1
|
Dahmani W, Akissi ZLE, Elaouni N, Bouanani NE, Mekhfi H, Bnouham M, Legssyer A, Sahpaz S, Ziyyat A. Carob leaves: Phytochemistry, antioxidant properties, vasorelaxant effect and mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119226. [PMID: 39653104 DOI: 10.1016/j.jep.2024.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ceratonia siliqua L., is a species of significant nutritional and industrial interest with extensive traditional uses. This fabaceae is renowned for its medicinal properties, including the treatment of high blood pressure. Due to its chemical composition, carob exhibits several valuable therapeutic functions such as antioxidant, antidiarrheal, antidiabetic, and antibacterial actions. AIM OF THE REVIEW This study investigates the chemical composition of Ceratonia siliqua L. leaves aqueous extract (CsAE) and explores the vasorelaxant effect and its underlying mechanisms. Acute toxicity and antioxidant activity of CsAE were also examined. METHODS The phytochemical profile was elucidated using TLC and UHPLC-MS. The vasorelaxant effect and mechanisms were studied on thoracic aortic rings from normotensive rats, using various antagonists. Acute toxicity was assessed by orally administering the extract to mice. Antioxidant activity was evaluated using β-carotene bleaching and DPPH. RESULTS TLC analysis of CsAE reveals flavonoids and hydrolysable tannins. Gallic acid, myricitrin, quercitrin as well as galloylglucopyranoside derivatives were identified by UHPLC-MS. CsAE relaxed phenylephrine-precontracted aorta in a concentration-dependent manner. This response was reduced when the aorta was denuded or pretreated with L-NAME, hydroxocobalamin, ODQ, 4-AP, TEA, calmidazolium chloride, and thapsigargin. CsAE showed significant antioxidant activity with no observed toxicity in the experimental animals. CONCLUSION CsAE has a significant vasodilatory effect, mediated through the CaM/eNOS/sGC pathway, activation of Kca and Kv, and intracellular calcium mobilization into SERCA. It also exhibits strong antioxidant activity, with no observed toxicity in the experimental animals. These findings represent the first evidence of the vasorelaxant effect of Ceratonia siliqua L. leaves from Eastern Morocco.
Collapse
Affiliation(s)
- Widad Dahmani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Zachée Louis Evariste Akissi
- BioEcoAgro Joint Cross-Border Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, 59650, Villeneuve d'Ascq, France.
| | - Nabia Elaouni
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Nour Elhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| | - Sevser Sahpaz
- BioEcoAgro Joint Cross-Border Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, 59650, Villeneuve d'Ascq, France.
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| |
Collapse
|
2
|
Praveen J, Anusuyadevi M, Jayachandra KS. Unraveling the potential of Epicatechin gallate from crataegus oxyacantha in targeting aberrant cardiac Ca2+ signalling proteins: an in-depth in-silico investigation for heart failure therapy. J Biomol Struct Dyn 2024:1-15. [PMID: 39648361 DOI: 10.1080/07391102.2024.2435624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/25/2024] [Indexed: 12/10/2024]
Abstract
The cardiovascular sarcoplasmic reticulum (SR) calcium (Ca2+) ATPase is an imperative determinant of cardiac functionality. In addition, anomalies in Ca2+ handling protein and atypical energy metabolism are inherent in heart failure (HF). Moreover, Ca2+ overload in SR leads to mitochondrial matrix Ca2+ overload, which can trigger the generation of Reactive Oxygen Species (ROS), culminating in the triggering of the Permeability Transition Pore (PTP) and Cytochrome C release, resulting in apoptosis that leads to arrhythmias and numerous disorders. Although proteins involved in the molecular mechanism of Ca2+ dysfunction regarding mitochondrial dysfunction remains elusive, this study aims to assess the major Ca2+ handling proteins which may be involved in the Ca2+ malfunction that causes mitochondrial dysfunction and predicting the most effective drug by targeting the analyzed Ca2+ handling proteins through various insilico analyses. Thirteen proteins absorbed from interaction analysis were docked with four optimal phytochemicals from Crataegus oxyacantha (COC). Furthermore, The ADME profile of tyramine, vitexin, Epicatechin, and Epicatechin gallate was acclimated to evaluate potential drugability utilizing QikProp. So, molecular docking evaluations were performed using Glide (Maestro), autodock, and vina. Based on the results of 156 dockings by Maestro, auto-dock, and auto-dock vina, PKAC-a with Epicatechin gallate exhibits good interaction. Therefore, a 2000 ns molecular dynamics (MD) simulation was utilized to assess the feasible phytochemical Epicatechin gallate - PKAC-a complex binding stability utilizing Desmond and this study confirmed that Epicatechin gallate from COC has high possibilities to inhibit the aberrant cardiac Ca2+ signaling proteins due to its conformational rigidity.
Collapse
Affiliation(s)
- J Praveen
- Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - M Anusuyadevi
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - K S Jayachandra
- Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
3
|
Wang L, Zhang J, Li W, Zhang X, Yokoyama T, Sakamoto M, Wang Y. The A-kinase anchoring protein Yotiao decrease the ER calcium content by inhibiting the store operated calcium entry. Cell Calcium 2024; 121:102906. [PMID: 38781694 DOI: 10.1016/j.ceca.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The meticulous regulation of ER calcium (Ca2+) homeostasis is indispensable for the proper functioning of numerous cellular processes. Disrupted ER Ca2+ balance is implicated in diverse diseases, underscoring the need for a systematic exploration of its regulatory factors in cells. Our recent genomic-scale screen identified a scaffolding protein A-kinase anchoring protein 9 (AKAP9) as a regulator of ER Ca2+ levels, but the underlying molecular mechanisms remain elusive. Here, we reveal that Yotiao, the smallest splicing variant of AKAP9 decreased ER Ca2+ content in animal cells. Additional testing using a combination of Yotiao truncations, knock-out cells and pharmacological tools revealed that, Yotiao does not require most of its interactors, including type 1 inositol 1,4,5-trisphosphate receptors (IP3R1), protein kinase A (PKA), protein phosphatase 1 (PP1), adenylyl cyclase type 2 (AC2) and so on, to reduce ER Ca2+ levels. However, adenylyl cyclase type 9 (AC9), which is known to increases its cAMP generation upon interaction with Yotiao for the modulation of potassium channels, plays an essential role for Yotiao's ER-Ca2+-lowering effect. Mechanistically, Yotiao may work through AC9 to act on Orai1-C terminus and suppress store operated Ca2+ entry, resulting in reduced ER Ca2+ levels. These findings not only enhance our comprehension of the interplay between Yotiao and AC9 but also contribute to a more intricate understanding of the finely tuned mechanisms governing ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jiaxuan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaoyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tatsushi Yokoyama
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Sakamoto
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Li Y, Chen H, Shu R, Zhang X, Wang G, Yin Y. HYDROGEN PREVENTS LIPOPOLYSACCHARIDE-INDUCED PULMONARY MICROVASCULAR ENDOTHELIAL CELL INJURY BY INHIBITING STORE-OPERATED Ca 2+ ENTRY REGULATED BY STIM1/ORAI1. Shock 2024; 61:766-775. [PMID: 38010088 DOI: 10.1097/shk.0000000000002279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Sepsis is a type of life-threatening organ dysfunction that is caused by a dysregulated host response to infection. The lung is the most vulnerable target organ under septic conditions. Pulmonary microvascular endothelial cells (PMVECs) play a critical role in acute lung injury (ALI) caused by severe sepsis. The impairment of PMVECs during sepsis is a complex regulatory process involving multiple mechanisms, in which the imbalance of calcium (Ca 2+ ) homeostasis of endothelial cells is a key factor in its functional impairment. Our preliminary results indicated that hydrogen gas (H 2 ) treatment significantly alleviates lung injury in sepsis, protects PMVECs from hyperpermeability, and decreases the expression of plasma membrane stromal interaction molecule 1 (STIM1), but the underlying mechanism by which H 2 maintains Ca 2+ homeostasis in endothelial cells in septic models remains unclear. Thus, the purpose of the present study was to investigate the molecular mechanism of STIM1 and Ca 2+ release-activated Ca 2+ channel protein1 (Orai1) regulation by H 2 treatment and explore the effect of H 2 treatment on Ca 2+ homeostasis in lipopolysaccharide (LPS)-induced PMVECs and LPS-challenged mice. Methods: We observed the role of H 2 on LPS-induced ALI of mice in vivo . The lung wet/dry weight ratio, total protein in the bronchoalveolar lavage fluid, and Evans blue dye assay were used to evaluate the pulmonary endothelial barrier damage of LPS-challenged mice. The expression of STIM1 and Orai1 was also detected using epifluorescence microscopy. Moreover, we also investigated the role of H 2 -rich medium in regulating PMVECs under LPS treatment, which induced injury similar to sepsis in vitro . The expression of STIM1 and Orai1 as well as the Ca 2+ concentration in PMVECs was examined. Results:In vivo , we found that H 2 alleviated ALI of mice through decreasing lung wet/dry weight ratio, total protein in the bronchoalveolar lavage fluid and permeability of lung. In addition, H 2 also decreased the expression of STIM1 and Orai1 in pulmonary microvascular endothelium. In vitro , LPS treatment increased the expression levels of STIM1 and Orai1 in PMVECs, while H 2 reversed these changes. Furthermore, H 2 ameliorated Ca 2+ influx under sepsis-mimicking conditions. Treatment with the sarco/endoplasmic reticulum Ca 2+ adenosine triphosphatase inhibitor, thapsigargin, resulted in a significant reduction in cell viability as well as a reduction in the expression of junctional proteins, including vascular endothelial-cadherin and occludin. Treatment with the store-operated Ca 2+ entry inhibitor, YM-58483 (BTP2), increased the cell viability and expression of junctional proteins. Conclusions: The present study suggested that H 2 treatment alleviates LPS-induced PMVEC dysfunction by inhibiting store-operated Ca 2+ entry mediated by STIM1 and Orai1 in vitro and in vivo .
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guiyue Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
5
|
Dai ZK, Chen YC, Hsieh SL, Yeh JL, Hsu JH, Wu BN. The Xanthine Derivative KMUP-1 Inhibits Hypoxia-Induced TRPC1 Expression and Store-Operated Ca 2+ Entry in Pulmonary Arterial Smooth Muscle Cells. Pharmaceuticals (Basel) 2024; 17:440. [PMID: 38675401 PMCID: PMC11053947 DOI: 10.3390/ph17040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study investigated the mechanism by which KMUP-1, a xanthine derivative with phosphodiesterase inhibitory activity, inhibits hypoxia-induced canonical transient receptor potential channel 1 (TRPC1) protein overexpression and regulates [Ca2+]i through store-operated calcium channels (SOCs). Ex vivo PASMCs were cultured from Sprague-Dawley rats in a modular incubator chamber under 1% O2/5% CO2 for 24 h to elucidate TRPC1 overexpression and observe the Ca2+ release and entry. KMUP-1 (1 μM) inhibited hypoxia-induced TRPC family protein encoded for SOC overexpression, particularly TRPC1. KMUP-1 inhibition of TRPC1 protein was restored by the protein kinase G (PKG) inhibitor KT5823 (1 μM) and the protein kinase A (PKA) inhibitor KT5720 (1 μM). KMUP-1 attenuated protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 1 μM)-upregulated TRPC1. We suggest that the effects of KMUP-1 on TRPC1 might involve activating the cyclic guanosine monophosphate (cGMP)/PKG and cyclic adenosine monophosphate (cAMP)/PKA pathways and inhibiting the PKC pathway. We also used Fura 2-acetoxymethyl ester (Fura 2-AM, 5 μM) to measure the stored calcium release from the sarcoplasmic reticulum (SR) and calcium entry through SOCs in hypoxic PASMCs under treatment with thapsigargin (1 μM) and nifedipine (5 μM). In hypoxic conditions, store-operated calcium entry (SOCE) activity was enhanced in PASMCs, and KMUP-1 diminished this activity. In conclusion, KMUP-1 inhibited the expression of TRPC1 protein and the activity of SOC-mediated Ca2+ entry upon SR Ca2+ depletion in hypoxic PASMCs.
Collapse
Affiliation(s)
- Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Chen Chen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Li HX, Ma Y, Yan YX, Zhai XK, Xin MY, Wang T, Xu DC, Song YT, Song CD, Pan CX. The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx. J Ginseng Res 2023; 47:755-765. [PMID: 38107394 PMCID: PMC10721475 DOI: 10.1016/j.jgr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.
Collapse
Affiliation(s)
- Hai-Xia Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Xiao Yan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Xin-Ke Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Meng-Yu Xin
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Tian Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Dong-Cao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Tong Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Chun-Dong Song
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 9 Renmin Road, Zhengzhou, Henan Province, China
| | - Cheng-Xue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
Zhou Y, Jennette MR, Ma G, Kazzaz SA, Baraniak JH, Nwokonko RM, Groff ML, Velasquez-Reynel M, Huang Y, Wang Y, Gill DL. An apical Phe-His pair defines the Orai1-coupling site and its occlusion within STIM1. Nat Commun 2023; 14:6921. [PMID: 37903816 PMCID: PMC10616141 DOI: 10.1038/s41467-023-42254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.
Collapse
Affiliation(s)
- Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Michelle R Jennette
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sarah A Kazzaz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - James H Baraniak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mallary L Groff
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Marcela Velasquez-Reynel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
9
|
Yu T, Li X, Luo Q, Liu H, Jin J, Li S, He J. S417 in the CC3 region of STIM1 is critical for STIM1-Orai1 binding and CRAC channel activation. Life Sci Alliance 2023; 6:e202201623. [PMID: 36690443 PMCID: PMC9873985 DOI: 10.26508/lsa.202201623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a universal Ca2+ influx pathway that is important for the function of many cell types. SOCE is controlled by the interaction of the ER Ca2+ sensor STIM1 with the plasma membrane Ca2+ channel Orai1. S417 is located in the third coiled-coil (CC3) domain of the C-terminus of STIM1. We found that single-point mutation of this residue (S417G) abolished STIM1 C-terminus interactions with Orai1. Mutation of S417 also abolished CAD-Orai1 binding and Orai1 channel activation, eliminated STIM1 puncta formation, and co-localization with Orai1 and SOCE. 2-APB was found to restore the binding of the STIM1 C-terminus mutant (S417G) to Orai1 and dose-dependently activate Orai1 channel. Both CBD and NBD of Orai1 are required for 2-APB-induced coupling between the Orai1 and STIM1 C-terminus mutant (S417G) and CRAC channel activation. We also demonstrated that 2-APB led to delayed activation of Orai1-K85E channel, although Orai1-K85E obviously impairs 2-APB-induced STIM1 C-terminus mutant (S417G)-Orai1 coupling. Our results suggest S417 in the CC3 domain of STIM1 is essential for STIM1-Orai1 binding and CRAC channel activation.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Luo
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Liu
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjie Li
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun He
- Division of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Searching for Mechanisms Underlying the Assembly of Calcium Entry Units: The Role of Temperature and pH. Int J Mol Sci 2023; 24:ijms24065328. [PMID: 36982401 PMCID: PMC10049691 DOI: 10.3390/ijms24065328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover external Ca2+, which first enters the cytoplasm andthen, via SERCA pump, also refills the depleted intracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and (ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum longus (EDL) muscles from wild type mice to an exvivo exercise protocol and verified that functional CEUs can assemble alsoin the absence of blood supply and innervation. Then, we evaluated whetherparameters that are influenced by exercise, such as temperature and pH, may influence the assembly of CEUs. Results collected indicate that higher temperature (36 °C vs. 25 °C) and lower pH (7.2 vs. 7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 °C) or at lower pH (7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that temperature and pH are two of the possible regulators of CEU formation.
Collapse
|
11
|
CircRNA_0017076 acts as a sponge for miR-185-5p in the control of epithelial-to-mesenchymal transition of tubular epithelial cells during renal interstitial fibrosis. Hum Cell 2023; 36:1024-1040. [PMID: 36828974 DOI: 10.1007/s13577-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological hallmark of progressive chronic kidney disease (CKD). Circular RNAs (circRNAs) are involved in certain renal diseases, but their role in RIF is largely unknown. The present study investigated the effects and potential mechanisms of circRNA_0017076 in RIF. CircRNA_0017076 expression was markedly upregulated in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells (RTECs) and kidney biopsy samples from patients with RIF. Functional assays showed that circRNA_0017076 colocalized with microRNA-185-5p (miR-185-5p) and inhibited miR-185-5p function via direct binding to miR-185-5p. In vitro, the knockdown of circRNA_0017076 inhibited the calcium ion (Ca2+) influx-mediated epithelial-to-mesenchymal transition (EMT) of RTECs and downregulated the expression of stromal interaction molecule 1 (STIM1), which is a target protein of miR-185-5p. Silencing mmu_circ_0004488 reduced fibrotic lesions in the kidneys of unilateral ureteral obstruction (UUO) mice by targeting the miR-185-5p/Stim1 axis. For the first time, we identified circRNA_0017076 as a sponge for miR-185-5p, which regulates STIM1 gene expression and is involved in RIF. Our results support circRNA_0017076 as a potential therapeutic target for RIF disease.
Collapse
|
12
|
Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. CURRENT TOPICS IN MEMBRANES 2023; 91:21-41. [PMID: 37080679 DOI: 10.1016/bs.ctm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.
Collapse
Affiliation(s)
- Cameron M Mortazavi
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Jillian M Hoyt
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Aamir Patel
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Physiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Pharmacology & Toxicology, University of Arizona, College of Pharmacy, Tucson, AZ, United States.
| |
Collapse
|
13
|
Yamada H, Ohmori R, Okada N, Nakamura S, Kagawa K, Fujii S, Miki H, Ishizawa K, Abe M, Sato Y. A machine learning model using SNPs obtained from a genome-wide association study predicts the onset of vincristine-induced peripheral neuropathy. THE PHARMACOGENOMICS JOURNAL 2022; 22:241-246. [PMID: 35752658 DOI: 10.1038/s41397-022-00282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Vincristine treatment may cause peripheral neuropathy. In this study, we identified the genes associated with the development of peripheral neuropathy due to vincristine therapy using a genome-wide association study (GWAS) and constructed a predictive model for the development of peripheral neuropathy using genetic information-based machine learning. The study included 72 patients admitted to the Department of Hematology, Tokushima University Hospital, who received vincristine. Of these, 56 were genotyped using the Illumina Asian Screening Array-24 Kit, and a GWAS for the onset of peripheral neuropathy caused by vincristine was conducted. Using Sanger sequencing for 16 validation samples, the top three single nucleotide polymorphisms (SNPs) associated with the onset of peripheral neuropathy were determined. Machine learning was performed using the statistical software R package "caret". The 56 GWAS and 16 validation samples were used as the training and test sets, respectively. Predictive models were constructed using random forest, support vector machine, naive Bayes, and neural network algorithms. According to the GWAS, rs2110179, rs7126100, and rs2076549 were associated with the development of peripheral neuropathy on vincristine administration. Machine learning was performed using these three SNPs to construct a prediction model. A high accuracy of 93.8% was obtained with the support vector machine and neural network using rs2110179 and rs2076549. Thus, peripheral neuropathy development due to vincristine therapy can be effectively predicted by a machine learning prediction model using SNPs associated with it.
Collapse
Affiliation(s)
- Hiroki Yamada
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan
| | - Rio Ohmori
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan
| | - Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Youichi Sato
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan.
| |
Collapse
|