guidelines. Following the WHO handbook for guideline development and the COSTER conduct guidelines, we systematically reviewed the evidence on the potential effects of RF-EMF exposure on male fertility in human observational studies. METHODS We conducted a broad and sensitive search for potentially relevant records within the following bibliographic databases: MEDLINE; Embase; Web of Science and EMF Portal. We also conducted searches of grey literature through relevant databases including OpenGrey, and organisational websites and consulted RF-EMF experts. We hand searched reference lists of included study records and for citations of these studies. We included quantitative human observational studies on the effect of RF-EMF exposure in adult male participants on infertility: sperm concentration; sperm morphology; sperm total motility; sperm progressive motility; total sperm count; and time to pregnancy. Titles and abstracts followed by full texts were screened in blinded duplicate against pre-set eligibility criteria with consensus input from a third reviewer as required. Data extraction from included studies was completed by two reviewers, as was risk of bias assessment using the Office of Health Assessment and Translation (OHAT) tool. We conducted a dose-response meta-analysis as possible and appropriate. Certainty of the evidence was assessed by two reviewers using the OHAT GRADE tool with input from a third reviewer as required. RESULTS We identified nine studies in this review; seven were general public studies (with the general public as the population of interest) and two were occupational studies (with specific workers/workforces as the population of interest). General public studies. Duration of phone use: The evidence is very uncertain surrounding the effects of RF-EMF on sperm concentration (10/6 mL) (MD (mean difference) per hour of daily phone use 1.6 106/mL, 95 % CI -1.7 to 4.9; 3 studies), sperm morphology (MD 0.15 percentage points of deviation of normal forms per hour, 95 % CI -0.21 to 0.51; 3 studies), sperm progressive motility (MD -0.46 percentage points per hour, 95 % CI -1.04 to 0.13; 2 studies) and total sperm count (MD per hour -0.44 106/ejaculate, 95 % CI -2.59 to 1.7; 2 studies) due to very low-certainty evidence. Four additional studies reported on the effect of mobile phone use on sperm motility but were unsuitable for pooling; only one of these studies identified a statistically significant effect. All four studies were at risk of exposure characterisation and selection bias; two of confounding, selective reporting and attrition bias; three of outcome assessment bias and one used an inappropriate statistical method. Position of phone: There may be no or little effect of carrying a mobile phone in the front pocket on sperm concentration, total count, morphology, progressive motility or on time to pregnancy. Of three studies reporting on the effect of mobile phone location on sperm total motility and, or, total motile count, one showed a statistically significant effect. All three studies were at risk of exposure characterisation and selection bias; two of confounding, selective reporting and attrition bias; three of outcome assessment bias and one used inappropriate statistical method. RF-EMF Source: One study indicates there may be little or no effect of computer or other electric device use on sperm concentration, total motility or total count. This study is at probably high risk of exposure characterisation bias and outcome assessment bias. Occupational studies. With only two studies of occupational exposure to RF-EMF and heterogeneity in the population and exposure source (technicians exposed to microwaves or seamen exposed to radar equipment), it was not plausible to statistically pool findings. One study was at probably or definitely high risk of bias across all domains, the other across domains for exposure characterisation bias, outcome assessment bias and confounding. DISCUSSION The majority of evidence identified was assessing localised RF-EMF exposure from mobile phone use on male fertility with few studies assessing the impact of phone position. Overall, the evidence identified is very uncertain about the effect of RF-EMF exposure from mobile phones on sperm outcomes. One study assessed the impact of other RF-EMF sources on male fertility amongst the general public and two studies assessed the impact of RF-EMF exposure in occupational cohorts from different sources (radar or microwave) on male fertility. Further prospective studies conducted with greater rigour (in particular, improved accuracy of exposure measurement and appropriate statistical method use) would build the existing evidence base and are required to have greater certainty in any potential effects of RF-EMF on male reproductive outcomes. Prospero Registration: CRD42021265401 (SR3A).
Collapse
Affiliation(s)
- Ryan Pw Kenny
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | | | - Adenike M Adesanya
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Catherine Richmond
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Fiona Beyer
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | | | - Judith Rankin
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Mark S Pearce
- Maternal & Child Health Group, Population Health Sciences Institute, Newcastle University, UK.
| | | | - Dawn Craig
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| | - Fiona Pearson
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, UK.
| |
Collapse
|
24
|
Aşır F, Korak T, Çankırı Z. Reply to Abid et al. Comment on "Aşır et al. Investigation of Vitamin D Levels in Men with Suspected Infertility. Life 2024, 14, 273". Life (Basel) 2024; 14:914. [PMID: 39063666 PMCID: PMC11277917 DOI: 10.3390/life14070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
In response to the insightful comments made by Dr. Abid et al. on our article "Investigation of Vitamin D Levels in Men with Suspected Infertility", we address several key points concerning the generalizability and methodology of our study. Dr. Abid et al.'s critique primarily focused on the single-center nature of our research, regional variations in ultraviolet (UV) exposure, dietary factors affecting vitamin D levels, and the sample size of our study. We discuss the inherent value and controlled environment of single-center studies while acknowledging the need for multi-center validation. Additionally, we explain our consideration of sun exposure and dietary intake in our analysis, and recognize the importance of larger, more diverse studies to strengthen our findings. Our response aims to clarify these aspects and emphasize the significance of vitamin D in male infertility, encouraging further research in this field.
Collapse
Affiliation(s)
- Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey;
| | - Zuhal Çankırı
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| |
Collapse
|
25
|
Silva LB, Beserra Melo CJ, Lisboa de Souza AG, de Oliveira LG. Ergonomics, Health, and Perceptions about Remote Domestic Workposts: Study in Areas of City of João Pessoa, Paraíba, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:941. [PMID: 39063517 PMCID: PMC11276999 DOI: 10.3390/ijerph21070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Home office (HO) stands out as one of the most promising and popular forms of teleworking, especially after the COVID-19 pandemic. Therefore, many companies want to implement or maintain this working method, given its numerous advantages. However, there are adverse effects that are mainly related to physical and mental health. This article presents ergonomic analyses of HOs in neighborhoods considered heat islands. Temperature levels, extreme low-frequency non-ionizing radiation (ELF-NIR), illuminance, physical layout characteristics, and physiological parameters of teleworkers were measured. The results reveal that 92% of these professionals work 6 to 8 h daily with an ambient temperature between 25 and 30 °C, illumination levels in the range 11.20-290 Lux, and ELF-NIR > 0.4 µT. The majority of teleworkers are overweight (BMI > 24.9), and some of them have blood pressure higher than average values (129 mmHg for systolic and 84 mmHg for diastolic) in addition to a reduction in the number of red blood cells and hematocrits. Symptoms such as burning sensation, dryness, tired eyes, redness, itching, and photophobia (light sensitivity) show a 68.95% similarity. These HOs do not meet the required ergonomic and health standards.
Collapse
Affiliation(s)
- Luiz Bueno Silva
- Department of Production Engineering, Federal University of Paraíba, João Pessoa 58051-970, Brazil; (C.J.B.M.); (A.G.L.d.S.); (L.G.d.O.)
| | | | | | | |
Collapse
|
26
|
AbuMadighem A, Cohen O, Huleihel M. Elucidating the Transcriptional States of Spermatogenesis-Joint Analysis of Germline and Supporting Cell, Mice and Human, Normal and Perturbed, Bulk and Single-Cell RNA-Seq. Biomolecules 2024; 14:840. [PMID: 39062554 PMCID: PMC11274546 DOI: 10.3390/biom14070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
27
|
Zafar MI, Chen X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep 2024; 13:256-274. [PMID: 38489002 DOI: 10.1007/s13679-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| |
Collapse
|
28
|
Wdowiak N, Wójtowicz K, Wdowiak-Filip A, Pucek W, Wróbel A, Wróbel J, Wdowiak A. Environmental Factors as the Main Hormonal Disruptors of Male Fertility. J Clin Med 2024; 13:1986. [PMID: 38610751 PMCID: PMC11012640 DOI: 10.3390/jcm13071986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION AND OBJECTIVE Many scientific reports confirm a systematic decline in male semen parameters over the last decades. This phenomenon has been observed in all parts of the world, and its occurrence is associated, among others, with the hazardous effects of some environmental factors. The environmental factors for which the adverse effect on male fertility has been proven include water, air, and soil pollution, as well as electromagnetic fields and ionizing radiation. The aim of this article was the evaluation of the effect of selected environmental factors on male reproductive capacity based on an analysis of the current scientific reports. REVIEW METHODS A systematic literature review was carried out using three databases: PubMed, EMBASE, and Scopus. The search was limited to the period from 2015 until the end of December 2023. Brief description of the state of knowledge: Environmental factors, such as heavy metals, tobacco smoke, pesticides, dioxins, furans, phthalates, and bisphenols, are well-tested substances that exert an adverse effect on male fertility. A harmful effect of electromagnetic fields and water and air pollution on reproductive functions may be expected; however, this has not been fully proven. SUMMARY Results obtained by many researchers published to date should evoke great concern regarding the quality of the environment in which we live, as well as fears about the effect of environmental factors not only on male fertility, but also on all aspects of human health. The majority of environmental pollutants affect the male body by causing oxidative stress and through their effect on the endocrine system.
Collapse
Affiliation(s)
- Natalia Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Staszica 4-6 Street, 20-081 Lublin, Poland;
| | - Kamila Wójtowicz
- Department of Gynecology and Obstetrics. Municipal Hospital, Saint Michael the Archangel in Łańcut, Parens, Infertility Clinic in Rzeszów, 35-309 Rzeszów, Poland;
| | - Anita Wdowiak-Filip
- Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Weronika Pucek
- National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Staszica 4-6 Street, 20-081 Lublin, Poland;
| |
Collapse
|
29
|
Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, H Brinkworth M, Chen G, P McNamee J, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. ENVIRONMENT INTERNATIONAL 2024; 185:108509. [PMID: 38492496 DOI: 10.1016/j.envint.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).
Collapse
Affiliation(s)
- Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Villani
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Lea Belackova
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Jos Verbeek
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
30
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
31
|
Jung SJ, Kim YG, Lee SO, Chae SW. Effects of Korean Versus Western Diets on Reproductive Function in Young Korean Men: A 12-Week Randomized Parallel Clinical Trial. J Lifestyle Med 2024; 14:20-30. [PMID: 38665320 PMCID: PMC11039441 DOI: 10.15280/jlm.2024.14.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background Studies report that diet may have contributed to a 50-60% decrease in human sperm quality over the past few decades. Unhealthy lifestyles affect the structure of spermatozoa, affecting the male reproductive potential. This study aimed to compare the effects of Korean and Western diets on reproductive function in young male Koreans. Methods Study participants were provided either the Korean Diet (KD group) or the Western Diet (WD group) for 12 weeks. Semen quality parameters such as volume, motility, cell count, and sex hormone levels were evaluated. Sexual function was assessed using the International Index of Erectile Function and the Male Sexual Health Questionnaire. Efficacy and safety evaluations were conducted at baseline, 8 weeks, and 12 weeks. Results The KD group demonstrated a significantly increased sperm motility after 8 weeks relative to baseline but decreased after 12 weeks. In contrast, sperm motility in the WD group significantly decreased after 8 weeks compared with baseline and remained constant after 12 weeks. Statistically, a near-significant difference was observed between groups (p = 0.057). Similarly, free testosterone levels in the KD group increased after 12 weeks compared with baseline, whereas that in the WD group decreased. The free testosterone levels in the KD group were significantly higher than those in the WD group (p = 0.020). There were no statistically significant differences in other sex hormone and sexual function questionnaires between the groups. None of the participants reported any severe side effects, and no significant alterations in clinical diagnostic test values were detected. Conclusion The results of the study strongly reveal that KD positively affects sperm motility and male hormone levels in young men, indicating potential benefits for reproductive function.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clincial Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Young-Gon Kim
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clincial Medicine, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Urology, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clincial Medicine, Jeonbuk National University, Jeonju, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clincial Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
32
|
Sciorio R, Tramontano L, Adel M, Fleming S. Decrease in Sperm Parameters in the 21st Century: Obesity, Lifestyle, or Environmental Factors? An Updated Narrative Review. J Pers Med 2024; 14:198. [PMID: 38392631 PMCID: PMC10890002 DOI: 10.3390/jpm14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Semen quality represents a compelling factor for fertility, and delineating the normal values has proven difficult. In the last four decades, several authors have reported a noticeable decline in sperm parameters. Also, studies investigating 'time to pregnancy' have shown that fecundity begins to be reduced when sperm numbers decrease below 30 million, even though according to the 6th edition of the WHO manual, the normal value is currently 16 million/mL or 39 million per ejaculate. There exists sufficient data to suggest a decline in sperm counts over time, even though the clear reason for this adverse trend is not well established, but some associations have been hypothesised, such as maternal smoking during pregnancy. Additional potential factors have yet to be fully illustrated but involve poor diet, increased obesity, and exposure to environmental toxins. Moreover, the change in environmental conditions and more common exposure to endocrine-disrupting chemicals (EDCs), such as pesticides and herbicides, as well as bisphenol A, phthalates, polychlorinated biphenyls, and heavy metals, starting from prenatal life and continuing into adulthood, may exhibit probable features explaining the reduction in sperm parameters. Therefore, the main goal of this narrative review is to furnish an overview of the possible effects of exposure to EDCs on testicular function and spermatogenesis and, also, to summarise the evidence regarding a decrease in sperm quality and examine its potential consequences.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneva University Hospitals, 1211 Geneve, Switzerland
| | - Mohammed Adel
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
33
|
Maluin SM, Jaffar FHF, Osman K, Zulkefli AF, Mat Ros MF, Ibrahim SF. Exploring edible bird nest's potential in mitigating Wi-Fi's impact on male reproductive health. Reprod Med Biol 2024; 23:e12606. [PMID: 39263384 PMCID: PMC11387989 DOI: 10.1002/rmb2.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
Purpose This study aimed to evaluate the protective effects of edible bird nest (EBN) against the detrimental impact of Wi-Fi on male reproductive health. Specifically, it examines whether EBN can mitigate Wi-Fi-induced changes in male reproductive hormones, estrogen receptors (ER), spermatogenesis, and sperm parameters. Methods Thirty-six adult male rats were divided into six groups (n = 6): Control, Control EBN, Control E2, Wi-Fi, Wi-Fi+EBN, and Wi-Fi+E2. Control EBN and Wi-Fi+EBN groups received 250 mg/kg/day EBN, while Control E2 and Wi-Fi+E2 groups received 12 μg/kg/day E2 for 10 days. Wi-Fi exposure and EBN supplementation lasted eight weeks. Assessments included organ weight, hormone levels (FSH, LH, testosterone, and E2), ERα/ERβ mRNA and protein expression, spermatogenic markers (c-KIT and SCF), and sperm quality. Results Wi-Fi exposure led to decreased FSH, testosterone, ERα mRNA, and sperm quality (concentration, motility, and viability). EBN supplementation restored serum FSH and testosterone levels, increased serum LH levels, and the testosterone/E2 ratio, and normalized mRNA ERα expression. Additionally, EBN increased sperm concentration in Wi-Fi-exposed rats without affecting motility or viability. Conclusions EBN plays a crucial role in regulating male reproductive hormones and spermatogenesis, leading to improved sperm concentration. This could notably benefit men experiencing oligospermia due to excessive Wi-Fi exposure.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine and Health Sciences Universiti Sains Islam Malaysia (USIM) Nilai Malaysia
| | | | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences Universiti Kebangsaan Malaysia (UKM) Bangi Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Mohd Farisyam Mat Ros
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| |
Collapse
|
34
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
35
|
El-Sheikh MM, Aziz MM, Abdelrahman SSM, Mohmad MAEH. The protective effect of crocin against testicular toxicity induced by ionizing radiation via AKT/FOXO pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2981-2992. [PMID: 37615252 DOI: 10.1002/tox.23932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Crocin, a pharmacologically active component of Crocus sativus L. (saffron), has been informed to be beneficial in the treatment of stress-related oxidative impairment. In the present study, we examined the protective role of crocin against testicular damage induced by radiation (acute and fractionated) and the alteration of the AKT/FOXO signaling pathway. Male Wister albino rats were exposed to acute dose of 6 Gy and a fractionated dose of gamma radiation (2 Gy every 2 days up to 6 Gy total doses). Rats were pretreated intraperitoneally with crocin in a dose of 50 mg/kg for seven consecutive days prior to exposure to irradiation at a level of 6 Gy and during the fractionated irradiation of rats. Control groups were run concurrently. Ionizing radiation caused changes in the level of oxidative stress biomarkers manifested as elevation of thiobarbituric acid reactive substance, total nitrate/nitrite and reactive oxygen species (ROS) associated with a decrease in catalase as well as in the level of inflammatory parameters (decrease in expression of Nrf2 which was related to a significant increase in expression of NF-κB p65). Irradiation produced cellular damage characterized by an increase in serum lactate dehydrogenase. These findings were aligned with increased expression of the forkhead box O-1 (FOXO-1) and activation of protein kinase B (AKT) pathway. Irradiation of rats led to reduction in serum testosterone level and testicular weights. Pretreatment with the indicated dose of crocin shielded against the changes in all the evaluated parameters. Administration of crocin can be introduced as a novel preclinical approach for regulation of testicular damage induced by radiation; via controlling the ongoing oxidative stress and inflammatory reaction as well as activation FOXO/AKT signaling pathway.
Collapse
Affiliation(s)
- Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Maha M Aziz
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sahar S M Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Marwa Abd El Hameed Mohmad
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
36
|
Özgen M, Take G, Kaplanoğlu İ, Erdoğan D, Seymen CM. Therapeutic effects of melatonin in long-term exposure to 2100MHz radiofrequency radiation on rat sperm characteristics. Rev Int Androl 2023; 21:100371. [PMID: 37413938 DOI: 10.1016/j.androl.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/15/2022] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Radiofrequency electromagnetic fields (RF-EMFs) are one of the risk factors for male reproductive health and melatonin can be an ideal candidate for therapeutic development against RF-induced male fertility problems due to its antioxidant properties. The possible therapeutic role of melatonin in the destructive effects of 2100MHz RF radiation on rat sperm characteristics is investigated in the present study. METHODS Wistar albino rats were divided into four groups and the experiment continued for ninety consecutive days; Control, Melatonin (10mg/kg, subcutaneously), RF (2100MHz, thirty minutes per day, whole-body), and RF+Melatonin groups. Left caudal epididymis and ductus deferens tissues were placed in sperm wash solution (at 37°C) and dissected. The sperms were counted and stained. Measurements of the perinuclear ring of the manchette and posterior portion of the nucleus (ARC) were performed and the sperms were examined at an ultrastructural level. All of the parameters were evaluated statistically. RESULTS The percentages of abnormal sperm morphology were significantly increased with RF exposure, while the total sperm count was significantly decreased. RF exposure also showed harmful effects on acrosome, axoneme, mitochondrial sheath, and outer dense fibers at the ultrastructural level. The number of total sperms, sperms with normal morphology increased, and ultrastructural appearance returned to normal by melatonin administration. DISCUSSION The data showed that melatonin may be a beneficial therapeutic agent for long-term exposure of 2100MHz RF radiation-related reproductive impairments.
Collapse
Affiliation(s)
- Meltem Özgen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Gülnur Take
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - İskender Kaplanoğlu
- Sağlık Bilimleri University, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Center of Assisted Reproduction, Ankara, Turkey
| | - Deniz Erdoğan
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Cemile Merve Seymen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
37
|
Li HT, Zhong K, Xia YF, Song J, Chen XQ, Zhao W, Zeng XH, Chen TX. Puerarin improves busulfan-induced disruption of spermatogenesis by inhibiting MAPK pathways. Biomed Pharmacother 2023; 165:115231. [PMID: 37516022 DOI: 10.1016/j.biopha.2023.115231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Male infertility is a global concern, with a noticeable increase in the decline of spermatogenesis and sperm quality. However, there are limited clinically effective treatments available. This study aimed to investigate the potential effectiveness of puerarin in treating male infertility, which leads to gonadal changes. The results obtained from various analyses such as CASA, immunofluorescence, DIFF-Quick, hematoxylin and eosin (H&E), and periodic acid-Schiff (PAS) staining demonstrated that puerarin supplementation significantly alleviated the busulfan-induced reduction in spermatogenesis and sperm quality in both young and adult mice. Furthermore, puerarin exhibited a marked improvement in the damage caused by busulfan to the architecture of seminiferous tubules, causal epididymis, blood-testicular barrier (BTB), as well as spermatogonia and Sertoli cells. Similarly, puerarin significantly reduced the levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), and caspase-3 in the testes of busulfan-induced mice, as determined by microplate reader analysis. Additionally, RNA-seq data, RT-qPCR, and western blotting revealed that puerarin restored the abnormal gene expressions induced by busulfan to nearly healthy levels. Notably, puerarin significantly reversed the impact of busulfan on the expression of marker genes involved in spermatogenesis and oxidative stress. Moreover, puerarin suppressed the phosphorylation of p38, ERK1/2, and JNK in the testes, as observed through testicular analysis. Consequently, this study concludes that puerarin may serve as a potential alternative for treating busulfan-induced damage to male fertility by inactivating the testicular MAPK pathways. These findings may pave the way for the use of puerarin in addressing chemotherapy- or other factors-induced male infertility in humans.
Collapse
Affiliation(s)
- Hai-Tao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Kun Zhong
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun-Fei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Jian Song
- Reproductive Medicine Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xiao-Qing Chen
- Human Resources Division and Clinical Research Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| | - Xu-Hui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| | - Tian-Xing Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
38
|
Men J, Zhang L, Peng R, Li Y, Li M, Wang H, Zhao L, Zhang J, Wang H, Xu X, Dong J, Wang J, Yao B, Guo J. Metformin Ameliorates 2.856 GHz Microwave- Radiation-Induced Reproductive Impairments in Male Rats via Inhibition of Oxidative Stress and Apoptosis. Int J Mol Sci 2023; 24:12250. [PMID: 37569626 PMCID: PMC10418945 DOI: 10.3390/ijms241512250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The reproductive system has been increasingly implicated as a sensitive target of microwave radiation. Oxidative stress plays a critical role in microwave radiation -induced reproductive damage, though precise mechanisms are obscure. Metformin, a widely used antidiabetic drug, has emerged as an efficient antioxidant against a variety of oxidative injuries. In the present study, we hypothesized that metformin can function as an antioxidant and protect the reproductive system from microwave radiation. To test this hypothesis, rats were exposed to 2.856 GHz microwave radiation for 6 weeks to simulate real-life exposure to high-frequency microwave radiation. Our results showed that exposure to 2.856 GHz microwave radiation elicited serum hormone disorder, decreased sperm motility, and depleted sperm energy, and it induced abnormalities of testicular structure as well as mitochondrial impairment. Metformin was found to effectively protect the reproductive system against structural and functional impairments caused by microwave radiation. In particular, metformin can ameliorate microwave-radiation-induced oxidative injury and mitigate apoptosis in the testis, as determined by glutathione/-oxidized glutathione (GSH/GSSG), lipid peroxidation, and protein expression of heme oxygenase-1 (HO-1). These findings demonstrated that exposure to 2.856 GHz microwave radiation induces obvious structural and functional impairments of the male reproductive system, and suggested that metformin can function as a promising antioxidant to inhibit microwave-radiation-induced harmful effects by inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Junqi Men
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Li Zhang
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
| | - Ruiyun Peng
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Yanyang Li
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Meng Li
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Hui Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Li Zhao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Jing Zhang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Haoyu Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Xinping Xu
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Ji Dong
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Juan Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Binwei Yao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Jiabin Guo
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
- School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
39
|
Malekpour M, Shekouh D, Safavinia ME, Shiralipour S, Jalouli M, Mortezanejad S, Azarpira N, Ebrahimi ND. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Front Psychiatry 2023; 14:1182345. [PMID: 37398599 PMCID: PMC10313426 DOI: 10.3389/fpsyt.2023.1182345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Stress-induced mental health disorders are affecting many people around the world. However, effective drug therapy for curing psychiatric diseases does not occur sufficiently. Many neurotransmitters, hormones, and mechanisms are essential in regulating the body's stress response. One of the most critical components of the stress response system is the hypothalamus-pituitary-adrenal (HPA) axis. The FKBP prolyl isomerase 51 (FKBP51) protein is one of the main negative regulators of the HPA axis. FKBP51 negatively regulates the cortisol effects (the end product of the HPA axis) by inhibiting the interaction between glucocorticoid receptors (GRs) and cortisol, causing reduced transcription of downstream cortisol molecules. By regulating cortisol effects, the FKBP51 protein can indirectly regulate the sensitivity of the HPA axis to stressors. Previous studies have indicated the influence of FKBP5 gene mutations and epigenetic changes in different psychiatric diseases and drug responses and recommended the FKBP51 protein as a drug target and a biomarker for psychological disorders. In this review, we attempted to discuss the effects of the FKBP5 gene, its mutations on different psychiatric diseases, and drugs affecting the FKBP5 gene.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shadi Shiralipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Jalouli
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Mortezanejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
40
|
Zhang X, Zuo Y, Zhang J, Zhang D, Naeem M, Chang Y, Shi Z. Sevoflurane inhibited reproductive function in male mice by reducing oxidative phosphorylation through inducing iron deficiency. Front Cell Dev Biol 2023; 11:1184632. [PMID: 37346174 PMCID: PMC10279888 DOI: 10.3389/fcell.2023.1184632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Sevoflurane (Sev) is one of the commonly used inhalation anesthetic chemicals in clinics. It has great impact on spermatogenesis and fertilization in male animals. The underlying mechanism remains largely unexplored. Based on our previous research, we hypothesized that Sev induced iron metabolism disturbance in the testis and epididymis and inhibited the spermatogenesis. In this study, two-month-old C57BL/6 male mice were treated with 3% Sev for 6 h, and their fertility (including sperm concentration, sperm mobility, and the number of offspring) was evaluated. Mice testis, epididymis, and sperm were harvested and subjected to Western blot analysis and immunofluorescence analysis. Iron levels were reflected by the gene expression of iron metabolism-related proteins (including ferritin, TfR1, and FpN1) and ICP-MS and Perl's iron staining. Electron transport and oxidative phosphorylation levels were measured by Oxygraph-2k and ATP contents. The activity of ribonucleotide reductase was evaluated by assay kit. DNA synthesis status in testis and/or epididymis was marked with BrdU. Cell proliferation was evaluated by double immunofluorescence staining of specific protein marker expression. Our results revealed that the mice exposed to Sev showed damaged testicular and epididymis structure and significantly reduced the sperm concentration, sperm motility, and fertility. Sev decreases the iron levels through down-regulating the expression of H-ferritin, L-ferritin, and FpN1, and up-regulating the expression of TfR1 in the testis and epididymis. Iron levels also significantly reduced in germ cells which decrease the number of germ cells, including sperm, Sertoli cells, and primary spermatocyte. Iron deficiency not only decreases electron transport, oxidative phosphorylation level, and ATP production but also suppresses the activity of ribonucleotide reductase and the expression of Ki67, DDX4, GATA1, and SCP3, indicating that Sev affects the spermatogenesis and development. Meanwhile, Sev impaired the blood-testis barrier by decreasing the ZO1 expression in the testis and epididymis. The damage effect induced by Sev can be significantly ameliorated by iron supplementation. In conclusion, our study illustrates a new mechanism by which Sev inhibits spermatogenesis and fertility through an oxidative phosphorylation pathway due to iron deficiency of epididymis and testis or sperm. Furthermore, the damaging effects could be ameliorated by iron supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhenhua Shi
- *Correspondence: Jianhua Zhang, ; Zhenhua Shi,
| |
Collapse
|
41
|
Jangid P, Rai U, Sharma RS, Singh R. The role of non-ionizing electromagnetic radiation on female fertility: A review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:358-373. [PMID: 35132884 DOI: 10.1080/09603123.2022.2030676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
With increasing technological developments, exposure to non-ionizing radiations has become unavoidable as people cannot escape from electromagnetic field sources, such as Wi-Fi, electric wires, microwave oven, radio, telecommunication, bluetooth devices, etc. These radiations can be associated with increased health problems of the users. This review aims to determine the effects of non-ionizing electromagnetic radiations on female fertility. To date, several in vitro and in vivo studies unveiled that exposure to non-ionizing radiations brings about harmful effects on oocytes, ovarian follicles, endometrial tissue, estrous cycle, reproductive endocrine hormones, developing embryo, and fetal development in animal models. Non-ionizing radiation also upsurges the free radical load in the uterus and ovary, which leads to inhibition of cell growth and DNA disruptions. In conclusion, non-ionizing electromagnetic radiations can cause alterations in both germ cells as well as in their nourishing environment and also affect other female reproductive parameters that might lead to infertility.
Collapse
Affiliation(s)
- Pooja Jangid
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Radhey Shyam Sharma
- Department of RBMH & CH, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
42
|
Wang H, Song L, Zhao L, Wang H, Xu X, Dong J, Zhang J, Yao B, Zhao X, Peng R. The dose-dependent effect of 1.5-GHz microwave exposure on spatial memory and the NMDAR pathway in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37427-37439. [PMID: 36574118 PMCID: PMC9792922 DOI: 10.1007/s11356-022-24850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A certain power of microwave radiation could cause changes in the nervous, cardiovascular, and other systems of the body, and the brain was a sensitive target organ of microwave radiation injury. Studies have shown that microwaves can impair cognitive functions in humans and animals, such as learning and memory, attention, and orientation. The dose-dependent effect of microwave radiation is still unclear. Our study aimed to investigate the effects of 1.5-GHz microwaves with different average power densities on locative learning and memory abilities, hippocampal structure, and related N-methyl D-aspartate receptor (NMDAR) signalling pathway proteins in rats. A total number of 140 male Wistar rats were randomly divided into four groups: S group (sham exposure), L5 group (1.5-GHz microwaves with average power density = 5 mW/cm2), L30 group (1.5-GHz microwaves with average power density = 30 mW/cm2), and L50 group (1.5-GHz microwaves with average power density = 50 mW/cm2). Changes in spatial learning and memory, EEG activity, hippocampal structure, and NMDAR signalling pathway molecules were detected from 6 h to 28 d after microwave exposure. After exposure to 1.5-GHz microwaves, rats in the L30 and L50 groups showed impaired spatial memory, inhibited EEG activity, pyknosis and hyperchromatism of neuron nucleus, and changes in NMDAR subunits and downstream signalling molecules. In conclusion, 1.5-GHz microwaves with an average power density of 5, 30, and 50 mW/cm2 could induce spatial memory dysfunction, hippocampal structure changes, and changes in protein levels in rats, and there was a defined dose-dependent effect.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Lequan Song
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Giulioni C, Maurizi V, Galosi AB. The role of physical agents' exposure in male infertility: A critical review. Arch Ital Urol Androl 2023; 95:10890. [PMID: 36924383 DOI: 10.4081/aiua.2023.10890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND A decrease in semen quality is an increasingly widespread pathological condition worldwide. Jobs and lifestyles have changed a lot with the advancement of technology in the last few decades, and a new series of risk factors for male infertility have spread. OBJECTIVE This review aims to summarize the current literature on this relationship, evaluating alterations in semen parameters and hormonal profile. METHODS A deep research was performed through MEDLINE via PubMed, Scopus, and Web of Science on articles regarding the relationship between physical agents and male fertility over the last twenty years. Some physical agents already associated with male infertility, such as heat and radiation, while emerging ones, such as physical exertion, psychological stress and sedentary activities, were newly considered. RESULTS Most studies described sperm quality after exposure. Overall sperm impairment was shown after radiation and alteration of specific parameters, such as sperm concentration, were observed after psychological stress and sedentary work. In addition, an association was also reported between physical exertion and hormonal profile, especially pituitary hormones and testosterone. CONCLUSIONS Although the associations between physical agents and male infertility are suggestive, the level of evidence of the studies is not adequate to define their influence, except for physical exertion. Therefore, new prospective studies are necessary for the validation of the correlation and the possible safeguarding of the exposed working classes.
Collapse
Affiliation(s)
- Carlo Giulioni
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| | - Valentina Maurizi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche Region, "Ospedali Riuniti" University Hospital, Ancona.
| | - Andrea Benedetto Galosi
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| |
Collapse
|
44
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
45
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
46
|
Belladelli F, Muncey W, Seranio N, Eisenberg ML. Counseling for the man with severe male infertility. Curr Opin Urol 2023; 33:5-9. [PMID: 36210761 DOI: 10.1097/mou.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW This review summarize the proper counseling for men with severe male factor infertility. RECENT FINDINGS Men who are experiencing infertility should have a semen analysis, the results of which may imply additional investigations, including genetic and hormonal. Moreover, possible modifiable factors that may harm men's reproductive health should be carefully evaluated. Finally, different treatment options are available. SUMMARY Approximately 15% of couples struggle with infertility. Complete evaluations of both men and women are required to determine the etiology of infertility and determine appropriate treatment.
Collapse
Affiliation(s)
- Federico Belladelli
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele
- University Vita-Salute San Raffaele, Milan, Italy
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA
| | - Wade Muncey
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA
| | - Nicolas Seranio
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael L Eisenberg
- Department of Urology, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
47
|
Ulubay M, Bahaettin Ulu M, Akdeniz E. The effect of aging on semen parameters in normozoospermic men: A cross-sectional study. Int J Reprod Biomed 2022; 20:955-962. [PMID: 36618832 PMCID: PMC9806242 DOI: 10.18502/ijrm.v20i11.12363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Semen parameters change with age and are reported differently worldwide. Objective This retrospective cross-sectional study aimed to investigate the semen quality pattern among aging men and the age thresholds for semen parameters. Materials and Methods The records of men who had normal semen parameters from January 2015-June 2020 were retrospectively evaluated for andrological outpatient at Samsun Training and Research hospital and Gazi hospital in Samsun, Turkey. Adult men meeting the inclusion criteria were divided into 3 groups of I) 18-29 yr (n = 629), II) 30-39 yr (n = 775), and III) 40-49 yr (n = 190). Correlations between age and sperm parameters were then analyzed. Results A total of 1594 men were enrolled in the study. Significant differences were observed in total sperm numbers, total motility rates, progressive motility rates, nonprogressive motility rates, normal morphology rates, mean semen volume, and sperm concentrations. The parameters of total sperm number, progressive motility rate, and normal morphology rate were significantly higher in group I than in the other 2 groups (p < 0.001, p < 0.001, and p < 0.001, respectively) and in group II compared to group III (p = 0.001, p = 0.003, and p < 0.001), respectively. Mean semen volume and total motility rate were significantly higher in group I than in the other groups (p = 0.001 and p < 0.001, respectively). However, no difference was observed between group II and group III (p = 0.61 and p = 0.04, respectively). Conclusion Age has a significant impact on semen parameters capable of affecting male fertility, particularly total sperm numbers, the progressive motility rate, and the normal morphology rate.
Collapse
Affiliation(s)
- Mahmut Ulubay
- Department of Urology, School of Medicine, Samsun University, Samsun, Turkey
| | | | - Ekrem Akdeniz
- Department of Urology, Samsun Training and Research Hospital, Samsun, Turkey
| |
Collapse
|
48
|
Ran L, Liu X, Xue B. Worldwide research trend of publications concerning spermatogenesis over past 10 years: A bibliometric study. Andrologia 2022; 54:e14570. [PMID: 36054473 PMCID: PMC10078559 DOI: 10.1111/and.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Fertility is a hot topic and many publications on spermatogenesis has been published during the past 10 years (2012-2021). This study aims to analyse the research trends and dynamics on spermatogenesis using bibliometric methods. In this study, only articles with an annual average citation of 1 or more were selected for analysis, and a total of 4849 articles were analysed. The results show that in the field of spermatogenesis over the past 10 years, mainland China and the United States are the two leading countries, and international collaboration becoming increasingly close; Nanjing Medical University is the most widely published and collaborated institution; PLOS One and Biology of Reproduction are the most published and cited journals; Andrologia is the most popular journal in Andrology subspecialty; Zhang has made the largest contribution, with the highest number of publications and total citations; 'testis', 'male infertility' and 'apoptosis' were the most researched trend topics. The future trends on spermatogenesis are likely to favour hot topics such as 'inflammation', 'transcriptomics' and 'exosomes'. In the conclusion, our study analyses the research trends on spermatogenesis over the past 10 years, which will provide a reference for researchers in this field.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaolong Liu
- Department of Urologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Boxin Xue
- Department of Urologythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
49
|
Ávila C, Vinay JI, Arese M, Saso L, Rodrigo R. Antioxidant Intervention against Male Infertility: Time to Design Novel Strategies. Biomedicines 2022; 10:biomedicines10123058. [PMID: 36551814 PMCID: PMC9775742 DOI: 10.3390/biomedicines10123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a highly prevalent condition, affecting 9-20% of couples worldwide. Among the identifiable causes, the male factor stands out in about half of infertile couples, representing a growing problem. Accordingly, there has been a decline in both global fertility rates and sperm counts in recent years. Remarkably, nearly 80% of cases of male infertility (MI) have no clinically identifiable aetiology. Among the mechanisms likely plausible to account for idiopathic cases, oxidative stress (OS) has currently been increasingly recognized as a key factor in MI, through phenomena such as mitochondrial dysfunction, lipid peroxidation, DNA damage and fragmentation and finally, sperm apoptosis. In addition, elevated reactive oxygen species (ROS) levels in semen are associated with worse reproductive outcomes. However, despite an increasing understanding on the role of OS in the pathophysiology of MI, therapeutic interventions based on antioxidants have not yet provided a consistent benefit for MI, and there is currently no clear consensus on the optimal antioxidant constituents or regimen. Therefore, there is currently no applicable antioxidant treatment against this problem. This review presents an approach aimed at designing an antioxidant strategy based on the particular biological properties of sperm and their relationships with OS.
Collapse
Affiliation(s)
- Cristóbal Ávila
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - José Ignacio Vinay
- Urology Department, University of Chile Clinical Hospital, Santiago 8380000, Chile
- Andrology Unit, Shady Grove Fertility, Santiago 7650672, Chile
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-229-786-126
| |
Collapse
|
50
|
Amer ME, Othman AI, Abozaid HM, El-Missiry MA. Utility of melatonin in mitigating ionizing radiation-induced testis injury through synergistic interdependence of its biological properties. Biol Res 2022; 55:33. [PMID: 36333811 PMCID: PMC9636653 DOI: 10.1186/s40659-022-00401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ionizing radiations (IR) have widespread useful applications in our daily life; however, they have unfavorable effects on reproductive health. Maintaining testicular health following IR exposure is an important requirement for reproductive potential. The current study explored the role of melatonin (MLT) in mitigating IR-induced injury in young adult rat testis. Methods Rats were given daily MLT (25 mg/kg) for 3 and 14 days after receiving 4 Gy γ-radiation. Results Serum MLT levels and other antioxidants, including glutathione content, and the activity of glutathione peroxidase and glutathione reductase in the testis of the irradiated rats were remarkably maintained by MLT administration in irradiated rats. Hence, the hydrogen peroxide level declined with remarkably reduced formation of oxidative stress markers, 4-hydroxynonenal, and 8-Hydroxy-2′-deoxyguanosine in the testis of irradiated animals after MLT administration. The redox status improvement caused a remarkable regression of proapoptotic protein (p53, Cyto-c, and caspase-3) in the testis and improved inflammatory cytokines (CRP and IL-6), and anti-inflammatory cytokine (interleukin IL-10) in serum. This is associated with restoration of disturbed sex hormonal balance, androgen receptor upregulation, and testicular cell proliferation activity in irradiated rats, explaining the improvement of sperm parameters (count, motility, viability, and deformation). Consequently, spermatogenic cell depletion and decreased seminiferous tubule diameter and perimeter were attenuated by MLT treatment post irradiation. Moreover, the testis of irradiated-MLT-treated rats showed well-organized histological architecture and normal sperm morphology. Conclusions These results show that radiation-induced testicular injury is mitigated following IR exposure through synergistic interdependence between the antioxidant, anti-inflammatory, anti-apoptotic, and anti-DNA damage actions of MLT.
Collapse
|