1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Nie G, Liu C, Tian Z. Comprehensive analysis of prognostic and immunological role of basement membrane-related genes in soft tissue sarcoma. Immun Inflamm Dis 2024; 12:e70037. [PMID: 39392257 PMCID: PMC11467964 DOI: 10.1002/iid3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Soft tissue sarcoma (STS) represents highly multifarious malignant tumors that often occur in adolescents and have a poor prognosis. The basement membrane, as an ancient cellular matrix, was recently proven to play a vital role in developing abundant tumors. The relationship between basement membrane-related genes and STS remains unknown. METHODS Consensus clustering was employed to identify subgroups related to differentially expressed basement membrane-related genes. Cox and least absolute shrinkage and selection operator regression analyses were utilized to construct this novel signature. Then, we established a nomogram and calibration curve, including the risk score and available clinical characteristics. Finally, we carried out functional enrichment analysis and immune microenvironment analysis to investigate enriched pathways and the tumor immune microenvironment related to the novel signature. RESULTS A prognostic predictive signature consisting of eight basement membrane-related genes was established. Kaplan-Meier survival curves demonstrated that the patients in the high-risk group had a poor prognosis. Independent analysis illustrated that this risk model could be an independent prognostic predictor. We validated the accuracy of our signature in the validation data set. In addition, gene set enrichment analysis and immune microenvironment analysis showed that patients with low-risk scores were enriched in some pathways associated with immunity. Finally, in vitro experiments showed significantly differential expression levels of these signature genes in STS cells and PSAT1 could promote the malignant behavior of STS. CONCLUSIONS The novel signature is a promising prognostic predictor for STS. The present study may improve the prognosis and enhance individualized treatment for STS in the future.
Collapse
Affiliation(s)
- Guang‐hua Nie
- Department of Foot and Ankle Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Cheng‐yi Liu
- Department of Foot and Ankle Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Zhao Tian
- Department of Hand Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Bergmann C, Chenguiti Fakhouri S, Trinh-Minh T, Filla T, Rius Rigau A, Ekici AB, Merlevede B, Hallenberger L, Zhu H, Dees C, Matei AE, Auth J, Györfi AH, Zhou X, Rauber S, Bozec A, Dickel N, Liang C, Kunz M, Schett G, Distler JHW. Mutual Amplification of GLI2/Hedgehog and Transcription Factor JUN/AP-1 Signaling in Fibroblasts in Systemic Sclerosis: Potential Implications for Combined Therapies. Arthritis Rheumatol 2024. [PMID: 39187464 DOI: 10.1002/art.42979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE Deregulation of the cJUN/AP-1 and hedgehog/GLI2 signaling pathways has been implicated in fibroblast activation in systemic sclerosis (SSc). However, the consequences of their concomitant up-regulation are unknown. Here, we tested the hypothesis that mutual amplification of both pathways might drive persistent fibroblast activation. METHODS Cultured fibroblasts and skin sections of patients with diffuse SSc and healthy volunteers were analyzed. cJUN/AP-1 signaling and hedgehog/GLI2 signaling were inhibited using knockdown and pharmacologic approaches. Hedgehog signaling was activated in mice by fibroblast-specific overexpression of constitutively active Smoothened. RESULTS cJUN and GLI2 are concomitantly up-regulated and colocalize in fibroblasts of patients with SSc compared to healthy controls. Activation of hedgehog/GLI2 signaling induces the expression of cJUN in vitro and in vivo, whereas inactivation of GLI2 inhibits cJUN expression. Likewise, inactivation of cJUN impairs the expression of GLI2. This mutual regulation occurs at the level of transcription with binding of cJUN and GLI2 to specific binding motifs. Interference with this mutual amplification of cJUN signaling and GLI2 signaling inhibits fibroblast activation and collagen release: Inhibition of cJUN/AP-1 signaling ameliorates hedgehog-induced fibroblast activation and skin fibrosis in SmoACT mice with a reduction of skin thickness of 103% (P = 0.0043) in the treatment group compared to the fibrotic control group. Moreover, combined pharmacologic inhibition of cJUN/AP-1 and hedgehog/GLI2 exerts additive antifibrotic effects in a model of TGFβ-driven experimental fibrosis (TBRACT mice). CONCLUSION The transcription factors cJUN and GLI2 reinforce each other's activity to promote fibroblast activation in SSc. Interruption of this crosstalk by combined inhibition of both pathways exerts additive antifibrotic effects at well-tolerated doses.
Collapse
Affiliation(s)
- Christina Bergmann
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Sara Chenguiti Fakhouri
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Tim Filla
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Aleix Rius Rigau
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander Universität Erlangen-Nürnberg, and Uniklinikum Erlangen, Erlangen, Germany
| | - Benita Merlevede
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Ludwig Hallenberger
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Xiangya Hospital, Central South University, Changsha, China
| | - Clara Dees
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Janina Auth
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Xiang Zhou
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Simon Rauber
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Nicholas Dickel
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chunguang Liang
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, and Fraunhofer Institute for Toxicology and Experimental Medicine and Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Georg Schett
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Hiller Research Center, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Jin Y, Pan Z, Zhou J, Wang K, Zhu P, Wang Y, Xu X, Zhang J, Hao C. Hedgehog signaling pathway regulates Th17 cell differentiation in asthma via IL-6/STAT3 signaling. Int Immunopharmacol 2024; 139:112771. [PMID: 39074418 DOI: 10.1016/j.intimp.2024.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Asthma is the most prevalent chronic inflammatory disease of the airways in children. The most prevalent phenotype of asthma is eosinophilic asthma, which is driven by a Th2 immune response and can be effectively managed by inhaled corticosteroid therapy. However, there are phenotypes of asthma with Th17 immune response that are insensitive to corticosteroid therapy and manifest a more severe phenotype. The treatment of this corticosteroid-insensitive asthma is currently immature and requires further attention. The objective of this study is to elucidate the regulation of the Hedgehog signaling pathway in Th17 cell differentiation in asthma. The study demonstrated that both Smo and Gli3, key components of the Hedgehog signaling pathway, were upregulated in Th17 polarization in vitro and in a Th17-dominant asthma model in vivo. Inhibiting Smo with a small molecule inhibitor or genetically knocking down Gli3 was found to suppress Th17 polarization. Smo was found to increase in Th1, Th2, Th17 and Treg polarization, while Gli3 specifically increased in Th17 polarization. ChIP-qPCR analyses indicated that Gli3 can directly interact with IL-6 in T cells, inducing STAT3 phosphorylation and promoting Th17 cell differentiation. Furthermore, the study demonstrated a correlation between elevated Gli3 expression and IL-17A and IL-6 expression in children with asthma. In conclusion, the study demonstrated that the Hedgehog signaling pathway plays an important role in the pathogenesis of asthma, as it regulates the differentiation of Th17 cells through the IL-6/STAT3 signaling. This may provide a potential therapeutic target for corticosteroid-insensitive asthma driven by Th17 cells.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China; Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhenzhen Pan
- Department of Respiration, Wuxi Children's Hospital, Wuxi, China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peijie Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yufeng Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xuena Xu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Hossain I, Fanfani V, Fischer J, Quackenbush J, Burkholz R. Biologically informed NeuralODEs for genome-wide regulatory dynamics. Genome Biol 2024; 25:127. [PMID: 38773638 PMCID: PMC11106922 DOI: 10.1186/s13059-024-03264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Gene regulatory network (GRN) models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such gene regulatory ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the underlying GRN governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impede either scalability, explainability, or both. RESULTS We developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that overcomes limitations of other methods by flexibly incorporating prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of GRN ODEs. We tested the accuracy of PHOENIX in a series of in silico experiments, benchmarking it against several currently used tools. We demonstrated PHOENIX's flexibility by modeling regulation of oscillating expression profiles obtained from synchronized yeast cells. We also assessed the scalability of PHOENIX by modeling genome-scale GRNs for breast cancer samples ordered in pseudotime and for B cells treated with Rituximab. CONCLUSIONS PHOENIX uses a combination of user-defined prior knowledge and functional forms from systems biology to encode biological "first principles" as soft constraints on the GRN allowing us to predict subsequent gene expression patterns in a biologically explainable manner.
Collapse
Affiliation(s)
| | - Viola Fanfani
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonas Fischer
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rebekka Burkholz
- CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| |
Collapse
|
6
|
Deng S, Gu H, Chen Z, Liu Y, Zhang Q, Chen D, Yi S. PTCH1 mutation as a potential predictive biomarker for immune checkpoint inhibitors in gastrointestinal cancer. Carcinogenesis 2024; 45:351-357. [PMID: 38310539 DOI: 10.1093/carcin/bgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become prominent therapies for gastrointestinal cancer (GC). However, it is urgent to screen patients who can benefit from ICIs. Protein patched homolog 1 (PTCH1) is a frequently altered gene in GC. We attempt to explore the association between PTCH1 mutation and immunotherapy efficacy. The Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 236) with GC (esophageal, gastric and colorectal cancers) patients receiving ICIs was used for discovery and the Peking University Cancer Hospital (PUCH) GC cohort (n = 92) was used for validation. Overall survival (OS) and tumor mutational burden (TMB) of the PTCH1 mutant-type (PTCH1-MUT) and PTCH1 wild-type (PTCH1-WT) groups were compared. Furthermore, GC data were collected from The Cancer Genome Atlas to assess the potential mechanisms. In the MSKCC cohort, PTCH1-MUT group showed significantly better OS (P = 0.017) and higher TMB. Multivariate analysis showed that PTCH1 mutation was associated with better OS. In the PUCH cohort, PTCH1-MUT group showed significantly longer OS (P = 0.036) and progression-free survival, and higher durable clinical benefit and TMB. Immune cell infiltration analysis revealed that PTCH1-MUT group had significantly higher distributions of CD8 T cells, CD4 T cells, NK cells, mast cells and M1 cells. The PTCH1-MUT group showed significantly higher expression of most immune-related genes. Gene set enrichment analysis showed that the PTCH1-MUT group had enriched INF-γ response, INF-α response, glycolysis and reactive oxygen species pathway gene sets. PTCH1 mutation may represent a potential biomarker for predicting ICIs response in GC. Nevertheless, prospective cohort studies should be performed to further validate our results.
Collapse
Affiliation(s)
- Shuangya Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haoran Gu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - ZongYao Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaqin Liu
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Shengen Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
7
|
Friedman CF, Manning-Geist BL, Zhou Q, Soumerai T, Holland A, Da Cruz Paula A, Green H, Ozsoy MA, Iasonos A, Hollmann T, Leitao MM, Mueller JJ, Makker V, Tew WP, O'Cearbhaill RE, Liu YL, Rubinstein MM, Troso-Sandoval T, Lichtman SM, Schram A, Kyi C, Grisham RN, Causa Andrieu P, Wherry EJ, Aghajanian C, Weigelt B, Hensley ML, Zamarin D. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat Med 2024; 30:1330-1338. [PMID: 38653864 PMCID: PMC11108776 DOI: 10.1038/s41591-024-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Programmed death-1 (PD-1) inhibitors are approved for therapy of gynecologic cancers with DNA mismatch repair deficiency (dMMR), although predictors of response remain elusive. We conducted a single-arm phase 2 study of nivolumab in 35 patients with dMMR uterine or ovarian cancers. Co-primary endpoints included objective response rate (ORR) and progression-free survival at 24 weeks (PFS24). Secondary endpoints included overall survival (OS), disease control rate (DCR), duration of response (DOR) and safety. Exploratory endpoints included biomarkers and molecular correlates of response. The ORR was 58.8% (97.5% confidence interval (CI): 40.7-100%), and the PFS24 rate was 64.7% (97.5% one-sided CI: 46.5-100%), meeting the pre-specified endpoints. The DCR was 73.5% (95% CI: 55.6-87.1%). At the median follow-up of 42.1 months (range, 8.9-59.8 months), median OS was not reached. One-year OS rate was 79% (95% CI: 60.9-89.4%). Thirty-two patients (91%) had a treatment-related adverse event (TRAE), including arthralgia (n = 10, 29%), fatigue (n = 10, 29%), pain (n = 10, 29%) and pruritis (n = 10, 29%); most were grade 1 or grade 2. Ten patients (29%) reported a grade 3 or grade 4 TRAE; no grade 5 events occurred. Exploratory analyses show that the presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with programmed death ligand-1 (PD-L1)+ cells were independently associated with PFS24. PFS24 was associated with presence of MEGF8 or SETD1B somatic mutations. This trial met its co-primary endpoints (ORR and PFS24) early, and our findings highlight several genetic and tumor microenvironment parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.ClinicalTrials.gov identifier: NCT03241745 .
Collapse
Affiliation(s)
- Claire F Friedman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Beryl L Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara Soumerai
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aliya Holland
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih Arda Ozsoy
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis Hollmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William P Tew
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ying L Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria M Rubinstein
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stuart M Lichtman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alison Schram
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chrisann Kyi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pamela Causa Andrieu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E John Wherry
- Institute of Immunology,University of Pennsylvania, Philadelphia, PA, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute,Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Liu BW, Cao JL, Wang Y, Zhao X, Zeng Q, Liu WP, Zhang JH, Fan YZ, Dou J. GANT61, an inhibitor of Gli1, inhibits the proliferation and migration of hepatocellular carcinoma cells. J Investig Med 2024; 72:181-192. [PMID: 37724700 DOI: 10.1177/10815589231204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Constitutive activation of Hedgehog (Hh) signaling has been implicated in many cancers including hepatocellular carcinoma (HCC). Among them, the terminal glioma-associated oncogene homolog 1 (Gli1) regulates the expression of critical genes in the Hh pathway. The current study aims to evaluate the anti-HCC effect of the Gli1 inhibitor, GANT61. In vitro analysis including cell counting kit-8 (CCK-8) assay, flow cytometry, and migration and invasion assay were adopted to evaluate the effect of GANT61 on HCC cell lines. In vivo, xenograft studies were also performed to verify the effect of GANT61 on HCC. By CCK-8 assay, we found that GANT61 could significantly reduce the growth of HCC cell lines Huh7 and hemophagocytic lymphohistiocytosis (HLE), and their IC50 concentrations were 4.481 and 6.734 μM, respectively. Flow cytometry shows that GANT61 induced cell cycle arrest in the G2/M phase and accelerated apoptosis of both HLE and Huh7 cells. While migration and invasion assay shows that GANT61 weakens cells' migration and invasion ability. Besides that, GANT61 inhibits the expression of Gli1, FoxM1, CyclinD1, and Bcl-2, upregulates the level of Bax protein, and also reverses the epithelial-mesenchymal transition program by downregulating the expression of Vimentin and N-Cadherin and upregulating the expression of epithelial E-Cadherin expression. Furthermore, GANT61 inhibits the growth of subcutaneous xenografts of Huh7 cells in nude mice. Overall, this study suggests that Gli1 is a potential target for therapy and GANT61 shows promising therapeutic potential for future treatment in HCC.
Collapse
Affiliation(s)
- Bao-Wang Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jing-Lin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wen-Peng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jun-Hong Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yi-Ze Fan
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
9
|
Di Fiore A, Bellardinelli S, Pirone L, Russo R, Angrisani A, Terriaca G, Bowen M, Bordin F, Besharat ZM, Canettieri G, Fabretti F, Di Gaetano S, Di Marcotullio L, Pedone E, Moretti M, De Smaele E. KCTD1 is a new modulator of the KCASH family of Hedgehog suppressors. Neoplasia 2023; 43:100926. [PMID: 37597490 PMCID: PMC10462845 DOI: 10.1016/j.neo.2023.100926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
The Sonic Hedgehog (Hh) signal transduction pathway plays a critical role in many developmental processes and, when deregulated, may contribute to several cancers, including basal cell carcinoma, medulloblastoma, colorectal, prostate, and pancreatic cancer. In recent years, several Hh inhibitors have been developed, mainly acting on the Smo receptor. However, drug resistance due to Smo mutations or non-canonical Hh pathway activation highlights the need to identify further mechanisms of Hh pathway modulation. Among these, deacetylation of the Hh transcription factor Gli1 by the histone deacetylase HDAC1 increases Hh activity. On the other end, the KCASH family of oncosuppressors binds HDAC1, leading to its ubiquitination and subsequent proteasomal degradation, leaving Gli1 acetylated and not active. It was recently demonstrated that the potassium channel containing protein KCTD15 is able to interact with KCASH2 protein and stabilize it, enhancing its effect on HDAC1 and Hh pathway. KCTD15 and KCTD1 proteins share a high homology and are clustered in a specific KCTD subfamily. We characterize here KCTD1 role on the Hh pathway. Therefore, we demonstrated KCTD1 interaction with KCASH1 and KCASH2 proteins, and its role in their stabilization by reducing their ubiquitination and proteasome-mediated degradation. Consequently, KCTD1 expression reduces HDAC1 protein levels and Hh/Gli1 activity, inhibiting Hh dependent cell proliferation in Hh tumour cells. Furthermore, analysis of expression data on publicly available databases indicates that KCTD1 expression is reduced in Hh dependent MB samples, compared to normal cerebella, suggesting that KCTD1 may represent a new putative target for therapeutic approaches against Hh-dependent tumour.
Collapse
Affiliation(s)
- A Di Fiore
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - S Bellardinelli
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - L Pirone
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - R Russo
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | - A Angrisani
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - G Terriaca
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - M Bowen
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - F Bordin
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Z M Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - G Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - F Fabretti
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - S Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - L Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - E Pedone
- Institute of Biostructures and Bioimaging, CNR, Naples 80131, Italy
| | - M Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Neuromed Institute, Pozzilli 86077, Italy
| | - E De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
10
|
Blitsman Y, Benafsha C, Yarza N, Zorea J, Goldbart R, Traitel T, Elkabets M, Kost J. Cargo-Dependent Targeted Cellular Uptake Using Quaternized Starch as a Carrier. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1988. [PMID: 37446506 DOI: 10.3390/nano13131988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nir Yarza
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
11
|
Beadle EP, Bennett NE, Rhoades JA. Bioinformatics Screen Reveals Gli-Mediated Hedgehog Signaling as an Associated Pathway to Poor Immune Infiltration of Dedifferentiated Liposarcoma. Cancers (Basel) 2023; 15:3360. [PMID: 37444470 PMCID: PMC10341348 DOI: 10.3390/cancers15133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately, targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular targeted therapies a promising future area of research for this family of malignancies. In this work, previously published data were analyzed to identify differential pathways that may contribute to the dedifferentiation process in liposarcoma. Interestingly, Gli-mediated Hedgehog signaling appeared to be enriched in dedifferentiated adipose progenitor cells and DDLPS tumors, and coincidentally Gli1 is often co-amplified with MDM2 and CDK4, given its genomic proximity along chromosome 12q13-12q15. However, we find that Gli2, but not Gli1, is differentially expressed between WDLPS and DDLPS, with a noticeable co-expression signature between Gli2 and genes involved in ECM remodeling. Additionally, Gli2 co-expression had a noticeable transcriptional signature that could suggest Gli-mediated Hedgehog signaling as an associated pathway contributing to poor immune infiltration in these tumors.
Collapse
Affiliation(s)
- Erik P. Beadle
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Natalie E. Bennett
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie A. Rhoades
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Care, Nashville, TN 37212, USA
| |
Collapse
|
12
|
Shamsoon K, Hiraki D, Yoshida K, Takabatake K, Takebe H, Yokozeki K, Horie N, Fujita N, Nasrun NE, Okui T, Nagatsuka H, Abiko Y, Hosoya A, Saito T, Shimo T. The Role of Hedgehog Signaling in the Melanoma Tumor Bone Microenvironment. Int J Mol Sci 2023; 24:ijms24108862. [PMID: 37240209 DOI: 10.3390/ijms24108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A crucial regulator in melanoma progression and treatment resistance is tumor microenvironments, and Hedgehog (Hh) signals activated in a tumor bone microenvironment are a potential new therapeutic target. The mechanism of bone destruction by melanomas involving Hh/Gli signaling in such a tumor microenvironment is unknown. Here, we analyzed surgically resected oral malignant melanoma specimens and observed that Sonic Hedgehog, Gli1, and Gli2 were highly expressed in tumor cells, vasculatures, and osteoclasts. We established a tumor bone destruction mouse model by inoculating B16 cells into the bone marrow space of the right tibial metaphysis of 5-week-old female C57BL mice. An intraperitoneal administration of GANT61 (40 mg/kg), a small-molecule inhibitor of Gli1 and Gli2, resulted in significant inhibition of cortical bone destruction, TRAP-positive osteoclasts within the cortical bone, and endomucin-positive tumor vessels. The gene set enrichment analysis suggested that genes involved in apoptosis, angiogenesis, and the PD-L1 expression pathway in cancer were significantly altered by the GANT61 treatment. A flow cytometry analysis revealed that PD-L1 expression was significantly decreased in cells in which late apoptosis was induced by the GANT61 treatment. These results suggest that molecular targeting of Gli1 and Gli2 may release immunosuppression of the tumor bone microenvironment through normalization of abnormal angiogenesis and bone remodeling in advanced melanoma with jaw bone invasion.
Collapse
Affiliation(s)
- Karnoon Shamsoon
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Daichi Hiraki
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Kenji Yokozeki
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Naohiro Horie
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Naomasa Fujita
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Nisrina Ekayani Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan
| |
Collapse
|
13
|
Li J, Qi Y, Li B, Liu Y, Yang K, Zhang Z, Zhu J, Du E. STIL/AURKA axis promotes cell proliferation by influencing primary cilia formation in bladder cancer. J Transl Med 2023; 21:281. [PMID: 37101292 PMCID: PMC10131372 DOI: 10.1186/s12967-023-04118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
14
|
Zhang G, Xia G, Luo J, Ye P, Wang H, Li S, Zheng D. Hedgehog signaling-related genomics signature for the accurate progress and prognosis prediction in gastric cancer. Funct Integr Genomics 2023; 23:69. [PMID: 36853390 DOI: 10.1007/s10142-023-00996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
The Hedgehog pathway is thought to be closely associated with the progression of GC; however, a specific link between the Hedgehog pathway on the prognosis and immune infiltration of gastric cancer is still lacking. This study collected Hedgehog pathway-related genes. The Hedgehog pathway-related pattern were identified by consensus cluster analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were used to identify the biological functions which were significantly altered between predefined Cluster1 and Cluster2 in consensus clustering. The risk model of gastric cancer based on Hedgehog signaling pathway was constructed by univariate and multivariate COX regression, and the nomogram was constructed. The results showed that there were significant differences in the expression of Hedgehog pathway-related genes between the two groups. In addition, the constructed risk model was significantly correlated with the clinical prognosis and immune cell infiltration level of patients with gastric cancer. The model effectively predicted the efficacy of chemotherapy in GC patients and the sensitivity of drug treatment between groups. We systematically revealed the mechanism of Hedgehog pathway in gastric cancer and selected biomarkers with biological significance from a new perspective, providing potential direction for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Jungang Luo
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Ping Ye
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Huangen Wang
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Shaodong Li
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China
| | - Difeng Zheng
- Department of Gastrointestinal Surgery, Shaoxing Central Hospital, Shaoxing, China.
| |
Collapse
|
15
|
Emerging Roles of Hedgehog Signaling in Cancer Immunity. Int J Mol Sci 2023; 24:ijms24021321. [PMID: 36674836 PMCID: PMC9864846 DOI: 10.3390/ijms24021321] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Hedgehog-GLI (HH) signaling plays an essential role in embryogenesis and tissue homeostasis. Aberrant activation of the pathway through mutations or other mechanisms is involved in the development and progression of numerous types of cancer, including basal cell carcinoma, medulloblastoma, melanoma, breast, prostate, hepatocellular and pancreatic carcinomas. Activation of HH signaling sustains proliferation, suppresses cell death signals, enhances invasion and metastasis, deregulates cellular metabolism and promotes angiogenesis and tumor inflammation. Targeted inhibition of the HH pathway has therefore emerged as an attractive therapeutic strategy for the treatment of a wide range of cancers. Currently, the Smoothened (SMO) receptor and the downstream GLI transcriptional factors have been investigated for the development of targeted drugs. Recent studies have revealed that the HH signaling is also involved in tumor immune evasion and poor responses to cancer immunotherapy. Here we focus on the effects of HH signaling on the major cellular components of the adaptive and innate immune systems, and we present recent discoveries elucidating how the immunosuppressive function of the HH pathway is engaged by cancer cells to prevent immune surveillance. In addition, we discuss the future prospect of therapeutic options combining the HH pathway and immune checkpoint inhibitors.
Collapse
|
16
|
Cheng B, Yu Q, Wang W. Intimate communications within the tumor microenvironment: stromal factors function as an orchestra. J Biomed Sci 2023; 30:1. [PMID: 36600243 DOI: 10.1186/s12929-022-00894-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023] Open
Abstract
Extensive studies of the tumor microenvironment (TME) in the last decade have reformed the view of cancer as a tumor cell-centric disease. The tumor microenvironment, especially termed the "seed and soil" theory, has emerged as the key determinant in cancer development and therapeutic resistance. The TME mainly consists of tumor cells, stromal cells such as fibroblasts, immune cells, and other noncellular components. Within the TME, intimate communications among these components largely determine the fate of the tumor. The pivotal roles of the stroma, especially cancer-associated fibroblasts (CAFs), the most common component within the TME, have been revealed in tumorigenesis, tumor progression, therapeutic response, and tumor immunity. A better understanding of the function of the TME sheds light on tumor therapy. In this review, we summarize the emerging understanding of stromal factors, especially CAFs, in cancer progression, drug resistance, and tumor immunity with an emphasis on their functions in epigenetic regulation. Moreover, the importance of epigenetic regulation in reshaping the TME and the basic biological principles underpinning the synergy between epigenetic therapy and immunotherapy will be further discussed.
Collapse
Affiliation(s)
- Bing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore, Singapore.
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Ji W, Niu X, Yu Y, Li Z, Gu L, Lu S. SMO mutation predicts the effect of immune checkpoint inhibitor: From NSCLC to multiple cancers. Front Immunol 2022; 13:955800. [DOI: 10.3389/fimmu.2022.955800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundThe emergence of immune checkpoint inhibitors (ICIs) is one of the most promising breakthroughs for the treatment of multiple cancer types, but responses vary. Growing evidence points to a link between developmental signaling pathway-related genes and antitumor immunity, but the association between the genomic alterations in these genes and the response to ICIs still needs to be elucidated.MethodsClinical data and sequencing data from published studies and our cohort were collected to analyze the association of the mutation status of SMO with the efficacy of ICI therapy in the non-small cell lung cancer (NSCLC) cohort and the pan-cancer cohort. Furthermore, the correlation between SMO mutation and immunotherapeutic biomarkers such as immune cell infiltration, immune-related genes, and underlying signaling pathways was analyzed. Three SMO mutant plasmids were transfected into cells to explore the SMO mutation status in the context of its expression and cell growth.ResultIn the NSCLC discovery cohort, the median progression-free survival in the SMO mutant (SMO_MUT) was longer than that in the wild type (SMO_WT) (23.0 vs. 3.8 months, adjusted p = 0.041). This finding was further confirmed in the NSCLC validation cohort (8.7 vs. 5.1 months, adjusted p = 0.013). In the pan-cancer cohort (n = 1,347), a significant overall survival advantage was observed in patients with SMO mutations [not reached (NR) vs. 18 months, adjusted p = 0.024]. In the subgroup analysis, the survival advantage of SMO_MUT against SMO_WT was prominent and consistent across genders, ages, treatment types, cancer types, and the tumor mutation burden (TMB) status (all pinteraction > 0.05). In an in vitro experiment, we found that both the mutant and wild-type plasmids can promote the expression of SMO, but the mutant plasmid had lower SMO mRNA and protein levels than the wild type. In CCK-8 experiments, we found that SMO_MUT plasmids can improve the growth of Calu-1 and PC-9 cells, but this capability varied between different mutations and cells. Upon further exploration, the SMO mutation status was found to be related to a higher TMB, more neoantigen load, more DNA damage repair (DDR) mutations, higher microsatellite instability (MSI) score, and higher CD8+ T-cell infiltration.ConclusionsThe SMO mutation status is an independent prognostic factor that can be used to predict better clinical outcomes of ICI treatment across multiple cancer types.
Collapse
|
18
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
19
|
Suo J, Gao R, Song J, Sa R, Xue F. Bone Marrow Mesenchymal Stem Cells (BMSC)-Derived miR-134 Inhibits Cervical Cancer Metastasis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The miRNA had been brand-new hot spot for study on pathogenesis of malignant tumor and seeking prevention strategy. The occurrence and development of tumor could be regulated by Gli1/Snail signaling pathway through Hedgehog channel. Our study intends to discuss the role of miRNA derived
from BMSC in HPV. The miR-134 derived from BMSC was analyzed through nano-particles and observed under fluorescence microscope along with analysis of miR-134 expression by RTPCR. The HPV rat model was established to analyze miR-134’s role in HPV metastasis in vivo. The level of
miR-134 in the staging of N2–N3 was lower than that in N0–N1 staging and lower in patients with metastatic cervical cancer tissue than patients without distant metastasis. Gli1 level could be targeted by miR-134. miR-134 inhibits HPV proliferation and migration by regulating the
Gli1/Snail channel through Hedgehog pathway. The inhibitory effect of miR-134 on HH signal pathway could be reversed by Gli1 overexpression. The rats’ EMT and HPV growth was significantly restrained by miR-134 through silencing of Gli1. In conclusion, the growth of HPV is restrained
by miR-134 derived from BMSC by regulating Gli1/Snail pathway through Hedgehog channel.
Collapse
Affiliation(s)
- Jing Suo
- General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Rong Gao
- The Affiliated Hospital of Mongolia Medical College, Hohhot, 010000, Inner Mongolia, China
| | - Jiandong Song
- The Affiliated Hospital of Mongolia Medical College, Hohhot, 010000, Inner Mongolia, China
| | - Rina Sa
- The Affiliated Hospital of Mongolia Medical College, Hohhot, 010000, Inner Mongolia, China
| | - Fengxia Xue
- General Hospital of Tianjin Medical University, Tianjin, 300052, China
| |
Collapse
|
20
|
Slominski AT, Brożyna AA, Kim TK, Elsayed MM, Janjetovic Z, Qayyum S, Slominski RM, Oak AS, Li C, Podgorska E, Li W, Jetten AM, Tuckey RC, Tang EK, Elmets C, Athar M. CYP11A1‑derived vitamin D hydroxyderivatives as candidates for therapy of basal and squamous cell carcinomas. Int J Oncol 2022; 61:96. [PMID: 35775377 PMCID: PMC9262157 DOI: 10.3892/ijo.2022.5386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Hydroxyderivatives of vitamin D3, including classical 1,25(OH)2D3 and novel CYP11A1‑derived hydroxyderivatives, exert their biological activity by acting as agonists on the vitamin D receptor (VDR) and inverse agonists on retinoid‑related orphan receptors (ROR)α and γ. The anticancer activities of CYP11A1‑derived hydroxyderivatives were tested using cell biology, tumor biology and molecular biology methods in human A431 and SCC13 squamous (SCC)‑ and murine ASZ001 basal (BCC)‑cell carcinomas, in comparison with classical 1,25(OH)2D3. Vitamin D3‑hydroxyderivatives with or without a C1α(OH) inhibited cell proliferation in a dose‑dependent manner. While all the compounds tested had similar effects on spheroid formation by A431 and SCC13 cells, those with a C1α(OH) group were more potent in inhibiting colony and spheroid formation in the BCC line. Potent anti‑tumorigenic activity against the BCC line was exerted by 1,25(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3, with smaller effects seen for 25(OH)D3, 20(OH)D3 and 20,23(OH)2D3. 1,25(OH)2D3, 1,20(OH)2D3 and 20(OH)D3 inhibited the expression of GLI1 and β‑catenin in ASZ001 cells. In A431 cells, these compounds also decreased the expression of GLI1 and stimulated involucrin expression. VDR, RORγ, RORα and CYP27B1 were detected in A431, SCC13 and ASZ001 lines, however, with different expression patterns. Immunohistochemistry performed on human skin with SCC and BCC showed nuclear expression of all three of these receptors, as well as megalin (transmembrane receptor for vitamin D‑binding protein), the level of which was dependent on the type of cancer and antigen tested in comparison with normal epidermis. Classical and CYP11A1‑derived vitamin D3‑derivatives exhibited anticancer‑activities on skin cancer cell lines and inhibited GLI1 and β‑catenin signaling in a manner that was dependent on the position of hydroxyl groups. The observed expression of VDR, RORγ, RORα and megalin in human SCC and BCC suggested that they might provide targets for endogenously produced or exogenously applied vitamin D hydroxyderivatives and provide excellent candidates for anti‑cancer therapy.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- VA Medical Center, Birmingham, AL 35233, USA
| | - Anna A. Brożyna
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń 87-100, Poland
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mahmoud M. Elsayed
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Allen S.W. Oak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Edith K.Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| |
Collapse
|
21
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Nigro O, Chini C, Marcon IGA, De Giorgi A, Bascialla L, Gallerani E, Giaquinto A, De Palma D, Lombardo M. Metastatic basal cell carcinoma to the bone: A case of bone metastasis in uncommon sites. Dermatol Reports 2022; 14:9267. [PMID: 36199894 PMCID: PMC9527680 DOI: 10.4081/dr.2022.9267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant tumor of the skin. Despite the indolent nature, metastatic BCC can occur, albeit rarely. Metastasis to the bone is very rare. From its approval, mBCC patients are treated with vismodegib, a selective hedgehog pathway inhibitor. Unfortunately, in recent period, it was demonstrated an emergence of drug resistance, due to Smoothened (SMO) mutation. To date, several groups are studying the effectiveness of immunotherapy in BCC. Clinical trials with Immune Checkpoint Inhibitors are ongoing. We report the rare case of a man with multiple bony metastasis, with a resistance to vismodegib, and we evaluated all manuscripts in literature reporting bone metastasis. Moreover, we review all the manuscripts in literature reporting bone metastasis, and we summarize the main therapeutic strategies, and the further perspectives.
Collapse
|
23
|
Gambini D, Passoni E, Nazzaro G, Beltramini G, Tomasello G, Ghidini M, Kuhn E, Garrone O. Basal Cell Carcinoma and Hedgehog Pathway Inhibitors: Focus on Immune Response. Front Med (Lausanne) 2022; 9:893063. [PMID: 35775005 PMCID: PMC9237470 DOI: 10.3389/fmed.2022.893063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common form of skin cancer, affecting more often elderly patients, but sometimes even younger ones, particularly if immunocompromised or genetically predisposed. Specifically, the Gorlin-Goltz syndrome, an autosomal dominant genodermatosis, also known as nevoid basal cell carcinoma syndrome, characterizes for multiple early onset BCCs. It is caused by a germline mutation in PTCH1, a tumor suppressor gene whose product is the key component of Hedgehog (Hh) signaling pathway, which also appears somatically mutated in more than 85% of sporadic BCCs. Hh pathway inhibitors vismodegib and sonidegib are currently indicated for BCC, in adults with advanced or recurred tumor following surgery or radiation therapy. The principal mechanism of action of these drugs is the inhibition of Smoothened (SMO), a transmembrane protein involved in Hh signal transduction, that plays a role in both cellular differentiation and cancer development. Some studies have reported effects of Hh pathway inhibitors at different levels of the immune response, from cytotoxic T cells to a modified local cytokines pattern. Given the specific relation between immune system and BCC development in some conditions, we will review BCC with focus on immune system changes mediated by Hh signaling pathway and induced by the inhibitors vismodegib and sonidegib in the treatment of BCC. Thus, we will give an overview of their effects on the local immune response, as well as a brief note on the supposed function of Hh pathway inhibition on the systemic one.
Collapse
Affiliation(s)
- Donatella Gambini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Donatella Gambini
| | - Emanuela Passoni
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giada Beltramini
- Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Tomasello
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Elisabetta Kuhn
| | - Ornella Garrone
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
24
|
Palla M, Scarpato L, Di Trolio R, Ascierto PA. Sonic hedgehog pathway for the treatment of inflammatory diseases: implications and opportunities for future research. J Immunother Cancer 2022; 10:jitc-2021-004397. [PMID: 35710292 PMCID: PMC9204405 DOI: 10.1136/jitc-2021-004397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is an essential pathway in the human body that plays an important role in embryogenesis and tissue homeostasis. Aberrant activation of this pathway has been linked to the development of different diseases, ranging from cancer to immune dysregulation and infections. Uncontrolled activation of the pathway through sporadic mutations or other mechanisms is associated with cancer development and progression in various malignancies, such as basal cell carcinoma, medulloblastoma, pancreatic cancer, breast cancer and small-cell lung carcinoma. Targeted inhibition of the pathway components has therefore emerged as an attractive and validated therapeutic strategy for the treatment of a wide range of cancers. Currently, two main components of the pathway, the smoothened receptor and the glioma-associated oncogene homolog transcriptional factors, have been investigated for the development of targeted drugs, leading to the marketing authorization of three smoothened receptor inhibitors for the treatment of basal cell carcinoma and acute myeloid leukemia. The Shh pathway also seems to be involved in regulating the immune response, possibly playing a role in immune system evasions by tumors, development of autoimmune diseases, such as rheumatoid arthritis and Crohn’s disease, airway inflammation, and diseases related to aberrant activation of T-helper 2 cellular response, such as allergy, atopic dermatitis, and asthma. Finally, the Shh pathway is involved in pathogen-mediated infection, including influenza-A and, more recently, SARS-CoV-2 viruses. Therefore, agents that inhibit the Shh signaling pathway might be used to treat pathogenic infections, shifting the therapeutic approach from strain-specific treatments to host-based strategies that target highly conserved host targets.
Collapse
Affiliation(s)
- Marco Palla
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Scarpato
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Rossella Di Trolio
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
25
|
Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma. Transl Oncol 2022; 19:101384. [PMID: 35255355 PMCID: PMC8898970 DOI: 10.1016/j.tranon.2022.101384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Soluble co-inhibitory immune checkpoint molecules are increased in basal cell carcinoma. Pre-therapy measurement of these checkpoints may have prognostic potential. Measuring soluble immune checkpoint molecules might be of value in patient selection. Immune checkpoint blockade may be of value in early disease. Co-blockade of PD-1 and TIM-3 may hold particular promise.
Although co-inhibitory immune checkpoint proteins are primarily involved in promoting cell-cell interactions that suppress adaptive immunity, especially tumor immunity, the soluble cell-free variants of these molecules are also detectable in the circulation of cancer patients where they retain immunosuppressive activity. Nevertheless, little is known about the systemic levels of these soluble co-inhibitory immune checkpoints in patients with various subtypes of basal cell carcinoma (BCC), which is the most invasive and treatment-resistant type of this most commonly-occurring malignancy. In the current study, we have measured the systemic concentrations of five prominent co-inhibitory immune checkpoints, namely CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3, as well as those of C-reactive protein (CRP) and vitamin D (VD), in a cohort of patients (n = 40) with BCC, relative to those of a group of control participants, using the combination of multiplex bead array, laser nephelometry and ELISA technologies, respectively. The median systemic concentrations of CRP and VD were comparable between the two groups; however, those of all five immune checkpoints were significantly elevated (P = 0.0184 - P = < 0.00001), with those of CTLA-4 and PD-1 being highly correlated (r = 0.87; P < 0.00001). This seemingly novel finding not only identifies the existence of significant systemic immunosuppression in BCC, but also underscores the therapeutic promise of immune checkpoint targeted therapy, as well as the potential of these proteins to serve as prognostic/predictive biomarkers in BCC.
Collapse
|
26
|
Conod A, Silvano M, Ruiz I Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022; 38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
How metastatic cells arise is unclear. Here, we search for the induction of recently characterized pro-metastatic states as a surrogate for the origin of metastasis. Since cell-death-inducing therapies can paradoxically promote metastasis, we ask if such treatments induce pro-metastatic states in human colon cancer cells. We find that post-near-death cells acquire pro-metastatic states (PAMEs) and form distant metastases in vivo. These PAME ("let's go" in Greek) cells exhibit a multifactorial cytokine storm as well as signs of enhanced endoplasmic reticulum (ER) stress and nuclear reprogramming, requiring CXCL8, INSL4, IL32, PERK-CHOP, and NANOG. PAMEs induce neighboring tumor cells to become PAME-induced migratory cells (PIMs): highly migratory cells that re-enact the storm and enhance PAME migration. Metastases are thus proposed to originate from the induction of pro-metastatic states through intrinsic and extrinsic cues in a pro-metastatic tumoral ecosystem, driven by an impending cell-death experience involving ER stress modulation, metastatic reprogramming, and paracrine recruitment via a cytokine storm.
Collapse
Affiliation(s)
- Arwen Conod
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ariel Ruiz I Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
27
|
Akhshi T, Shannon R, Trimble WS. The complex web of canonical and non-canonical Hedgehog signaling. Bioessays 2022; 44:e2100183. [PMID: 35001404 DOI: 10.1002/bies.202100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is a widely studied signaling pathway because of its critical roles during development and in cell homeostasis. Vertebrate canonical and non-canonical Hh signaling are typically assumed to be distinct and occur in different cellular compartments. While research has primarily focused on the canonical form of Hh signaling and its dependency on primary cilia - microtubule-based signaling hubs - an extensive list of crucial functions mediated by non-canonical Hh signaling has emerged. Moreover, amounting evidence indicates that canonical and non-canonical modes of Hh signaling are interlinked, and that they can overlap spatially, and in many cases interact functionally. Here, we discuss some of the many cellular effects of non-canonical signaling and discuss new evidence indicating inter-relationships with canonical signaling. We discuss how Smoothened (Smo), a key component of the Hh pathway, might coordinate such diverse downstream effects. Collectively, pursuit of questions such as those proposed here will aid in elucidating the full extent of Smo function in development and advance its use as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Tara Akhshi
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Shannon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - William S Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Cascio S, Chandler C, Zhang L, Sinno S, Gao B, Onkar S, Bruno TC, Vignali DAA, Mahdi H, Osmanbeyoglu HU, Vlad AM, Coffman LG, Buckanovich RJ. Cancer-associated MSC drive tumor immune exclusion and resistance to immunotherapy, which can be overcome by Hedgehog inhibition. SCIENCE ADVANCES 2021; 7:eabi5790. [PMID: 34767446 PMCID: PMC8589308 DOI: 10.1126/sciadv.abi5790] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/23/2021] [Indexed: 05/10/2023]
Abstract
We investigated the impact of cancer-associated mesenchymal stem cells (CA-MSCs) on ovarian tumor immunity. In patient samples, CA-MSC presence inversely correlates with the presence of intratumoral CD8+ T cells. Using an immune “hot” mouse ovarian cancer model, we found that CA-MSCs drive CD8+ T cell tumor immune exclusion and reduce response to anti–PD-L1 immune checkpoint inhibitor (ICI) via secretion of numerous chemokines (Ccl2, Cx3cl1, and Tgf-β1), which recruit immune-suppressive CD14+Ly6C+Cx3cr1+ monocytic cells and polarize macrophages to an immune suppressive Ccr2hiF4/80+Cx3cr1+CD206+ phenotype. Both monocytes and macrophages express high levels of transforming growth factor β–induced (Tgfbi) protein, which suppresses NK cell activity. Hedgehog inhibitor (HHi) therapy reversed CA-MSC effects, reducing myeloid cell presence and expression of Tgfbi, increasing intratumoral NK cell numbers, and restoring response to ICI therapy. Thus, CA-MSCs regulate antitumor immunity, and CA-MSC hedgehog signaling is an important target for cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chelsea Chandler
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linan Zhang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sarah Sinno
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bingsi Gao
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Haider Mahdi
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anda M. Vlad
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lan G. Coffman
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| |
Collapse
|
29
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
30
|
Melcher V, Kerl K. The Growing Relevance of Immunoregulation in Pediatric Brain Tumors. Cancers (Basel) 2021; 13:5601. [PMID: 34830753 PMCID: PMC8615622 DOI: 10.3390/cancers13225601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Pediatric brain tumors are genetically heterogeneous solid neoplasms. With a prevailing poor prognosis and widespread resistance to conventional multimodal therapy, these aggressive tumors are the leading cause of childhood cancer-related deaths worldwide. Advancement in molecular research revealed their unique genetic and epigenetic characteristics and paved the way for more defined prognostication and targeted therapeutic approaches. Furthermore, uncovering the intratumoral metrics on a single-cell level placed non-malignant cell populations such as innate immune cells into the context of tumor manifestation and progression. Targeting immune cells in pediatric brain tumors entails unique challenges but promising opportunities to improve outcome. Herein, we outline the current understanding of the role of the immune regulation in pediatric brain tumors.
Collapse
Affiliation(s)
- Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
31
|
Bufalieri F, Fruci D, Di Marcotullio L. ERAP1 as an emerging therapeutic target for medulloblastoma. Trends Cancer 2021; 8:4-8. [PMID: 34686465 DOI: 10.1016/j.trecan.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex class I (MHC-I) molecules, thereby affecting tumor immunogenicity. ERAP1 is altered in many tumors, including medulloblastoma (MB). We review the role of ERAP1 in MB development and the possibility of targeting this enzyme for MB treatment.
Collapse
Affiliation(s)
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, 00161 Rome, Italy.
| |
Collapse
|
32
|
Guo JN, Chen D, Deng SH, Huang JR, Song JX, Li XY, Cui BB, Liu YL. Identification and quantification of immune infiltration landscape on therapy and prognosis in left- and right-sided colon cancer. Cancer Immunol Immunother 2021; 71:1313-1330. [PMID: 34657172 PMCID: PMC9122887 DOI: 10.1007/s00262-021-03076-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023]
Abstract
Background The left-sided and right-sided colon cancer (LCCs and RCCs, respectively) have unique molecular features and clinical heterogeneity. This study aimed to identify the characteristics of immune cell infiltration (ICI) subtypes for evaluating prognosis and therapeutic benefits. Methods The independent gene datasets, corresponding somatic mutation and clinical information were collected from The Cancer Genome Atlas and Gene Expression Omnibus. The ICI contents were evaluated by “ESTIMATE” and “CIBERSORT.” We performed two computational algorithms to identify the ICI landscape related to prognosis and found the unique infiltration characteristics. Next, principal component analysis was conducted to construct ICI score based on three ICI patterns. We analyzed the correlation between ICI score and tumor mutation burden (TMB), and stratified patients into prognostic-related high- and low- ICI score groups (HSG and LSG, respectively). The role of ICI scores in the prediction of therapeutic benefits was investigated by "pRRophetic" and verified by Immunophenoscores (IPS) (TCIA database) and an independent immunotherapy cohort (IMvigor210). The key genes were preliminary screened by weighted gene co-expression network analysis based on ICI scores. And they were further identified at various levels, including single cell, protein and immunotherapy response. The predictive ability of ICI score for prognosis was also verified in IMvigor210 cohort. Results The ICI features with a better prognosis were marked by high plasma cells, dendritic cells and mast cells, low memory CD4+ T cells, M0 macrophages, M1 macrophages, as well as M2 macrophages. A high ICI score was characterized by an increased TMB and genomic instability related signaling pathways. The prognosis, sensitivities of targeted inhibitors and immunotherapy, IPS and expression of immune checkpoints were significantly different in HSG and LSG. The genes identified by ICI scores and various levels included CA2 and TSPAN1. Conclusion The identification of ICI subtypes and ICI scores will help gain insights into the heterogeneity in LCC and RCC, and identify patients probably benefiting from treatments. ICI scores and the key genes could serve as an effective biomarker to predict prognosis and the sensitivity of immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03076-2.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China
| | - Du Chen
- The First Department of Oncological Surgery, The First People's Hospital of Xiangtan City, Xiangtan, 411100, People's Republic of China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia-Rong Huang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jin-Xuan Song
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiang-Yu Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China.
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China.
| |
Collapse
|
33
|
Human telomerase reverse transcriptase (hTERT) synergistic with Sp1 upregulate Gli1 expression and increase gastric cancer invasion and metastasis. J Mol Histol 2021; 52:1165-1175. [PMID: 34601664 DOI: 10.1007/s10735-021-10019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/14/2021] [Indexed: 11/12/2022]
Abstract
Abnormal expression of human telomerase reverse transcriptase (hTERT) has been widely identified in tumors, but the relevant mechanism is not well known. This study aims to investigate the role and mechanism of hTERT in gastric cancer metastasis. Gastric cancer and adjacent non-tumor tissues were collected and the expression levels of hTERT and Gli1 were detected by immunohistochemistry. The results demonstrated that hTERT and Gli1 expression levels in gastric cancer tissue were significantly higher than adjacent non-tumor tissues. Western blot and quantitative real-time PCR were used to an identified expression of the related protein in BGC-823 and SGC-7901 cells. The interactions between hTERT and Sp1 were tested by co-immunoprecipitation experiments. Chromatin immunoprecipitation was performed to confirm that Sp1 and hTERT could bind to the Gli1 promoter. Chromatin reimmunoprecipitation assay further demonstrated that both hTERT and Sp1 bind to the Sp1 site of the Gli1 promoter. Moreover, the hTERT, Sp1, and Gli1 were upregulate was verified in human gastric cancer tissues. These results showed that the expression levels of hTERT in GC tissues were strongly closed to the depth of invasion, lymph node metastasis, TNM (tumor, node, metastasis) stage, and distant metastasis. By combining Sp1 and Gli1 promoter, hTERT upregulated Gli1 expression and promoted invasion and metastasis of GC cells. Overall, these data provide a new molecular mechanism of hTERT to promotes gastric cancer progression. Targeting the hTERT/Sp1/Gli1 axis may represent a new therapeutic strategy.
Collapse
|
34
|
Guo JN, Xia TY, Deng SH, Xue WN, Cui BB, Liu YL. Prognostic Immunity and Therapeutic Sensitivity Analyses Based on Differential Genomic Instability-Associated LncRNAs in Left- and Right-Sided Colon Adenocarcinoma. Front Mol Biosci 2021; 8:668888. [PMID: 34532341 PMCID: PMC8438528 DOI: 10.3389/fmolb.2021.668888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background: The purpose of our study was to develop a prognostic risk model based on differential genomic instability-associated (DGIA) long non-coding RNAs (lncRNAs) of left-sided and right-sided colon cancers (LCCs and RCCs); therefore, the prognostic key lncRNAs could be identified. Methods: We adopted two independent gene datasets, corresponding somatic mutation and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Identification of differential DGIA lncRNAs from LCCs and RCCs was conducted with the appliance of “Limma” analysis. Then, we screened out key lncRNAs based on univariate and multivariate Cox proportional hazard regression analysis. Meanwhile, DGIA lncRNAs related prognostic model (DRPM) was established. We employed the DRPM in the model group and internal verification group from TCGA for the purpose of risk grouping and accuracy verification of DRPM. We also verified the accuracy of key lncRNAs with GEO data. Finally, the differences of immune infiltration, functional pathways, and therapeutic sensitivities were analyzed within different risk groups. Results: A total of 123 DGIA lncRNAs were screened out by differential expression analysis. We obtained six DGIA lncRNAs by the construction of DRPM, including AC004009.1, AP003555.2, BOLA3-AS1, NKILA, LINC00543, and UCA1. After the risk grouping by these DGIA lncRNAs, we found the prognosis of the high-risk group (HRG) was significantly worse than that in the low-risk group (LRG) (all p < 0.05). In all TCGA samples and model group, the expression of CD8+ T cells in HRG was lower than that in LRG (all p < 0.05). The functional analysis indicated that there was significant upregulation with regard to pathways related to both genetic instability and immunity in LRG, including cytosolic DNA sensing pathway, response to double-strand RNA, RIG-Ⅰ like receptor signaling pathway, and Toll-like receptor signaling pathway. Finally, we analyzed the difference and significance of key DGIA lncRNAs and risk groups in multiple therapeutic sensitivities. Conclusion: Through the analysis of the DGIA lncRNAs between LCCs and RCCs, we identified six key DGIA lncRNAs. They can not only predict the prognostic risk of patients but also serve as biomarkers for evaluating the differences of genetic instability, immune infiltration, and therapeutic sensitivity.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Yi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Nan Xue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
35
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
36
|
Moujaess E, Merhy R, Kattan J, Sarkis AS, Tomb R. Immune checkpoint inhibitors for advanced or metastatic basal cell carcinoma: how much evidence do we need? Immunotherapy 2021; 13:1293-1304. [PMID: 34463126 DOI: 10.2217/imt-2021-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basal cell carcinoma (BCC) is one of the most frequent and most curable tumors at its early stages. BCC rarely metastasizes and its treatment in this setting is still challenging. Hedgehog inhibitors showed an activity in advanced or metastatic disease. However, there is an unmet need for new agents. Immune checkpoint inhibitors have been assessed in melanoma and other cutaneous tumors, and very recently an anti-PD1 was approved for advanced BCC. In this paper, available data are reviewed on experimental and preclinical studies evaluating immunotherapy in BCC, as well as on the clinical evidence supporting the efficacy and safety of immune checkpoint inhibitors for advanced or metastatic BCC based on case reports, case series and clinical trials.
Collapse
Affiliation(s)
- Elissar Moujaess
- Department of Hematology & Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, 1100, Lebanon
| | - Reine Merhy
- Department of Dermatology & Venerology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, 1100, Lebanon
| | - Joseph Kattan
- Department of Hematology & Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, 1100, Lebanon
| | - Anne-Sophie Sarkis
- Department of Dermatology & Venerology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, 1100, Lebanon
| | - Roland Tomb
- Department of Dermatology & Venerology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, 1100, Lebanon
| |
Collapse
|
37
|
Peer E, Aichberger SK, Vilotic F, Gruber W, Parigger T, Grund-Gröschke S, Elmer DP, Rathje F, Ramspacher A, Zaja M, Michel S, Hamm S, Aberger F. Casein Kinase 1D Encodes a Novel Drug Target in Hedgehog-GLI-Driven Cancers and Tumor-Initiating Cells Resistant to SMO Inhibition. Cancers (Basel) 2021; 13:cancers13164227. [PMID: 34439381 PMCID: PMC8394935 DOI: 10.3390/cancers13164227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Uncontrolled activation of hedgehog (HH)—GLI signaling contributes to the development of several human malignancies. Targeted inhibition of the HH—GLI signaling cascade with small-molecule inhibitors can reduce cancer growth, but patient relapse is very common due to the development of drug resistance. Therefore, a high unmet medical need exists for new drug targets and inhibitors to achieve efficient and durable responses. In the current study, we identified CSNK1D as a novel drug target in the HH—GLI signaling pathway. Genetic and pharmacological inhibition of CSNK1D activity leads to suppression of oncogenic HH—GLI signaling, even in cancer cells in which already approved HH inhibitors are no longer effective due to resistance mechanisms. Inhibition of CSNK1D function reduces the malignant properties of so-called tumor-initiating cells, thereby limiting cancer growth and presumably metastasis. The results of this study form the basis for the development of efficient CSNK1D inhibitors for the therapy of HH—GLI-associated cancers. Abstract (1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH—GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH—GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Sophie Karoline Aichberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Filip Vilotic
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Wolfgang Gruber
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Thomas Parigger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, Cancer Cluster Salzburg, IIIrd Medical Department, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Sandra Grund-Gröschke
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Dominik Patrick Elmer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Florian Rathje
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Andrea Ramspacher
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mirko Zaja
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Susanne Michel
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Svetlana Hamm
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Fritz Aberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Correspondence: ; Tel.: +43-662-8044-5792
| |
Collapse
|
38
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
39
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Wang Y, Chen H, Jiao X, Wu L, Yang Y, Zhang J, Wu L, Liu C, Zhuo N, Li S, Gong J, Li J, Zhang X, Wang X, Peng Z, Qi C, Wang Z, Li J, Li Y, Lu Z, Zhang H, Shen L. PTCH1 mutation promotes antitumor immunity and the response to immune checkpoint inhibitors in colorectal cancer patients. Cancer Immunol Immunother 2021; 71:111-120. [PMID: 34028566 PMCID: PMC8738454 DOI: 10.1007/s00262-021-02966-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has emerged as an effective therapeutic strategy for various cancers, including colorectal cancer (CRC), but only a subset of MSI-H patients can benefit from such therapy. Patched1 (PTCH1) is a frequently altered gene in CRCs and its mutations contribute to unregulated Hedgehog (Hh) signaling. In the study, we evaluated the association of PTCH1 mutations with CRC immunity based on our single-center cohort and multiple cancer genomic datasets. Among 21 enrolled patients, six (28.6%) harbored a PTCH1 mutation based on WES analyses. In CRC patients, the PTCH1 mutation subgroup experienced a higher durable clinical benefit rate than the PTCH1 wild-type subgroup (100% vs. 40%, P = 0.017). In addition, patients with the PTCH1 mutation experienced greater progression-free survival (PFS, P = 0.037; HR, 0.208) and overall survival (OS, P = 0.045; HR, 0.185). A validation cohort from the MSKCC also confirmed the correlation between PTCH1 mutation and better prognosis (P = 0.022; HR, 0.290). Mechanically, diverse antitumor immune signatures were more highly enriched in PTCH1-mutated tumors than in PTCH1 wild-type tumors. Furthermore, PTCH1-mutated tumors had higher proportions of CD8 + T cells, activated NK cells, and M1 type macrophage infiltration, as well as elevated gene signatures of several steps in the cancer-immunity cycle. Notably, the PTCH1 mutation was correlated with tumor mutational burden (TMB), loss of heterozygosity score, and copy number variation burden. Our results show that the mutation of PTCH1 is a potential biomarker for predicting the response of CRC patients to immunotherapy.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Huan Chen
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Chang Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Na Zhuo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jie Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
| | - Henghui Zhang
- Biomedical innovation center, Beijing Shijitan Hospital, and School of Oncology, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
41
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
42
|
Geyer N, Gerling M. Hedgehog Signaling in Colorectal Cancer: All in the Stroma? Int J Mol Sci 2021; 22:ijms22031025. [PMID: 33498528 PMCID: PMC7864206 DOI: 10.3390/ijms22031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hedgehog (Hh) signaling regulates intestinal development and homeostasis. The role of Hh signaling in cancer has been studied for many years; however, its role in colorectal cancer (CRC) remains controversial. It has become increasingly clear that the “canonical” Hh pathway, in which ligand binding to the receptor PTCH1 initiates a signaling cascade that culminates in the activation of the GLI transcription factors, is mainly organized in a paracrine manner, both in the healthy colon and in CRC. Such canonical Hh signals largely act as tumor suppressors. In addition, stromal Hh signaling has complex immunomodulatory effects in the intestine with a potential impact on carcinogenesis. In contrast, non-canonical Hh activation may have tumor-promoting roles in a subset of CRC tumor cells. In this review, we attempt to summarize the current knowledge of the Hh pathway in CRC, with a focus on the tumor-suppressive role of canonical Hh signaling in the stroma. Despite discouraging results from clinical trials using Hh inhibitors in CRC and other solid cancers, we argue that a more granular understanding of Hh signaling might allow the exploitation of this key morphogenic pathway for cancer therapy in the future.
Collapse
Affiliation(s)
- Natalie Geyer
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden;
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden;
- Theme Cancer, Oncology, Karolinska University Hospital, 17176 Solna, Sweden
- Correspondence:
| |
Collapse
|
43
|
Shen JF, Ge JF, Zheng SY, Jiang D. Integrative analysis of differential circular RNA and long non-coding RNA profiles and associated competing endogenous RNA networks in esophageal squamous cell carcinoma. Funct Integr Genomics 2021; 21:125-138. [PMID: 33415515 DOI: 10.1007/s10142-020-00765-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 01/22/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in the tumorigenesis of esophageal squamous cell carcinoma (ESCC). Nevertheless, the mechanism and regulatory network associated with this process remain largely unknown. In this study, we performed a comprehensive analysis of the expression of mRNAs, lncRNAs, and circRNAs by RNA-seq. A total of 3265 mRNAs, 1084 lncRNAs, and 38 circRNAs were found to be differentially expressed. Among these, 269 mRNAs were found to encode transcription factors (TFs). Functional enrichment analysis indicated that the dysregulated TFs are associated with the Hedgehog, Jak-STAT, TGF-beta, and MAPK signaling pathways. Furthermore, we constructed co-expression networks to screen the core lncRNAs and circRNAs involved in the regulation of transcription factors in these four pathways. Finally, we constructed a competing endogenous RNA (ceRNA) network of ESCC based on the abovementioned pathways. Our findings provide important insight into the role of lncRNAs and circRNAs in ESCC; the differentially expressed lncRNAs and circRNAs may represent potential targets for ESCC diagnosis and therapy.
Collapse
Affiliation(s)
- Jiang-Feng Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, China
| | - Jin-Feng Ge
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi-Ying Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Dong Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
45
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
46
|
Paolino G, Mercuri SR, Bearzi P, Mattozzi C. Systemic immunobiological, immunosuppressant, and oncologic agents for the treatment of dermatologic diseases during the SARS-CoV-2 (COVID-19) pandemic emergency: A quick review for a quick consultation. Dermatol Ther 2020; 33:e13537. [PMID: 32385891 PMCID: PMC7261970 DOI: 10.1111/dth.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
The precision medicine era has helped to better manage patients with immunological and oncological diseases, improving the quality of life of this class of patients. Regarding the management of these patients and positivity to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), currently, limited data are available and information is evolving. In this quick review, we have analyzed the mechanisms of action and related infective risk of drugs used for the treatment of immune‐mediated and oncologic skin conditions during the daily clinical practice. In general, immunosuppressant and antineoplastic agents for dermatologic treatments do not require suspension and do not require special measures, if not those commonly observed. In the case of a coronavirus disease (COVID‐19) patient with complications (such as pneumonia, respiratory failure), treatment suspension should always be considered after taking into account the general condition of the patient, the risk‐benefit ratio, and the pathophysiology of COVID‐19 infection. The COVID‐19 emergency pandemic does not imply undertreatment of existing skin conditions, which together with the SARS‐CoV‐2 infection may jeopardize the patient's life.
Collapse
Affiliation(s)
- Giovanni Paolino
- Dermatology Clinic, Sapienza University of Rome, Rome, Italy.,Unit of Dermatology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Pietro Bearzi
- Unit of Dermatology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Carlo Mattozzi
- Dermatology Clinic, Sapienza University of Rome, Rome, Italy
| |
Collapse
|