1
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Huo Z, Zhu X, Peng Q, Chen C, Yang X, Huang C, Xiang Y, Tian Q, Liu J, Liu C, Zhang P. LINC08148 promotes the caveola-mediated endocytosis of Zika virus through upregulating transcription of Src. J Virol 2024; 98:e0170523. [PMID: 38742902 PMCID: PMC11237476 DOI: 10.1128/jvi.01705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.
Collapse
Affiliation(s)
- Zhiting Huo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanfeng Zhu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qinyu Peng
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Yang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yincheng Xiang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingju Tian
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingyu Liu
- Food and Cosmetics Institute, Guangzhou Customs Technology Center, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sherwood M, Zhou Y, Sui Y, Wang Y, Skipp P, Kaid C, Gray J, Okamoto K, Ewing RM. Integrated re-analysis of transcriptomic and proteomic datasets reveals potential mechanisms for Zika viral-based oncolytic therapy in neuroblastoma. F1000Res 2024; 12:719. [PMID: 38903860 PMCID: PMC11187533 DOI: 10.12688/f1000research.132627.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) can access the nervous system and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. Methods Here, we perform extensive data mining, integration and re-analysis of ZIKV infection datasets to highlight molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We collate infection data of multiple neuroblastoma cell lines by different ZIKV strains from a body of published literature to inform the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating published transcriptomics, interaction proteomics, dependency factor and compound datasets we propose the involvement of multiple host systems during ZIKV infection. Results Through data mining of published literature, we observed most paediatric neuroblastoma cell lines to be highly susceptible to ZIKV infection and propose the PRVABC59 ZIKV strain to be the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV infection is dependent on sterol regulatory element binding protein (SREBP)-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV non-structural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. Conclusions Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials.
Collapse
Affiliation(s)
- Matt Sherwood
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yilu Zhou
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yi Sui
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Yihua Wang
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Carolini Kaid
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Juliet Gray
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, England, UK
| | - Keith Okamoto
- Human Genome and Stem-Cell Center (HUG-CELL), Biosciences Institute, Universidade de Sao Paulo, São Paulo, State of São Paulo, Brazil
| | - Rob M. Ewing
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| |
Collapse
|
4
|
Huang GG, Wang HY, Wang XH, Yang T, Zhang XM, Feng CL, Zhao WM, Tang W. Atranorin inhibits Zika virus infection in human glioblastoma cell line SNB-19 via targeting Zika virus envelope protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155343. [PMID: 38290230 DOI: 10.1016/j.phymed.2024.155343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.
Collapse
Affiliation(s)
- Guan-Gen Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Han Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Meng Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei-Min Zhao
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
5
|
Goellner S, Enkavi G, Prasad V, Denolly S, Eu S, Mizzon G, Witte L, Kulig W, Uckeley ZM, Lavacca TM, Haselmann U, Lozach PY, Brügger B, Vattulainen I, Bartenschlager R. Zika virus prM protein contains cholesterol binding motifs required for virus entry and assembly. Nat Commun 2023; 14:7344. [PMID: 37957166 PMCID: PMC10643666 DOI: 10.1038/s41467-023-42985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- Sarah Goellner
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Sungmin Eu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- d-fine GmbH, Frankfurt, Germany
| | - Giulia Mizzon
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Leander Witte
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Zina M Uckeley
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Department of Molecular Genetics & Microbiology, University of Florida, Florida, USA
| | - Teresa M Lavacca
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Pierre-Yves Lozach
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Yang M, Ismayil A, Jiang Z, Wang Y, Zheng X, Yan L, Hong Y, Li D, Liu Y. A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 2022; 41:e108713. [PMID: 34888888 PMCID: PMC8762549 DOI: 10.15252/embj.2021108713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Asigul Ismayil
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan Wang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Xiyin Zheng
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Liming Yan
- MOE Key Laboratory of Protein ScienceSchool of MedicineTsinghua UniversityBeijingChina
| | - Yiguo Hong
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Dawei Li
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yule Liu
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
7
|
Borges-Vélez G, Arroyo JA, Cantres-Rosario YM, Rodriguez de Jesus A, Roche-Lima A, Rosado-Philippi J, Rosario-Rodríguez LJ, Correa-Rivas MS, Campos-Rivera M, Meléndez LM. Decreased CSTB, RAGE, and Axl Receptor Are Associated with Zika Infection in the Human Placenta. Cells 2022; 11:3627. [PMID: 36429055 PMCID: PMC9688057 DOI: 10.3390/cells11223627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) compromises placental integrity, infecting the fetus. However, the mechanisms associated with ZIKV penetration into the placenta leading to fetal infection are unknown. Cystatin B (CSTB), the receptor for advanced glycation end products (RAGE), and tyrosine-protein kinase receptor UFO (AXL) have been implicated in ZIKV infection and inflammation. This work investigates CSTB, RAGE, and AXL receptor expression and activation pathways in ZIKV-infected placental tissues at term. The hypothesis is that there is overexpression of CSTB and increased inflammation affecting RAGE and AXL receptor expression in ZIKV-infected placentas. Pathological analyses of 22 placentas were performed to determine changes caused by ZIKV infection. Quantitative proteomics, immunofluorescence, and western blot were performed to analyze proteins and pathways affected by ZIKV infection in frozen placentas. The pathological analysis confirmed decreased size of capillaries, hyperplasia of Hofbauer cells, disruption in the trophoblast layer, cell agglutination, and ZIKV localization to the trophoblast layer. In addition, there was a significant decrease in CSTB, RAGE, and AXL expression and upregulation of caspase 1, tubulin beta, and heat shock protein 27. Modulation of these proteins and activation of inflammasome and pyroptosis pathways suggest targets for modulation of ZIKV infection in the placenta.
Collapse
Affiliation(s)
- Gabriel Borges-Vélez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Juan A. Arroyo
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | | | - Ana Rodriguez de Jesus
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Julio Rosado-Philippi
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - María S. Correa-Rivas
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Maribel Campos-Rivera
- School of Dental Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
8
|
Zeng J, Meng Y, Chen SY, Zhao G, Wang L, Zhang EX, Qiu H. Structural characteristics of Heparan sulfate required for the binding with the virus processing Enzyme Furin. Glycoconj J 2022; 39:315-325. [PMID: 34699015 PMCID: PMC8546381 DOI: 10.1007/s10719-021-10018-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Furin is one of the nine-member proprotein convertase family. Furin cleaves proteins with polybasic residues, which includes many viral glycoproteins such as SARS-Cov-2 spike protein. The cleavage is required for the activation of the proteins. Currently, the mechanisms that regulate Furin activity remain largely unknown. Here we demonstrated that Furin is a novel heparin/heparan sulfate binding protein by the use of biochemical and genetic assays. The KD is 9.78 nM based on the biolayer interferometry assay. Moreover, we found that sulfation degree, site-specific sulfation (N-sulfation and 3-O-sulfation), and iduronic acid are the major structural determinants for the binding. Furthermore, we found that heparin inhibits the enzymatic activity of Furin when pre-mixes heparin with either Furin or Furin substrate. We also found that the Furin binds with cells of different origin and the binding with the cells of lung origin is the strongest one. These data could advance our understanding of the working mechanism of Furin and will benefit the Furin based drug discovery such as inhibitors targeting the interaction between heparan sulfate and Furin for inhibition of viral infection.
Collapse
Affiliation(s)
- Jiaxin Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yuan Meng
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Shi-Yi Chen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Gaofeng Zhao
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, USA
| | - En-Xin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China.
| | - Hong Qiu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
9
|
Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells. J Virol 2022; 96:e0184621. [PMID: 35285687 PMCID: PMC9006885 DOI: 10.1128/jvi.01846-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is the mosquito-borne enveloped flavivirus that causes microcephaly in neonates. While real-time imaging plays a critical role in dissecting viral biology, no fluorescent, genetically engineered ZIKV for single-particle tracking is currently available.
Collapse
|
10
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Moura RRD, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop 2022; 55:e02632022. [PMID: 36197380 PMCID: PMC9536801 DOI: 10.1590/0037-8682-0263-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped, single-stranded RNA arbovirus belonging to the
genus Flavivirus. It was first isolated from a sentinel monkey
in Uganda in 1947. More recently, ZIKV has undergone rapid geographic expansion
and has been responsible for outbreaks in Southeast Asia, the Pacific Islands,
and America. In this review, we have highlighted the influence of viral genetic
variants on ZIKV pathogenesis. Two major ZIKV genotypes (African and Asian) have
been identified. The Asian genotype is subdivided into Southwest Asia, Pacific
Island, and American strains, and is responsible for most outbreaks.
Non-synonymous mutations in ZIKV proteins C, prM, E, NS1, NS2A, NS2B, NS3, and
NS4B were found to have a higher prevalence and association with virulent
strains of the Asian genotype. Consequently, the Asian genotype appears to have
acquired higher cellular permissiveness, tissue persistence, and viral tropism
in human neural cells. Therefore, mutations in specific coding regions of the
Asian genotype may enhance ZIKV infectivity. Considering that mutations in the
genomes of emerging viruses may lead to new virulent variants in humans, there
is a potential for the re-emergence of new ZIKV cases in the future.
Collapse
|
11
|
Catch me if you can - the crosstalk of ZIKV and the restriction factor Tetherin. J Virol 2021; 96:e0211721. [PMID: 34935441 DOI: 10.1128/jvi.02117-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that is mainly transmitted by Aedes mosquitos and normally causes mild symptoms. During the outbreak in the Americas in 2015, it was associated with more severe implications, like microcephaly in new-borns and the Gullain-Barré syndrome. The lack of specific vaccines and cures strengthen the need for a deeper understanding of the virus life cycle and virus-host interactions. The restriction factor tetherin (THN) is an interferon-inducible cellular protein with broad antiviral properties. It is known to inhibit the release of various enveloped viruses by tethering them to each other and to the cell membrane, thereby preventing their further spread. On the other hand, different viruses have developed various escape strategies against THN. Analysis of the crosstalk between ZIKV and THN revealed that in spite of a strong induction of THN mRNA expression in ZIKV-infected cells, this is not reflected by an elevated protein level of THN. Contrariwise, the THN protein level is decreased due to a reduced half-life. The increased degradation of THN in ZIKV infected cells involves the endo-lysosomal system, but does not depend on the early steps of autophagy. Enrichment of THN by depletion of the ESCRT-0 protein HRS diminishes ZIKV release and spread, which points out the capacity of THN to restrict ZIKV and explains the enhanced THN degradation in infected cells as an effective viral escape strategy. Importance Although tetherin expression is strongly induced by ZIKV infection there is a reduction in the amount of tetherin protein. This is due to an enhanced lysosomal degradation. However, if tetherin level is rescued release of ZIKV is impaired. This shows that tetherin is a restriction factor for ZIKV and the induction of an efficient degradation represents a viral escape strategy. To our knowledge this is the first study that describes and characterizes tetherin as an restriction factor for ZIKV life cycle.
Collapse
|
12
|
Yuan B, Wu Z, Ji W, Liu D, Guo X, Yang D, Fan A, Jia H, Ma M, Lin W. Discovery of cyclohexadepsipeptides with anti-Zika virus activities and biosynthesis of the nonproteinogenic building block (3S)-methyl-l-proline. J Biol Chem 2021; 297:100822. [PMID: 34029593 PMCID: PMC8233208 DOI: 10.1016/j.jbc.2021.100822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
The fungal cyclohexadepsipeptides destruxins (DTXs), isaridins (ISDs), and isariins (ISRs) are nonribosomal peptides whose structures include a 19-membered ring composed of five amino acid residues and one α- or β-hydroxy acid residue. These cyclohexadepsipeptides contain unusual nonproteinogenic amino acid-building blocks and possess a range of antiviral, antibacterial, and other activities. The biosynthetic gene clusters for ISDs and ISRs have not been identified, and the biosynthesis of the nonproteinogenic (3S)-methyl-l-proline residue, which is found in DTXs, ISDs, and many other natural products, lacks full characterization. In an ongoing effort to identify compounds that can inhibit the Zika virus (ZIKV), we examined the extract of marine-derived fungus Beauveria felina SX-6-22 and discovered 30 DTXs, ISDs, and ISRs (1-30) including seven new compounds (1-7). The anti-ZIKV assays showed that 9-12 and 16-18 possess inhibitory activities against ZIKV RNA replication and NS5 (nonstructural protein 5) production in ZIKV-infected A549 cells. We sequenced the genome of B. felina SX-6-22 and identified three biosynthetic gene clusters detx, isd and isr, which are responsible for the biosynthesis of DTXs, ISDs, and ISRs, respectively. Comparative analyses of the three gene clusters clarified the biosynthetic relationships among these cyclohexadepsipeptides. Finally, we characterized the entire biosynthesis of nonproteinogenic building block (3S)-methyl-l-proline. The Δ1-pyrroline-5-carboxylate reductases (P5CRs), also used in the biosynthesis of l-proline, were demonstrated to catalyze the final reduction step in (3S)-methyl-l-proline formation, suggesting potential cross talk between primary and secondary metabolisms. These results provide opportunities for biosynthetic pathway engineering to generate new anti-ZIKV cyclohexadepsipeptides.
Collapse
Affiliation(s)
- Bochuan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ziwei Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Ji
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Ocean Research, Peking University, Beijing, China.
| |
Collapse
|
13
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
14
|
Gist of Zika Virus pathogenesis. Virology 2021; 560:86-95. [PMID: 34051478 DOI: 10.1016/j.virol.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne neurotropic flavivirus. ZIKV infection may lead to microcephaly in developing fetus and Guillain-Barré Syndrome (GBS) like symptoms in adults. ZIKV was first reported in humans in 1952 from Uganda and the United Republic of Tanzania. Later, ZIKV outbreak was reported in 2007 from the Yap Island. ZIKV re-emerged as major outbreak in the year 2013 from French Polynesia followed by second outbreak in the year 2015 from Brazil. ZIKV crosses the blood-tissue barriers to enter immune-privileged organs. Clinical manifestations in ZIKV disease includes rash, fever, conjunctivitis, muscle and joint pain, headache, transverse myelitis, meningoencephalitis, Acute Disseminated Encephalomyelitis (ADEM). The understanding of the molecular mechanism of ZIKV pathogenesis is very important to develop potential diagnostic and therapeutic interventions for ZIKV infected patients.
Collapse
|
15
|
Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021; 10:448. [PMID: 33918691 PMCID: PMC8068860 DOI: 10.3390/pathogens10040448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.
Collapse
Affiliation(s)
- Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| |
Collapse
|
16
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
17
|
Lingel A, Lin H, Gavriel Y, Weaver E, Polepole P, Lopez V, Lei Y, Petro TM, Solomon B, Zhang C, Zhang L. Amyloid precursor protein is a restriction factor that protects against Zika virus infection in mammalian brains. J Biol Chem 2020; 295:17114-17127. [PMID: 33028637 PMCID: PMC7863900 DOI: 10.1074/jbc.ra120.015165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is a neurotropic flavivirus that causes several diseases including birth defects such as microcephaly. Intrinsic immunity is known to be a frontline defense against viruses through host anti-viral restriction factors. Limited knowledge is available on intrinsic immunity against ZIKV in brains. Amyloid precursor protein (APP) is predominantly expressed in brains and implicated in the pathogenesis of Alzheimer's diseases. We have found that ZIKV interacts with APP, and viral infection increases APP expression via enhancing protein stability. Moreover, we identified the viral peptide, HGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGGFGSLGL, which is capable of en-hancing APP expression. We observed that aging brain tissues with APP had protective effects on ZIKV infection by reducing the availability of the viruses. Also, knockdown of APP expression or blocking ZIKV-APP interactions enhanced ZIKV replication in human neural progenitor/stem cells. Finally, intracranial infection of ZIKV in APP-null neonatal mice resulted in higher mortality and viral yields. Taken together, these findings suggest that APP is a restriction factor that protects against ZIKV by serving as a decoy receptor, and plays a protective role in ZIKV-mediated brain injuries.
Collapse
Affiliation(s)
- Amy Lingel
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| | - Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Yuval Gavriel
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Pascal Polepole
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| | - Virginia Lopez
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, USA
| | - Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Beka Solomon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA.
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA.
| |
Collapse
|
18
|
Telehany SM, Humby MS, McGee TD, Riley SP, Jacobs A, Rizzo RC. Identification of Zika Virus Inhibitors Using Homology Modeling and Similarity-Based Screening to Target Glycoprotein E. Biochemistry 2020; 59:3709-3724. [PMID: 32876433 PMCID: PMC7598728 DOI: 10.1021/acs.biochem.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
World Health Organization has designated Zika virus (ZIKV)
as a dangerous, mosquito-borne pathogen that can cause severe developmental
defects. The primary goal of this work was identification of small
molecules as potential ZIKV inhibitors that target the viral envelope
glycoprotein (ZIKV E) involved in membrane fusion and viral entry.
A homology model of ZIKV E containing the small molecule β-octyl
glucoside (BOG) was constructed, on the basis of an analogous X-ray
structure from dengue virus, and >4 million commercially available
compounds were computationally screened using the program DOCK6. A
key feature of the screen involved the use of similarity-based scoring
to identify inhibitor candidates that make similar interaction energy
patterns (molecular footprints) as the BOG reference. Fifty-three
prioritized compounds underwent experimental testing using cytotoxicity,
cell viability, and tissue culture infectious dose 50% (TCID50) assays.
Encouragingly, relative to a known control (NITD008), six compounds
were active in both the cell viability assay and the TCID50 infectivity
assay, and they showed activity in a third caspase activity assay.
In particular, compounds 8 and 15 (tested
at 25 μM) and compound 43 (tested at 10 μM)
appeared to provide significant protection to infected cells, indicative
of anti-ZIKV activity. Overall, the study highlights how similarity-based
scoring can be leveraged to computationally identify potential ZIKV
E inhibitors that mimic a known reference (in this case BOG), and
the experimentally verified hits provide a strong starting point for
further refinement and optimization efforts.
Collapse
Affiliation(s)
- Stephen M Telehany
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - T Dwight McGee
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sean P Riley
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
19
|
Li M, Zhang D, Li C, Zheng Z, Fu M, Ni F, Liu Y, Du T, Wang H, Griffin GE, Zhang M, Hu Q. Characterization of Zika Virus Endocytic Pathways in Human Glioblastoma Cells. Front Microbiol 2020; 11:242. [PMID: 32210929 PMCID: PMC7069030 DOI: 10.3389/fmicb.2020.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) infections can cause microcephaly and neurological disorders. However, the early infection events of ZIKV in neural cells remain to be characterized. Here, by using a combination of pharmacological and molecular approaches and the human glioblastoma cell T98G as a model, we first observed that ZIKV infection was inhibited by chloroquine and NH4Cl, indicating a requirement of low intracellular pH. We further showed that dynamin is required as the ZIKV entry was affected by the specific inhibitor dynasore, small interfering RNA (siRNA) knockdown of dynamin, or by expressing the dominant-negative K44A mutant. Moreover, the ZIKV entry was significantly inhibited by chlorpromazine, pitstop2, or siRNA knockdown of clathrin heavy chain, indicating an involvement of clathrin-mediated endocytosis. In addition, genistein treatment, siRNA knockdown of caveolin-1, or overexpression of a dominant-negative caveolin mutant impacted the ZIKV entry, with ZIKV particles being observed to colocalize with caveolin-1, implying that caveola endocytosis can also be involved. Furthermore, we found that the endocytosis of ZIKV is dependent on membrane cholesterol, microtubules, and actin cytoskeleton. Importantly, ZIKV infection was inhibited by silencing of Rab5 and Rab7, while confocal microscopy showed that ZIKV particles localized in Rab5- and Rab7-postive endosomes. These results indicated that, after internalization, ZIKV likely moves to Rab5-positive early endosome and Rab7-positive late endosomes before delivering its RNA into the cytoplasm. Taken together, our study, for the first time, described the early infection events of ZIKV in human glioblastoma cell T98G.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tao Du
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - George E Griffin
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|