1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Hu X, Chen Y, Ying H, He C, Ren Y, Tian Y, Tan Y. Metabolic-associated fatty liver disease (MAFLD) promotes the progression of hepatocellular carcinoma by enhancing KIF20A expression. Int Immunopharmacol 2025; 154:114589. [PMID: 40168801 DOI: 10.1016/j.intimp.2025.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Compared to other HCC, those related to MAFLD exhibit distinct prognostic differences. This article aims to elucidate the impact of MAFLD on HCC prognosis through the lens of KIF20A, thereby providing a theoretical foundation for targeted therapies in MAFLD-related HCC. METHODS We employed the Weighted gene co-expression network analysis (WGCNA) method alongside the Mime package to identify key genes associated with MAFLD-related HCC. Subsequently, we utilized OCLR and CytoTRACE algorithms to evaluate the relationship between these genes and HCC stemness. The R package was employed to conduct immunological analyses on both mRNA sequencing and single-cell data. We validated the effects of core genes on HCC through experimental approaches, including cell culture, Transwell assays, Western Blot, and proliferation assays. Finally, we predicted potential therapeutic drugs using the OncoPredict software package. RESULTS WGCNA identified the cyan module associated with MAFLD in GSE135251 and the blue module linked to HCC in TCGA. Further analysis identified KIF20A as the core gene in MAFLD-related HCC. Utilizing the OCLR and CytoTRACE algorithms, KIF20A was found to correlate with mRNA stemness index (mRNAsi). Analysis of public databases revealed that KIF20A promotes immune tolerance through the SPP1-CD44 pathway and drives HCC progression via the G2M checkpoint. Experimental results demonstrated that lipotoxic damage in HCC cells and small extracellular vesicles (sEVs) derived from these cells upregulate KIF20A, thereby accelerating HCC progression. Finally, OncoPredict and AutoDock were employed to predict drugs targeting KIF20A. CONCLUSION MAFLD-related HCC can elevate KIF20A levels and promote tumor proliferation and migration.
Collapse
Affiliation(s)
- Xinsong Hu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Hao Ying
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cong He
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangyang Ren
- Clinical Laboratory, Xinyi People's Hospital, Xuzhou, Jiangsu, China.
| | - Yiqing Tian
- Clinical Laboratory, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Soonthonsrima T, Putra ID, Phookphan P, Ei ZZ, Yokoya M, Chanvorachote P. A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway. Chem Res Toxicol 2025; 38:415-432. [PMID: 40000408 PMCID: PMC11921031 DOI: 10.1021/acs.chemrestox.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The ErbB2 signaling pathway plays a crucial role in cancer stem cells (CSCs), governing cancer aggressiveness and proliferation. Targeting ErbB2 holds promise for advancing cancer therapeutics. Resveratrol (RES) and its derivatives have been noted for their ability to target proteins that are involved in CSCs. In this investigation, we synthesize novel derivatives of RES, aim at elucidating structure-activity relationships (SARs) that could enhance the anticancer properties of the RES analogues, and explore their capacities to suppress CSCs. YI-12, an O-benzyl-substituted 1,3-diphenylpropane, demonstrated the most potent anticancer activity against lung cancer cells (A549 and H460), showing high potential inhibiting cancer colony formation. Interestingly, not only does YI-12 suppress CSCs-related proteins, indicated by decreased expression of CSC-enhancing molecules such as CD133-, OCT4-, and CSC-related protein β-catenin, but it also induces apoptosis in CSC-rich spheroids after treatment. Additionally, molecular docking and bioinformatic analysis suggest ErbB2 as a potential target of the compound with a strong binding affinity (-6.709 kcal/mol) compared to the reference compound TAK-285 (-5.563 kcal/mol). YI-12's capability to bind and inhibit ErbB2 leads to the suppression of PI3K and AKT. In conclusion, we highlight the novel resveratrol derivative YI-12 for its ability to inhibit CSCs through the ErbB2 signaling pathway. This compound represents a promising structure that should be further developed for potential use in anticancer therapy.
Collapse
Affiliation(s)
- Tanapon Soonthonsrima
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ismail Dwi Putra
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preeyaphan Phookphan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Cortes-Dericks L, Galetta D. An Overview of Cellular and Molecular Determinants Regulating Chemoresistance in Pleural Mesothelioma. Cancers (Basel) 2025; 17:979. [PMID: 40149313 PMCID: PMC11940806 DOI: 10.3390/cancers17060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Malignant pleural mesothelioma (PM) is a highly aggressive disease of the lung pleura associated with poor prognosis. Despite advances in improving the clinical management of this malignancy, there is no effective chemotherapy for refractory or relapsing PM. The acquisition of resistance to standard and targeted therapy in this disease is a foremost concern; therefore, a deeper understanding of the complex factors surrounding the emergence of drug resistance is deemed necessary. In this review, we will present broad insights into various cellular and molecular concepts, accounting for the recalcitrance of PM to chemotherapy, including signaling networks regulating drug tolerance, drug resistance-associated proteins, genes, and miRNAs, as well as the critical role of cancer stem cells. Identification of the biological determinants and their associated mechanisms may provide a framework for the development of appropriate treatment.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, San Giovanni Bosco Hospital, 10154 Turin, Italy;
| |
Collapse
|
5
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
6
|
Wang YW, Chen X. Editorial: Molecular mechanisms and therapeutic targets of cancer metastasis and therapy resistance. Front Oncol 2025; 15:1571403. [PMID: 40110198 PMCID: PMC11919681 DOI: 10.3389/fonc.2025.1571403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xu Chen
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025; 39:237-260. [PMID: 39826071 PMCID: PMC11906529 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
8
|
Zhan Y, Sun D, Gao J, Gao Q, Lv Y, Du T, Dong Y, Wang Y, Zhan H, Li J, Li P, Du L, Wang C. Single-cell transcriptomics reveals intratumor heterogeneity and the potential roles of cancer stem cells and myCAFs in colorectal cancer liver metastasis and recurrence. Cancer Lett 2025; 612:217452. [PMID: 39805388 DOI: 10.1016/j.canlet.2025.217452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Metastasis and recurrence are the primary obstacles to long-term survival in colorectal cancer (CRC) patients. In this study, we employed single-cell RNA sequencing (scRNA-seq) to comprehensively delineate the transcriptomic landscape of primary and liver metastatic CRCs, and revealed novel cellular crosstalk between cancer cell subpopulation and myofibroblastic CAFs (myCAFs) at single-cell resolution. We identified a cancer cell subpopulation termed stem/transient amplifying-like (stem/TA-like) cells, which expressed genes associated with stem cell-like characteristics and metastatic potential. MyCAFs in their microenvironment showed the potential to remodel the extracellular matrix (ECM), regulate angiogenesis, and support a pro-metastatic microenvironment through paracrine signaling involving FN1, BGN, and other ECM components. Notably, we found that they may communicate through the ligand-receptor pairs FN1-CD44 and GDF15-TGFBR2, which may be linked to the liver metastatic process. Additionally, our findings suggest that both stem/TA-like cells and myCAFs could be involved in CRC recurrence following chemotherapy. A unique gene signature generated using the gene expression characteristics of stem/TA-like cells and myCAFs (SM signature) can be used to assess recurrence risk in CRC patients. Collectively, these findings highlight the intratumor heterogeneity and the potential roles of cancer stem cells and myCAFs in CRC liver metastasis and recurrence, providing new targets and insights for the prognostic assessment of CRC patients and the improved selection of effective treatment options.
Collapse
Affiliation(s)
- Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Qinglun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, Shandong, China
| | - Yanfeng Lv
- Department of Colorectal & Anal Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Tiantian Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, 250012, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China.
| |
Collapse
|
9
|
Sugiki S, Horie T, Kunii K, Sakamoto T, Nakamura Y, Chikazawa I, Morita N, Ishigaki Y, Miyazawa K. Integrated Bioinformatic Analyses Reveal Thioredoxin as a Putative Marker of Cancer Stem Cells and Prognosis in Prostate Cancer. Cancer Inform 2025; 24:11769351251319872. [PMID: 40008390 PMCID: PMC11851766 DOI: 10.1177/11769351251319872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives Prostate cancer stem cells (CSCs) play an important role in cancer cell survival, proliferation, metastasis, and recurrence; thus, removing CSCs is important for complete cancer removal. However, the mechanisms underlying CSC functions remain largely unknown, making it difficult to develop new anticancer drugs targeting CSCs. Herein, we aimed to identify novel factors that regulate stemness and predict prognosis. Methods We reanalyzed 2 single-cell RNA sequencing data of prostate cancer (PCa) tissues using Seurat. We used gene set enrichment analysis (GSEA) to estimate CSCs and identified common upregulated genes in CSCs between these datasets. To investigate whether its expression levels change over CSC differentiation, we performed a trajectory analysis using monocle 3. In addition, GSEA helped us understand how the identified genes regulate stemness. Finally, to assess their clinical significance, we used the Cancer Genome Atlas database to evaluate their impact on prognosis. Results The expression of thioredoxin (TXN), a redox enzyme, was approximately 1.2 times higher in prostate CSCs than in PCa cells (P < 1 × 10-10), and TXN expression decreased over CSC differentiation. In addition, GSEA suggested that intracellular signaling pathways, including MYC, may be involved in stemness regulation by TXN. Furthermore, TXN expression correlated with poor prognosis (P < .05) in PCa patients with high stemness. Conclusions Despite the limited sample size in our study and the need for further in vitro and in vivo experiments to demonstrate whether TXN functionally regulates prostate CSCs, our findings suggest that TXN may serve as a novel therapeutic target against CSCs. Moreover, TXN expression in CSCs could be a useful marker for predicting the prognosis of PCa patients.
Collapse
Affiliation(s)
- Shigeru Sugiki
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Ippei Chikazawa
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Nobuyo Morita
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| |
Collapse
|
10
|
Que Z, Qi D, Yang Y, Yao W, Liu J, Li Y, Yu Y, Wang L, Li F, Zhang G, Wu E, Tian J. Regulating chemoresistance and cancer stemness: the CDH17-YAP pathway in distinct cellular states of lung cancer CTC clusters. Cell Mol Biol Lett 2025; 30:23. [PMID: 39994505 PMCID: PMC11849222 DOI: 10.1186/s11658-025-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Drug resistance in metastatic lung cancer significantly contributes to patient mortality. This study explores the role of circulating tumor cells (CTCs), the precursors to metastasis, in driving this resistance. We aim to delineate the unique biological traits of CTC clusters in lung cancer and elucidate the mechanisms underlying their resistance to chemotherapy. METHODS We used an ultralow adsorption plate to establish a CTC suspension culture system. Comparisons between adherent and suspension cultures of CTC-TJH-01 cells were made via Cell Counting Kit-8 (CCK-8), western blot, immunofluorescence, and flow cytometry assays to evaluate cell proliferation, drug resistance, and cancer stemness. The tumorigenicity, tumor growth rate, and drug resistance of the CTC clusters were assessed in nude mice. Transcriptomic and proteomic analyses were subsequently conducted to identify differentially expressed genes and proteins in CTC-TJH-01 cells cultured under adherent and suspension conditions. CDH17 gene knockdown in CTC-TJH-01 cells was achieved through RNA interference, and hematoxylin and eosin (HE) staining, immunohistochemistry, and immunofluorescence assays were used to examine the pathological status of these cells. RESULTS CTC-TJH-01 cells in suspension formed cell clusters and exhibited decreased proliferation, tumorigenicity, and tumor growth, but increased cancer stemness and drug resistance. CDH17 protein expression was significantly upregulated in these clusters, activating the YAP/TAZ pathway. Knocking down CDH17 not only inactivated this pathway but also significantly increased cell proliferation activity and cisplatin sensitivity in CTC-TJH-01 clusters. Additionally, the tumor growth rate was correlated with cisplatin sensitivity. CDH17 knockdown notably promoted the growth of CTC-TJH-01 xenografts and enhanced their sensitivity to cisplatin, although no significant difference was observed compared with those in the control group. CONCLUSIONS The results indicate that lung CTC clusters with stem cell-like properties exhibit chemoresistance, which is linked to an activated CDH17-YAP pathway. Additionally, the effectiveness of cisplatin is primarily observed in tumors with relatively high growth rates, highlighting the connection between tumor growth and sensitivity to chemotherapy.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Mice, Nude
- Cell Line, Tumor
- Cadherins/metabolism
- Cadherins/genetics
- Mice
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Cell Proliferation/drug effects
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Signal Transduction/drug effects
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Cisplatin/pharmacology
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Zujun Que
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Clinical Oncology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76508, USA
| | - Yun Yang
- Clinical Oncology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wang Yao
- Clinical Oncology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiajun Liu
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Li
- Clinical Oncology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China.
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, SAR, China.
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76508, USA.
- College of Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA.
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
- Clinical Oncology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
11
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
12
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Świerczewska M, Nowacka M, Stasiak P, Iżycki D, Sterzyńska K, Płóciennik A, Nowicki M, Januchowski R. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother 2025; 183:117804. [PMID: 39787968 DOI: 10.1016/j.biopha.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions. Molecular analyses identified overexpression of essential drug resistance-related genes, including MDR1 and BCRP, and extracellular matrix (ECM) components, such as MYOT and SPP1, which were more pronounced in resistant cell lines. MDR1 and BCRP overexpression contribute to chemotherapy resistance in OC by expelling drugs like DOX and TOP. Targeting these transporters with inhibitors or gene silencing could improve drug efficacy, making them key therapeutic targets to enhance treatment outcomes for drug-resistant OC. The study further showed that EMT-associated markers, including VIM, SNAIL1, and SNAIL2, were upregulated in the 3D spheroids, reflecting a more mesenchymal phenotype. These findings suggest that factors beyond gene expression, such as spheroid architecture, cell-cell interactions, and drug penetration, contribute to the enhanced resistance observed in 3D cultures. These results highlight the importance of 3D cell culture models for a more accurate representation of tumour drug resistance mechanisms in ovarian cancer, providing valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland; Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Piotr Stasiak
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., Poznan 61-866, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Wieniawskiego 1 St., Poznan 61-712, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| |
Collapse
|
14
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
15
|
El-Tanani M, Rabbani SA, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y, Aljabali AAA. Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies. Cancers (Basel) 2025; 17:382. [PMID: 39941751 PMCID: PMC11815874 DOI: 10.3390/cancers17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the tumor microenvironment (TME). Key signaling pathways, including Wnt, Notch, and Hedgehog, are discussed in detail to highlight their potential as therapeutic targets. Current methodologies for isolating CSCs are critically examined, addressing their advantages and limitations in advancing precision medicine. Emerging technologies, such as CRISPR/Cas9 and single-cell sequencing, are explored for their transformative potential in unraveling CSC heterogeneity and informing therapeutic strategies. The review also underscores the pivotal role of the TME in supporting CSC survival, promoting metastasis, and contributing to therapeutic resistance. Challenges arising from CSC-driven tumor heterogeneity and dormancy are analyzed, along with strategies to mitigate these barriers, including novel therapeutics and targeted approaches. Ethical considerations and the integration of artificial intelligence in designing CSC-specific therapies are discussed as essential elements of future research. The manuscript advocates for a multi-disciplinary approach that combines innovative technologies, advanced therapeutics, and collaborative research to address the complexities of CSCs. By bridging existing gaps in knowledge and fostering advancements in personalized medicine, this review aims to guide the development of more effective cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Adil Farooq Wali
- Department of Medicinal Chemistry, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
16
|
Villarreal OE, Xu Y, Tran H, Machado A, Prescod D, Anderson A, Minelli R, Peoples M, Martinez AH, Lee HM, Wong CW, Fowlkes N, Kanikarla P, Sorokin A, Alshenaifi J, Coker O, Lin K, Bristow C, Viale A, Shen JP, Parseghian C, Marszalek JR, Corcoran R, Kopetz S. Adaptive Plasticity Tumor Cells Modulate MAPK-Targeting Therapy Response in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634215. [PMID: 39896605 PMCID: PMC11785218 DOI: 10.1101/2025.01.22.634215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
MAPK pathway inhibitors (MAPKi) are increasingly used in the treatment of advanced colorectal cancer, but often produce short-lived responses in patients. Although acquired resistance by de novo mutations in tumors have been found to reduce response in some patients, additional mechanisms underlying the limited response durability of MAPK targeting therapy remain unknown. Here, we denote new contributory tumor biology and provide insight on the impact of tumor plasticity on therapy response. Analysis of MAPKi treated patients revealed activation of stemness programs and increased ASCL2 expression, which are associated with poor outcomes. Greater ASCL2 with MAPKi treatment was also seen in patient-derived CRC models, independent of driver mutations. We find ASCL2 denotes a distinct cell population, arising from phenotypic plasticity, with a proliferative, stem-like phenotype, and decreased sensitivity to MAPKi therapy, which were named adaptive plasticity tumor (APT) cells. MAPK pathway suppression induces the APT phenotype in cells, resulting in APT cell enrichment in tumors and limiting therapy response in preclinical and clinical data. APT cell depletion improved MAPKi treatment efficacy and extended MAPKi response durability in mice. These findings uncover a cellular program that mitigates the impact of MAPKi therapies and highlights the importance of addressing tumor plasticity to improve clinical outcomes.
Collapse
|
17
|
Jiang X, Wang M, Cui G, Wu Y, Wei Z, Yu S, Wang A, Zou W, Pan Y, Li X, Lu Y. Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156344. [PMID: 39729781 DOI: 10.1016/j.phymed.2024.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood. PURPOSE Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics. METHODS Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7ADR) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed. RESULTS TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44+/CD24- population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR. CONCLUSION These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Manli Wang
- The first Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Cui
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Suyun Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yanhong Pan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
18
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
19
|
Tian B, Wu Y, Du X, Zhang Y. Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1. Int J Mol Med 2025; 55:10. [PMID: 39513621 PMCID: PMC11554380 DOI: 10.3892/ijmm.2024.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.
Collapse
Affiliation(s)
- Boren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yaxuan Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiaoyun Du
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
20
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
21
|
Wang J, Chen Y, Sun Y, Liu H, Du R, Wang X, Shao Z, Liu K, Shang Z. FAT1 knockdown enhances the CSC properties of HNSCC through p-CaMKII-mediated inactivation of the IFN pathway. Int J Biol Sci 2025; 21:671-684. [PMID: 39781458 PMCID: PMC11705627 DOI: 10.7150/ijbs.95723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes an atypical cadherin-coding protein, has a high mutation rate and is commonly regarded as a tumor suppressor gene in head and neck squamous cell carcinoma (HNSCC). Nonetheless, the potential regulatory mechanisms by which FAT1 influences the progression of HNSCC remain unresolved. In this context, we reported that FAT1 was downregulated in tumor tissues/cells compared with normal tissues/cells and that it was correlated with the clinicopathological features and prognosis of HNSCC. Knockdown of FAT1 enhanced cancer stem cell (CSC) properties and decreased the percentage of apoptotic tumor cells. Mechanistically, FAT1 knockdown increased the phosphorylation levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII), subsequently resulting in diminished interaction between phosphorylated STAT1 and interferon regulatory factor 9 (IRF9), which inactivated the interferon pathway and facilitated the adoption of the malignant phenotype of HNSCC cells. The overexpression of STAT1 and IRF9 alleviated the malignant behavior caused by FAT1 inhibition. In summary, our study reveals the role of FAT1 in suppressing the CSC properties of HNSCC via the CaMKII/STAT1/IRF9 pathway, and that targeting FAT1 might be a promising treatment for HNSCC.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xuewen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of General and Emergency, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
22
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
23
|
Yun H, Dong F, Wei X, Yan X, Zhang R, Zhang X, Wang Y. Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review). Oncol Rep 2025; 53:14. [PMID: 39611496 PMCID: PMC11622107 DOI: 10.3892/or.2024.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Gastric cancer (GC) is characterized by a complex and heterogeneous tumor microenvironment (TME) that significantly influences disease progression and treatment outcomes. The tumor stroma, which is composed of a variety of cell types such as cancer‑associated fibroblasts, immune cells and vascular components, displays significant spatial and temporal diversity. These stromal elements engage in dynamic crosstalk with cancer cells, shaping their proliferative, invasive and metastatic potential. Furthermore, the TME is instrumental in facilitating resistance to traditional chemotherapy, specific treatments and immunotherapy strategies. Understanding the underlying mechanisms by which the GC microenvironment evolves and supports tumor growth and therapeutic resistance is critical for developing effective treatment strategies. The present review explores the latest progress in understanding the intricate interactions between cancer cells and their immediate environment in GC, highlighting the implications for disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Fangde Dong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiaoqin Wei
- Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China
| | - Xinyong Yan
- Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Ronglong Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Yulin Wang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| |
Collapse
|
24
|
Yu Y, Lu XH, Mu JS, Meng JY, Sun JS, Chen HX, Yan Y, Meng K. N6-methyladenosine-modified long non-coding RNA KIF9-AS1 promotes stemness and sorafenib resistance in hepatocellular carcinoma by upregulating SHOX2 expression. World J Gastroenterol 2024; 30:5174-5190. [PMID: 39735272 PMCID: PMC11612700 DOI: 10.3748/wjg.v30.i48.5174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and aggressive tumor. Sorafenib is the first-line treatment for patients with advanced HCC, but resistance to sorafenib has become a significant challenge in this therapy. Cancer stem cells play a crucial role in sorafenib resistance in HCC. Our previous study revealed that the long non-coding RNA (lncRNA) KIF9-AS1 is an oncogenic gene in HCC. However, the role of KIF9-AS1 in drug resistance and cancer stemness in HCC remains unclear. Herein, we aimed to investigate the function and mechanism of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC. AIM To describe the role of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC and elucidate the underlying mechanism. METHODS Tumor tissue and adjacent non-cancerous tissue samples were collected from HCC patients. Sphere formation was quantified via a tumor sphere assay. Cell viability, proliferation, and apoptosis were evaluated via Cell Counting Kit-8, flow cytometry, and colony formation assays, respectively. The interactions between the lncRNA KIF9-AS1 and its downstream targets were confirmed via RNA immunoprecipitation and coimmunoprecipitation. The tumorigenic role of KIF9-AS1 was validated in a mouse model. RESULTS Compared with that in normal controls, the expression of the lncRNA KIF9-AS1 was upregulated in HCC tissues. Knockdown of KIF9-AS1 inhibited stemness and attenuated sorafenib resistance in HCC cells. Mechanistically, N6-methyladenosine modification mediated by methyltransferase-like 3/insulin-like growth factor 2 mRNA-binding protein 1 stabilized and increased the expression of KIF9-AS1. Additionally, KIF9-AS1 increased the stability and expression of short stature homeobox 2 by promoting ubiquitin-specific peptidase 1-induced deubiquitination. Furthermore, depletion of KIF9-AS1 alleviated sorafenib resistance in a xenograft mouse model of HCC. CONCLUSION The N6-methyladenosine-modified lncRNA KIF9-AS1 promoted stemness and sorafenib resistance in HCC by upregulating short stature homeobox 2 expression.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mice
- Gene Expression Regulation, Neoplastic
- Up-Regulation
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Cell Line, Tumor
- Male
- Cell Proliferation/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Female
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Xiang-Hong Lu
- Department of Intensive Care Medicine, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jin-Song Mu
- Department of Intensive Care Medicine, The Fifth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100039, China
| | - Jiang-Yun Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiang-Shan Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Hai-Xu Chen
- Institute of Geriatrics and National Clinical Research Center of Geriatrics Disease, The Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
25
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
26
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
27
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|
28
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
29
|
Xu H, Du Z, Li Z, Liu X, Li X, Zhang X, Ma J. MUC1-EGFR crosstalk with IL-6 by activating NF-κB and MAPK pathways to regulate the stemness and paclitaxel-resistance of lung adenocarcinoma. Ann Med 2024; 56:2313671. [PMID: 38325364 PMCID: PMC10851807 DOI: 10.1080/07853890.2024.2313671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The chemotherapy resistance often leads to chemotherapy failure. This study aims to explore the molecular mechanism by which MUC1 regulates paclitaxel resistance in lung adenocarcinoma (LUAD), providing scientific basis for future target selection. METHODS The bioinformatics method was used to analyse the mRNA and protein expression characteristics of MUC1 in LUAD. RT-qPCR and ELISA were used to detect the mRNA and protein expression, flow cytometry was used to detect CD133+ cells, and cell viability was detected by CCK-8 assay. The mRNA-seq was performed to analyse the changes in expression profile, GO and KEGG analysis were used to explore the potential biological functions. RESULTS MUC1 is highly expressed in LUAD patients and is associated with a higher tumour infiltration. In paclitaxel resistance LUAD cells (A549/TAX cells), the expression of MUC1, EGFR/p-EGFR and IL-6 were higher than that of A549 cells, the proportion of CD133+ cells was significantly increased, and the expression of cancer stem cell (CSCs) transcription factors (NANOG, OCT4 and SOX2) were significantly up-regulated. After knocking down MUC1 in A549/Tax cells, the activity of A549/Tax cells was significantly decreased. Correspondingly, the expression of EGFR, IL-6, OCT4, NANOG, and SOX2 were significantly down-regulated. The mRNA-seq showed that knocking down MUC1 affected the gene expression, DEGs mainly enriched in NF-κB and MAPK signalling pathway. CONCLUSION MUC1 was highly expressed in A549/TAX cells, and MUC1-EGFR crosstalk with IL-6 may be due to the activation of NF-κB and MAPK pathways, which promote the enrichment of CSCs and lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Zedong Du
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, Sichuan, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xueting Li
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xuan Zhang
- Science and Education Department, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Jiayu Ma
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
30
|
Sher EK, Kalić A, Džidić-Krivić A, Zećo MB, Pinjić E, Sher F. Cellular therapeutic potential of genetically engineered stem cells in cancer treatment. Biotechnol Genet Eng Rev 2024; 40:4062-4097. [PMID: 37132363 DOI: 10.1080/02648725.2023.2204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Traditional therapeutic approaches in the treatment of cancer have many side effects and are often ineffective and non-specific, leading to the development of therapy-resistant tumour cells. Recently, numerous discoveries about stem cells have given a new outlook on their application in oncology. Stem cells are unique because of their biological attributes, including self-renewal, differentiation in different types of specialized cells and synthesis of molecules that interplay with tumour niche. They are already used as an effective therapeutic option for haematological malignancies, such as multiple myeloma and leukaemia. The main goal of this study is to investigate the possible applications of different types of stem cells in cancer treatment and to summarize novel advances, as well as the limitations of their application in cancer treatment. Research and clinical trials that are underway revealed and confirmed the enormous potential of regenerative medicine in the treatment of cancer, especially when combined with different nanomaterials. Nanoengineering of stem cells has been the focus of novel studies in the area of regenerative medicine, such as the production of nanoshells and nanocarriers that enhance the transport and uptake of stem cells in their targeted tumour niche and enable the effective monitoring of stem cell effects on tumour cells. Although nanotechnology has a lot of limitations, it provides new opportunities for the development of effective and innovative stem cell therapies.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Azra Kalić
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, UK
- Department of Neurology, Cantonal Hospital Zenica, Zenica, Bosnia and Herzegovina
| | - Merima Beća- Zećo
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Emma Pinjić
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
31
|
Kang YT, Chang HY, Hsieh YC, Chou CH, Hsin IL, Ko JL. Integrin αV Inhibition by GMI, a Ganoderma Microsporum Immunomodulatory Protein, Abolish Stemness and Migration in EGFR-Mutated Lung Cancer Cells Resistant to Osimertinib. ENVIRONMENTAL TOXICOLOGY 2024; 39:5238-5249. [PMID: 39152744 DOI: 10.1002/tox.24399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Integrins, the receptors of the extracellular matrix, are critical in the proliferation and metastasis of cancer cells. GMI, a Ganoderma microsporum immunomodulatory protein, possesses anticancer and antivirus abilities. The object of this study is to investigate the role of GMI in the integrins signaling pathway in lung cancer cells that harbor the EGFR L858R/T790M double mutation and osimertinib-resistance. Liquid chromatography-mass spectrometry and western blot assay were used to investigate the effect of GMI on inhibiting the protein expressions of integrins in H1975 cells. The migration ability and xenograft tumor growth of H1975 were suppressed by GMI. To elucidate the role of the integrin family in lung cancer resistant to osimertinib (AZD-9291, Tagrisso), H1975 cells were used to establish the osimertinib-resistant cells, named H1975/TR cells. The expressions of Integrin αV and stemness markers were much higher in H1975/TR cells than in H1975 cells. GMI suppressed cell viability, tumor spheroid growth, and the expressions of integrin αV and β1 in H1975/TR cells. Furthermore, GMI suppressed the expressions of stemness markers and formation of tumor spheres via blocking integrin αV signaling cascade. This is the first study to reveal the novel function of GMI in constraining cancer stem cells and migration by abolishing the integrin αV-related signaling pathway in EGFR-mutated and osimertinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hui-Yi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Chu Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Hsu TW, Wang WY, Chen A, Chiu CF, Liao PH, Chen HA, Su CM, Shen SC, Tsai KY, Wang TH, Su YH. Nrf2-mediated adenylosuccinate lyase promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma cells through ferroptosis escape. J Cell Physiol 2024; 239:e31416. [PMID: 39164986 DOI: 10.1002/jcp.31416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Pancreatic cancer has one of the highest fatality rates and the poorest prognosis among all cancer types worldwide. Gemcitabine is a commonly used first-line therapeutic drug for pancreatic cancer; however, the rapid development of resistance to gemcitabine treatment has been observed in numerous patients with pancreatic cancer, and this phenomenon limits the survival benefit of gemcitabine. Adenylosuccinate lyase (ADSL) is a crucial enzyme that serves dual functions in de novo purine biosynthesis, and it has been demonstrated to be associated with clinical aggressiveness, prognosis, and worse patient survival for various cancer types. In the present study, we observed significantly lower ADSL levels in gemcitabine-resistant cells (PANC-1/GemR) than in parental PANC-1 cells, and the knockdown of ADSL significantly increased the gemcitabine resistance of parental PANC-1 cells. We further demonstrated that ADSL repressed the expression of CARD-recruited membrane-associated protein 3 (Carma3), which led to increased gemcitabine resistance, and that nuclear factor erythroid 2-related factor 2 (Nrf2) regulated ADSL expression in parental PANC-1 cells. These results indicate that ADSL is a candidate therapeutic target for pancreatic cancer involving gemcitabine resistance and suggest that the Nrf2/ADSL/Carma3 pathway has therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
Affiliation(s)
- Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wan-Yu Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Alvin Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Feng Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsin-An Chen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chiang Shen
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Yen Tsai
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuan Wang
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, Division of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Metabolic and Weight Management Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
33
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
34
|
Guo T, Zhang S, Zeng W, Liang Y, Xie J, Liu S, Qiu Y, Fu Y, Ou Y, Ma K, Wang B, Gu W, Duan Y. Isolation and identification of patient-derived liver cancer stem cells and development of personalized treatment strategies. J Transl Med 2024; 22:1036. [PMID: 39558364 PMCID: PMC11575129 DOI: 10.1186/s12967-024-05870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) are thought to drive the metastasis and recurrence, however, the heterogeneity of molecular markers of LCSCs has hindered the development of effective methods to isolate them. METHODS This study introduced an effective approach to isolate and culture LCSCs from human primary liver cancer (HPLC), leveraging mouse embryonic fibroblasts (MEFs) as feeder cells in conjunction with using defined medium. Isolated LCSCs were further characterized by multiple approaches. Transcriptome sequencing data analysis was conducted to identify highly expressed genes in LCSCs and classify different subtypes of liver cancers. RESULTS Total sixteen cell strains were directly isolated from 24 tissues of three types of HPLC without sorting, seven of which could be maintained long-term culture as colony growth on MEFs, which is unique characteristics of stem cells. Even 10 of cloned cells formed the tumors in immunodeficient mice, indicating that those cloned cells were tumorgenic. The histologies and gene expression pattern of human xenografts were very similar to those of HPLC where these cloned cells were isolated. Moreover, putative markers of LCSCs were further verified to all express in cloned cells, confirming that these cells were LCSCs. These cloned LCSCs could be cryopreserved, and still maintained the feature of colony growth on MEFs after the recovery. Compared to suspension culture as conventional approach to culture LCSCs, our approach much better maintained stemness of LCSCs for a long time. To date, these cloned cells could be cultured on MEFs over 12 passages. Moreover, bioinformatics analysis of sequencing data revealed the gene expression profiles in LCSCs, and liver cancers were classified into two subtypes C1 and C2 based on genes associated with the prognosis of LCSCs. Patients of the C2 subtype, which is closely related to the extracellular matrix, were found to be sensitive to treatments such as Cisplatin, Axitinib, JAK1 inhibitors, WNT-c59, Sorafenib, and RO-3306. CONCLUSION In summary, this effective approach offers new insights into the molecular landscape of human liver cancers, and the identification of the C2 subtype and its unique response to the treatment pave the way for the creation of more effective, personalized therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, P.R. China
| | - Weiping Zeng
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yan Liang
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P.R. China
| | - ShouPei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yaqi Qiu
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yimeng Ou
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, P.R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P.R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P.R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, P.R. China.
- Department of Gastroenterology and Hepatology Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, No.1 Panfu Road, Guangzhou, 510180, P.R. China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Laboratory of Stem cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, The Second Affiliation Hospital, School of Medicine, South China University of Technology, No.10 Huanyu Erlu, 9th Floor, Guangzhou, 510180, P.R. China.
| |
Collapse
|
35
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
36
|
Geijerman E, Terrana F, Peters GJ, Deng D, Diana P, Giovannetti E, Xu G. Targeting a key FAK-tor: the therapeutic potential of combining focal adhesion kinase (FAK) inhibitors and chemotherapy for chemoresistant non-small cell lung cancer. Expert Opin Investig Drugs 2024; 33:1103-1118. [PMID: 39435477 DOI: 10.1080/13543784.2024.2417762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION NSCLC is the leading cause of cancer-related deaths globally, with a low survival rate primarily due to NSCLC frequently becoming chemoresistant. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in pathways regulating multiple processes in the cell, including survival, migration, and the TME, that contribute to both tumor progression and drug resistance. Recently, FAK inhibitors (FAKi) have shown promising potential for the treatment of NSCLC. AREAS COVERED This narrative review aims to summarize key signaling pathways involving FAK that contribute to tumor progression and drug resistance. It will further provide an overview of FAKi currently in pre- and early-phase clinical trials for solid tumors, as well as the therapeutic potential of combining FAKi with chemotherapy, as this has emerged as a promising strategy to overcome chemoresistance in NSCLC. EXPERT OPINION It is becoming increasingly clear that FAK is not an oncogenic driver but rather contributes to tumor progression and drug resistance. Hence, while FAKi have only demonstrated modest results in clinical trials when given by themselves, treatment regimens combining other therapies with FAKi have shown promising potential to overcome drug resistance. Lastly, of particular novelty are FAK-PROTACs (proteolysis-targeting chimaeras), which uniquely target both cytosolic and nuclear FAK.
Collapse
Affiliation(s)
- Emma Geijerman
- Amsterdam University College, Amsterdam, The Netherlands
| | - Francesca Terrana
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
38
|
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Application of Box-Behnken design in the optimization and development of albendazole-loaded zein nanoparticles as a drug repurposing approach for colorectal cancer management. Int J Biol Macromol 2024; 281:136437. [PMID: 39414215 DOI: 10.1016/j.ijbiomac.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Colorectal cancer (CRC) is the second cancer worldwide representing a major global health challenge. Numerous effective anticancer drugs have been developed in the last decade, yet the problem remains due to their low therapeutic index and nonspecificity. A new anticancer therapeutic paradigm is based on repurposing and nanoformulating drugs. Albendazole (ALB), a popular anthelmintic agent, was recently repurposed against CRC cells. In this study zein, an amphiphilic protein, was used to formulate nanoparticles (NPs) loaded with ALB. Box-Behnken design was selected to optimize the loaded NPs, the concentrations of polyvinyl alcohol, acetic acid, and the weight of zein were the independent variables. The dependent variables were the particle size, polydispersity index, and zeta potential. The optimized formula displayed a size of 84.3 ± 0.41 nm, PDI 0.13 ± 0.012, and a zeta potential of 42.5 ± 2.35 mV. ALB was successfully encapsulated into zein NPs and the release study revealed a desirable pH-responsive drug release behavior, that was negligible release during the first 2 h at pH 1.2 and progressive in the simulated colon environment reaching 71.1 ± 0.34 % at 6 h and 92.4 ± 1.11 % at 24 h. The anticancer effect of the loaded NPs on the human HCT116 cells showed favorable effects at 1 μM concentration with a significant decrease in the IC50 at days 2 and 3 upon loading albendazole into zein NPs. Zein nanoparticles proved to be prospective nanocarriers that could be used for the delivery of repurposed drugs in CRC treatment.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sadaf Al Hadeethi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
39
|
Zeng S, Ekwall K. Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity. EPIGENOMES 2024; 8:39. [PMID: 39449363 PMCID: PMC11503321 DOI: 10.3390/epigenomes8040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: Quiescent cells are those that have stopped dividing and show strongly reduced levels of gene expression during dormancy. In response to appropriate signals, the cells can wake up and start growing again. Many histone modifications are regulated in quiescence, but their exact functions remain to be determined. (2) Methods: Here, we map the different histone modifications, H3K4me3, H3K9ac, H3K9me2, and H3K9me3, and the histone variant H2A.Z, comparing vegetative and quiescent fission yeast (S. pombe) cells. We also map histone H3 as a control and RNA polymerase II (phosphorylated at S2 and S5) to enable comparisons of their occupancies within genes. We use ChIP-seq methodology and several different bioinformatics tools. (3) Results: The histone modification mapping data show that H3K4me3 changes stand out as being the most significant. Changes in occupancy of histone variant H2A.Z were also significant, consistent with earlier studies. Regarding gene expression changes in quiescence, we found that changes in mRNA levels were associated with changes in occupancy of RNA polymerase II (S2 and S5). Analysis of quiescence genes showed that increased H3K4me3 levels and RNA polymerase II occupancy were super-significant in a small set of core quiescence genes that are continuously upregulated during dormancy. We demonstrate that several of these genes were require Set1C/COMPASS activity for their strong induction during quiescence. (4) Conclusions: Our results imply that regulation of gene expression in quiescent cells involves epigenome changes with a key role for H3K4me3 in regulation of RNA polymerase II activity, and that different gene activation mechanisms control early and core quiescence genes. Thus, our data give further insights into important epigenome changes in quiescence using fission yeast as an experimental model.
Collapse
Affiliation(s)
| | - Karl Ekwall
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institute, NEO Building, SE-141-83 Huddinge, Sweden;
| |
Collapse
|
40
|
Tan Q, Li F, Wang J, Liu Y, Cai Y, Zou Y, Jiang X. Dendritic Cells Loaded With Heat Shock Inactivated Glioma Stem Cells Enhance Antitumor Response of Mouse Glioma When Combining With CD47 Blockade. Clin Med Insights Oncol 2024; 18:11795549241285239. [PMID: 39429684 PMCID: PMC11487516 DOI: 10.1177/11795549241285239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background For glioma patients, the long-term advantages of dendritic cells (DCs) immunization remain unknown. It is extremely important to develop new treatment strategies that enhance the immunotherapy effect of DC-based vaccines. DCs exposed to glioma stem cells (GSCs) are considered promising vaccines against glioma. Methods Glioma stem cells were isolated from mouse glioma GL261 cells (GCs). Both were subjected to severe (47°C) and mild (42°C) heat shock to induce immunogenic cell death (ICD). Membrane mobilization of calreticulin (CRT) and release of heat shock proteins (HSPs) were detected by flow cytometry. Dendritic cells were then exposed to heat-inactivated cells and co-culturing of T cells tested for immunotherapeutic efficacy in vitro. In vivo, we investigated the GSC targeting effect of the GSC-DC vaccine combined with CD47 blockade. Results Heat shock induced ICD in GCs and GSCs, as indicated by significant release of calreticulin, HSP70, and HSP90. Heat shock condition ICD lysates induce maturation and activation-associated marker expression on monocyte-derived DCs. Accordingly, DCs pulsed with GCs and GSCs inactivated reduced colony formation, sphere formation, migration, and invasion of glioma and GSCs in vitro. Glioma stem cell-DC vaccine in combination with anti-CD47 antibody significantly enhanced survival in mice with glioma, induced production of interferon (IFN)-γ, and enhanced T-cell expansion in vivo. Of note, DCs pulsed with inactivated GSCs were more effective to control tumor growth than DCs pulsed with inactive GCs. Conclusions Severe heat shock induces ICD in vitro. These data showed that administration of anti-CD47 antibody combined with GSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Qijia Tan
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yi Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
41
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
42
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
43
|
Chen JW, Gong RH, Teng C, Lin YS, Shen LS, Lin Z, Chen S, Chen GQ. Identification of a PANoptosis-related prognostic model in triple-negative breast cancer, from risk assessment, immunotherapy, to personalized treatment. Heliyon 2024; 10:e38732. [PMID: 39430460 PMCID: PMC11489348 DOI: 10.1016/j.heliyon.2024.e38732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Triple-negative breast cancer is a breast cancer subtype characterized by its challenging prognosis, and establishing prognostic models aids its clinical treatment. PANoptosis, a recently identified type of programmed cell death, influences tumor growth and patient outcomes. Nonetheless, the precise impact of PANoptosis-related genes on the prognosis of triple-negative breast cancer has yet to be determined. Methods Clinical information for the triple-negative breast cancer samples was collected from the Gene Expression Omnibus and The Cancer Genome Atlas databases, while 19 PANoptosis-related genes were sourced from previous studies. We first categorized PANoptosis-related subtypes and determined the differentially expressed genes between them. Subsequently, we developed and validated a PANoptosis-associated predictive model using LASSO and Cox multivariate regression analyses. Statistical evaluations were conducted using R software, and the mRNA expression levels of the genes were quantified using real-time PCR. Results Using consensus clustering analysis, we divided triple-negative breast cancer patients into two clusters based on PANoptosis-related genes and identified 1054 differentially expressed genes between these clusters. Prognostic-related genes were subsequently selected to re-cluster patients, validating their predictive ability. A prognostic model was then constructed based on four genes: BTN2A2, CACNA1H, PIGR, and S100B. The expression and enriched cell types of these genes were examined and the expression levels were validated in vitro. Furthermore, the model was validated, and a nomogram was created to enhance personalized risk assessment. The risk score, proven to be an independent prognostic indicator for triple-negative breast cancer, showed a positive correlation with both age and disease stage. Immune infiltration and drug sensitivity analyses suggested appropriate therapies for different risk groups. Mutation profiles and pathway enrichment were analyzed, providing insights into potential therapeutic targets. Conclusion A PANoptosis-related prognostic model was successfully developed for triple-negative breast cancer, offering a novel approach for predicting patient prognosis and guiding treatment strategies.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Chi Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Zesi Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Guo-Qing Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| |
Collapse
|
44
|
Bellala RS, Chittineedi P, Llaguno SNS, Mosquera JAN, Mohiddin GJ, Pandrangi SL. Down-Regulation of Cysteine-Glutamate Antiporter in ALDH1A1 Expressing Oral and Breast Cancer Stem Cells Induced Oxidative Stress-Triggered Ferroptosis. J Cancer 2024; 15:6160-6176. [PMID: 39513121 PMCID: PMC11540493 DOI: 10.7150/jca.89429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/24/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Sulfasalazine, an xCT inhibitor, is being used as a repurposed antineoplastic drug to induce ferroptosis. Ferroptosis is a regulated necrotic cell death pathway that is dependent on iron reserves. Interestingly, cancer stem cells (CSCs) that are regarded as major drivers of resistance to conventional therapies accompanied with tumor relapse and recurrence have bulk amount of iron reserves in the form of ferritin. This suggests that inducing ferroptosis might disrupt stemness and drug-resistant mechanisms in cancer stem cells, thereby reducing the risk of drug-resistance, cancer recurrence, and relapse. Materials & Methods: In the present study, ALDH1A1 expressing oral (OCSCs) and breast (BCSCs) cancer stem cells were sorted and used to investigate the role of sulfasalazine to induce ferroptosis. To check the self-renewability of CSCs spheroid formation, assay was performed and the resultant CSCs were treated with sulfasalazine (SAS) and subjected to gene expression analysis RT-PCR and flow cytometry. FACS was performed to check stem cell marker expression, cell cycle arrest, and apoptosis. Results: Our results suggest that the cells showed a gradual increase in sphere formation till S3 in the case of OCSCs and S2 in the case of BCSCs, with a gradual decrease in sphere-forming efficiency from the respective generations. When treated with 0.6mM SAS, these cells induced ferroptosis by downregulating stem cell markers like ALDH1A1, SLC7A11, ferritin, and GPx-4 with a concomitant increase in transferrin and STEAP-3. Flow cytometry studies revealed that the cells have undergone mitochondrial dysfunction characterized by loss of membrane potential and the cell cycle progression was halted in the G2/M phase. Conclusion: In the present study, we demonstrate that SAS potentially induced ferroptosis accompanied with oxidative stress in both OCSCs as well as BCSCs by lowering GPx-4 activity, a key enzyme that scavenges the products produced as a result of oxidative stress.
Collapse
Affiliation(s)
- Ravi Shankar Bellala
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Sungey Naynee Sánchez Llaguno
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Juan Alejandro Neira Mosquera
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Gooty Jaffer Mohiddin
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| |
Collapse
|
45
|
Zhu H, Jiang CW, Zhang WL, Yang ZY, Sun G. Targeting oncogenic MAGEA6 sensitizes triple negative breast cancer to doxorubicin through its autophagy and ferroptosis by stabling AMPKα1. Cell Death Discov 2024; 10:430. [PMID: 39370446 PMCID: PMC11456603 DOI: 10.1038/s41420-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Melanoma-associated antigen A6 (MAGEA6) is well known to have oncogenic activity, but the underlying mechanisms by which it regulates tumor progression and chemo-resistance, especially in triple-negative breast cancer (TNBC), have been unknown. In the study, the differential expression genes (DEGs) in TNBC tumor tissues and TNBC-resistant tumor tissues were analyzed based on TCGA and GEO datasets. MAGEA6, as the most significantly expressed gene, was analyzed by RT-qPCR, western blotting and immunohistochemistry assay in TNBC cell lines and tumor tissues. The potential mechanisms that influence chemo-resistance were also evaluated. Results displayed that MAGEA6 was highly expressed in TNBC and involved in drug resistance. MAGEA6 silencing enhanced the chemo-sensitivity of TNBC to doxorubicin (DOX) in vitro and in vivo, as determined by decreasing IC50 value, proliferation and invasion capacity, and triggering apoptosis. Mechanistically, it was shown that MAGEA6 depletion sensitized TNBC to DOX via regulating autophagy. Ubiquitination assay displayed that knockdown of MAGEA6 decreased the AMPKα1 ubiquitination, thereby elevating the levels of AMPKα1 and p-AMPKα in TNBC cells. Importantly, AMPK inhibitor (Compound C) can reduce the LC3II/I level induced by sh-MAGEA6, indicating that sh-MAGEA6 activated AMPK signaling through suppressing AMPKα1 ubiquitination and then facilitated autophagy in TNBC. Furthermore, we also observed that AMPK is required for SLC7A11 to regulate ferroptosis, and supported the crux roles of MAGEA6/AMPK/SLC7A11-mediated ferroptosis on modulating DOX sensitivity in TNBC cells. These findings indicated that targeting MAGEA6 can enhance the chemo-sensitivity in TNBC via activation of autophagy and ferroptosis; its mechanism involves AMPKα1-dependent autophagy and AMPKα1/SLC7A11-induced ferroptosis.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
46
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Wang X, Yang X, Liu Z, Shen Z, Li M, Cheng R, Zhao L, Xi Y, Wang J, Sang S. 3D bioprinting of an in vitro hepatoma microenvironment model: Establishment, evaluation, and anticancer drug testing. Acta Biomater 2024; 185:173-189. [PMID: 39025391 DOI: 10.1016/j.actbio.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoning Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital of Chinese Academy of Medical Sciences Shanxi Hospital, Taiyuan 030024, China
| | | | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China.
| |
Collapse
|
48
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
49
|
Kan LK, Drill M, Jayakrishnan PC, Sequeira RP, Sanfilippo PG, McLean C, Hunn M, Williams DA, O'Brien TJ, Drummond KJ, Monif M. P2X7 receptor antagonism by AZ10606120 significantly depletes glioblastoma cancer stem cells in vitro. Brain Res Bull 2024; 215:110996. [PMID: 38857832 DOI: 10.1016/j.brainresbull.2024.110996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy with limited treatment options and poor prognosis. Self-renewing glioblastoma cancer stem cells (GSCs) facilitate tumour progression, resistance to conventional treatment and tumour recurrence. GSCs are resistant to standard treatments. There is a need for novel treatment alternatives that effectively target GSCs. The purinergic P2X receptor 7 (P2X7R) is expressed in glioblastomas and has been implicated in disease pathogenesis. However, the roles of P2X7R have not been comprehensively elucidated in conventional treatment-resistant GSCs. This study characterised P2X7R channel and pore function and investigated the effect of pharmacological P2X7R inhibition in GSCs. Immunofluorescence and live cell fluorescent dye uptake experiments revealed P2X7R expression, and channel and pore function in GSCs. Treatment of GSCs with the P2X7R antagonist, AZ10606120 (AZ), for 72 hours significantly reduced GSC numbers, compared to untreated cells. When compared with the effect of the first-line conventional chemotherapy, temozolomide (TMZ), GSCs treated with AZ had significantly lower cell numbers than TMZ-treated cultures, while TMZ treatment alone did not significantly deplete GSC numbers compared to the control. AZ treatment also induced significant lactate dehydrogenase release by GSCs, indicative of treatment-induced cytotoxic cell death. There were no significant differences in the expression of apoptotic markers, Annexin V and cleaved caspase-3, between AZ-treated cells and the control. Collectively, this study reveals for the first time functional P2X7R channel and pore in GSCs and significant GSC depletion following P2X7R inhibition by AZ. These results indicate that P2X7R inhibition may be a novel therapeutic alternative for glioblastoma, with effectiveness against GSCs resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Liyen K Kan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew Drill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Richard P Sequeira
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Catriona McLean
- Department of Pathology, The Alfred, Melbourne, Victoria, Australia
| | - Martin Hunn
- Department of Neurosurgery, The Alfred, Melbourne, Victoria, Australia
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neurology, The Alfred, Melbourne, Victoria, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neurology, The Alfred, Melbourne, Victoria, Australia.
| |
Collapse
|
50
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|