1
|
Frankenbach-Désor T, Niesner I, Ahmed P, Dürr HR, Klein A, Knösel T, Gospos J, McGovern JA, Hutmacher DW, Holzapfel BM, Mayer-Wagner S. Tissue-engineered patient-derived osteosarcoma models dissecting tumour-bone interactions. Cancer Metastasis Rev 2024; 44:8. [PMID: 39592467 PMCID: PMC11599440 DOI: 10.1007/s10555-024-10218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor, primarily affecting children and young adults. For these young patients, the current treatment options for osteosarcoma impose considerable constraints on daily life with significant morbidity and a low survival rate. Despite ongoing research efforts, the 5-year survival rate of first-diagnosed patients without metastases has not changed in the past four decades. The demand for novel treatments is currently still unmet, in particular for effective second-line therapy. Therefore, there is an urgent need for advanced preclinical models and drug-testing platforms that take into account the complex disease characteristics, the high heterogeneity of the tumour and the interactions with the bone microenvironment. In this review, we provide a comprehensive overview about state-of-the-art tissue-engineered and patient-specific models for osteosarcoma. These sophisticated platforms for advanced therapy trials aim to improve treatment outcomes for future patients by modelling the patient's disease state in a more accurate and complex way, thus improving the quality of preclinical research studies.
Collapse
Affiliation(s)
- Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Parveen Ahmed
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Hans Roland Dürr
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacqui A McGovern
- Centre for Biomedical Technologies, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
2
|
Zhang L, Liu J, Zhang H, Qian Y, Zhang L, Wang W. Establishing a Mandibular Osteosarcoma Model in SD Rats Using Tissue Block Transplantation. In Vivo 2024; 38:2665-2671. [PMID: 39477440 PMCID: PMC11535942 DOI: 10.21873/invivo.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM To investigate the feasibility of establishing a mandibular osteosarcoma model in Sprague-Dawley (SD) rats using tissue block transplantation, providing a foundational model for osteosarcoma research. MATERIALS AND METHODS Fourteen male SD rats, 3 weeks old and SPF grade, were randomly divided into a control group (n=4) and a mandibular osteosarcoma group (n=10). Using tissue block transplantation, UMR106 cell-induced tumor tissues were transplanted subcutaneously into the left mandibular marrow cavity of the SD rats. Observations included behavioral changes, weight variations, tumor growth, and tumor formation rate. Bone changes were monitored via micro-CT scanning, and histological analysis was conducted using HE staining. RESULTS Two weeks post-transplantation, the mandibular osteosarcoma group exhibited significant left facial swelling, malocclusion, eating difficulties, and weight loss compared to the control group. The tumor formation rate was 80% (8/10). Micro-CT scans indicated significant bone destruction in the osteosarcoma group. HE staining revealed high cellular atypia and pathological mitoses in both subcutaneous and mandibular osteosarcoma cells, with no notable abnormalities in lung tissues. CONCLUSION Tissue block transplantation is a viable method to establish a mandibular osteosarcoma model in SD rats. This method is simple, with a high tumor formation rate, providing an ideal animal model for mandibular osteosarcoma research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
| | - Jiaoyan Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
- Department of Stomatology, Dehong People's Hospital, Dehong, P.R. China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
| | - Liqin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, P.R. China;
- Yunnan Key Laboratory of Oral Medicine, Kunming, P.R. China
| |
Collapse
|
3
|
Chow T, Humble W, Lucarelli E, Onofrillo C, Choong PF, Di Bella C, Duchi S. Feasibility and barriers to rapid establishment of patient-derived primary osteosarcoma cell lines in clinical management. iScience 2024; 27:110251. [PMID: 39286504 PMCID: PMC11403063 DOI: 10.1016/j.isci.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive primary bone tumor that has seen little improvement in survival rates in the past three decades. Preclinical studies are conducted on a small pool of commercial cell lines which may not fully reflect the genetic heterogeneity of this complex cancer, potentially hindering translatability of in vitro results. Developing a single-site laboratory protocol to rapidly establish patient-derived primary cancer cell lines (PCCL) within a clinically actionable time frame of a few weeks will have significant scientific and clinical ramifications. These PCCL can widen the pool of available cell lines for study while patient-specific data could derive therapeutic correlation. This endeavor is exceedingly challenging considering the proposed time constraints. By proposing key definitions and a clear theoretical framework, this evaluation of osteosarcoma cell line establishment methodology over the past three decades assesses feasibility by identifying barriers and suggesting solutions, thereby facilitating systematic experimentation and optimization.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - William Humble
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carmine Onofrillo
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
4
|
Xu Y, Xu C, Song H, Feng X, Ma L, Zhang X, Li G, Mu C, Tan L, Zhang Z, Liu Z, Luo Z, Yang C. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnology 2024; 22:250. [PMID: 38750519 PMCID: PMC11094931 DOI: 10.1186/s12951-024-02430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Huan Song
- Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, 430033, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Clinical Medicine, Department of Orthopedics, Chengdu Medical College, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Zhou Y, Ray PS, Zhu J, Stein F, Rettel M, Sekaran T, Sahadevan S, Perez-Perri JI, Roth EK, Myklebost O, Meza-Zepeda LA, von Deimling A, Fu C, Brosig AN, Boye K, Nathrath M, Blattmann C, Lehner B, Hentze MW, Kulozik AE. Systematic analysis of RNA-binding proteins identifies targetable therapeutic vulnerabilities in osteosarcoma. Nat Commun 2024; 15:2810. [PMID: 38561347 PMCID: PMC10984982 DOI: 10.1038/s41467-024-47031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.
Collapse
Affiliation(s)
- Yang Zhou
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Partho Sarothi Ray
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jianguo Zhu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Sudeep Sahadevan
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Eva K Roth
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ola Myklebost
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Chuli Fu
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika N Brosig
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Michaela Nathrath
- Department of Pediatrics and Children's Cancer Research Center, Technical University of Munich, School of Medicine, Munich, Germany
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Olga Hospital, Stuttgart, Germany
| | - Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, Olga Hospital, Stuttgart, Germany
| | - Burkhard Lehner
- Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
7
|
Gong C, Wang J, Tang F, Tong D, Wang Z, Zhou Z, Ruan R, Zhang J, Song J, Yang H. Bionic Bilayer Scaffold for Synchronous Hyperthermia Therapy of Orthotopic Osteosarcoma and Osteochondral Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8538-8553. [PMID: 38343191 DOI: 10.1021/acsami.3c18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Large osseous void, postsurgical neoplastic recurrence, and slow bone-cartilage repair rate raise an imperative need to develop functional scaffold in clinical osteosarcoma treatment. Herein, a bionic bilayer scaffold constituting croconaine dye-polyethylene glycol@sodium alginate hydrogel and poly(l-lactide)/hydroxyapatite polymer matrix is fabricated to simultaneously achieve a highly efficient killing of osteosarcoma and an accelerated osteochondral regeneration. First, biomimetic osteochondral structure along with adequate interfacial interaction of the bilayer scaffold provide a structural reinforcement for transverse osseointegration and osteochondral regeneration, as evidenced by upregulated specific expressions of collagen type-I, osteopontin, and runt-related transcription factor 2. Meanwhile, thermal ablation of the synthesized nanoparticles and mitochondrial dysfunction caused by continuously released hydroxyapatite induce residual tumor necrosis synergistically. To validate the capabilities of inhibiting tumor growth and promoting osteochondral regeneration of our proposed scaffold, a novel orthotopic osteosarcoma model simulating clinical treatment scenarios of bone tumors is established on rats. Based on amounts of in vitro and in vivo results, an effective killing of osteosarcoma and a suitable osteal-microenvironment modulation of such bionic bilayer composite scaffold are achieved, which provides insightful implications for photonic hyperthermia therapy against osteosarcoma and following osseous tissue regeneration.
Collapse
Affiliation(s)
- Chenchi Gong
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Faqiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Zijie Zhou
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
8
|
Yang YT, Engleberg AI, Yuzbasiyan-Gurkan V. Establishment and Characterization of Cell Lines from Canine Metastatic Osteosarcoma. Cells 2023; 13:25. [PMID: 38201229 PMCID: PMC10778184 DOI: 10.3390/cells13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the advancements in treatments for other cancers, the outcomes for osteosarcoma (OSA) patients have not improved in the past forty years, especially in metastatic patients. Moreover, the major cause of death in OSA patients is due to metastatic lesions. In the current study, we report on the establishment of three cell lines derived from metastatic canine OSA patients and their transcriptome as compared to normal canine osteoblasts. All the OSA cell lines displayed significant upregulation of genes in the epithelial mesenchymal transition (EMT) pathway, and upregulation of key cytokines such as CXCL8, CXCL10 and IL6. The two most upregulated genes are MX1 and ISG15. Interestingly, ISG15 has recently been identified as a potential therapeutic target for OSA. In addition, there is notable downregulation of cell cycle control genes, including CDKN2A, CDKN2B and THBS1. At the protein level, p16INK4A, coded by CDKN2A, was undetectable in all the canine OSA cell lines, while expression of the tumor suppressor PTEN was variable, with one cell line showing complete absence and others showing low levels of expression. In addition, the cells express a variety of actionable genes, including KIT, ERBB2, VEGF and immune checkpoint genes. These findings, similar to those reported in human OSA, point to some genes that can be used for prognosis, targeted therapies and novel drug development for both canine and human OSA patients.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Huang J, Montelius M, Damber JE, Welén K. Magnetic Resonance Imaging as a Tool for Monitoring Intratibial Growth of Experimental Prostate Cancer Metastases in Mice. Methods Protoc 2023; 6:118. [PMID: 38133138 PMCID: PMC10745453 DOI: 10.3390/mps6060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Bone metastases cause morbidity and mortality in several human cancer forms. Experimental models are used to unravel the mechanisms and identify possible treatment targets. The location inside the skeleton complicates accurate assessment. This study evaluates the performance of magnetic resonance imaging (MRI) of prostate cancer tumors growing intratibially in mice. MRI detected intratibial tumor lesions with a sensitivity and specificity of 100% and 89%, respectively, compared to histological evaluation. Location and some phenotypical features could also be readily detected with MRI. Regarding volume estimation, the correlation between MRI and histological assessment was high (p < 0.001, r = 0.936). In conclusion, this study finds MRI to be a reliable tool for in vivo, non-invasive, non-ionizing, real-time monitoring of intratibial tumor growth.
Collapse
Affiliation(s)
- Junchi Huang
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| | - Mikael Montelius
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Jan-Erik Damber
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| | - Karin Welén
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| |
Collapse
|
10
|
da Costa MEM, Droit R, Khneisser P, Gomez-Brouchet A, Adam-de-Beaumais T, Nolla M, Signolles N, Torrejon J, Lombard B, Loew D, Ayrault O, Scoazec JY, Geoerger B, Vassal G, Marchais A, Gaspar N. Longitudinal characterization of primary osteosarcoma and derived subcutaneous and orthotopic relapsed patient-derived xenograft models. Front Oncol 2023; 13:1166063. [PMID: 37377921 PMCID: PMC10291137 DOI: 10.3389/fonc.2023.1166063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is a rare bone cancer in adolescents and young adults with a dismal prognosis because of metastatic disease and chemoresistance. Despite multiple clinical trials, no improvement in outcome has occurred in decades. There is an urgent need to better understand resistant and metastatic disease and to generate in vivo models from relapsed tumors. We developed eight new patient-derived xenograft (PDX) subcutaneous and orthotopic/paratibial models derived from patients with recurrent osteosarcoma and compared the genetic and transcriptomic landscapes of the disease progression at diagnosis and relapse with the matching PDX. Whole exome sequencing showed that driver and copy-number alterations are conserved from diagnosis to relapse, with the emergence of somatic alterations of genes mostly involved in DNA repair, cell cycle checkpoints, and chromosome organization. All PDX patients conserve most of the genetic alterations identified at relapse. At the transcriptomic level, tumor cells maintain their ossification, chondrocytic, and trans-differentiation programs during progression and implantation in PDX models, as identified at the radiological and histological levels. A more complex phenotype, like the interaction with immune cells and osteoclasts or cancer testis antigen expression, seemed conserved and was hardly identifiable by histology. Despite NSG mouse immunodeficiency, four of the PDX models partially reconstructed the vascular and immune-microenvironment observed in patients, among which the macrophagic TREM2/TYROBP axis expression, recently linked to immunosuppression. Our multimodal analysis of osteosarcoma progression and PDX models is a valuable resource to understand resistance and metastatic spread mechanisms, as well as for the exploration of novel therapeutic strategies for advanced osteosarcoma.
Collapse
Affiliation(s)
- Maria Eugenia Marques da Costa
- INSERM U1015, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Robin Droit
- INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Pierre Khneisser
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Anne Gomez-Brouchet
- Department of Pathology, IUCT-Oncopole, CHU Toulouse and University Toulouse, Pharmacology and Structural Biology Institute, CNRS UMR5089, Toulouse, France
| | - Tiphaine Adam-de-Beaumais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Marie Nolla
- Department of Pediatric Hemato-oncology, CHU Toulouse, Toulouse, France
| | - Nicolas Signolles
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM, Orsay, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM, Orsay, France
| | - Jean-Yves Scoazec
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gilles Vassal
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
11
|
Fan D, Zhang C, Wang H, Wei Q, Cai H, Wei F, Bian Z, Liu W, Wang X, Liu Z. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater Today Bio 2023; 20:100683. [PMID: 37346395 PMCID: PMC10279918 DOI: 10.1016/j.mtbio.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor occurring in adolescents. Surgery combined with adjuvant or neoadjuvant chemotherapy is the standard treatment. However, systemic chemotherapy is associated with serious side effects and a high risk of postoperative tumor recurrence, leading to a high amputation rate and mortality in cancer patients. Implant materials that can simultaneously repair large bone defects and prevent osteosarcoma recurrence are in urgent need. Herein, an intelligent system comprising 3D-printed titanium scaffold (TS) and pH-responsive PEGylated paclitaxel prodrugs was fabricated for bone defect reconstruction and recurrence prevention following osteosarcoma surgery. The drug-loaded implants exhibited excellent stability and biocompatibility for supporting the activity of bone stem cells under normal body fluid conditions and the rapid release of drugs in response to faintly acidic environments. An in vitro study demonstrated that five human osteosarcoma cell lines could be efficiently eradicated by paclitaxel released in an acidic microenvironment. Using mice models, we demonstrated that the drug-loaded TS can enable a pH-responsive treatment of postoperative tumors and effectively prevent osteosarcoma recurrence. Therefore, local implantation of this composite scaffold may be a promising topical therapeutic method to prevent osteosarcoma recurrence.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhilei Bian
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
12
|
Popova E, Tkachev S, Reshetov I, Timashev P, Ulasov I. Imaging Hallmarks of Sarcoma Progression Via X-ray Computed Tomography: Beholding the Flower of Evil. Cancers (Basel) 2022; 14:cancers14205112. [PMID: 36291896 PMCID: PMC9600487 DOI: 10.3390/cancers14205112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sarcomas represent the largest group of rare solid tumors that arise from mesenchymal stem cells and are a leading cause of cancer death in individuals younger than 20 years of age. There is an immediate need for the development of an algorithm for the early accurate diagnosis of sarcomas due to the high rate of diagnostic inaccuracy, which reaches up to 30%. X-ray computed tomography is a non-invasive imaging technique used to obtain detailed internal images of the human or animal body in clinical practice and preclinical studies. We summarized the main imaging features of soft tissue and bone sarcomas, and noted the development of new molecular markers to reach tumor type-specific imaging. Also, we demonstrated the possibility of the use X-ray computed microtomography for non-destructive 3D visualization of sarcoma progression in preclinical studies. Finding correlations between X-ray computed tomography modalities and the results of the histopathological specimen examination may significantly increase the accuracy of diagnostics, which leads to the initiation of appropriate management in a timely manner and, consequently, to improved outcomes. Abstract Sarcomas are a leading cause of cancer death in individuals younger than 20 years of age and represent the largest group of rare solid tumors. To date, more than 100 morphological subtypes of sarcomas have been described, among which epidemiology, clinical features, management, and prognosis differ significantly. Delays and errors in the diagnosis of sarcomas limit the number of effective therapeutic modalities and catastrophically worsen the prognosis. Therefore, the development of an algorithm for the early accurate diagnosis of sarcomas seems to be as important as the development of novel therapeutic advances. This literature review aims to summarize the results of recent investigations regarding the imaging of sarcoma progression based on the use of X-ray computed tomography (CT) in preclinical studies and in current clinical practice through the lens of cancer hallmarks. We attempted to summarize the main CT imaging features of soft-tissue and bone sarcomas. We noted the development of new molecular markers with high specificity to antibodies and chemokines, which are expressed in particular sarcoma subtypes to reach tumor type-specific imaging. We demonstrate the possibility of the use of X-ray computed microtomography (micro-CT) for non-destructive 3D visualization of solid tumors by increasing the visibility of soft tissues with X-ray scattering agents. Based on the results of recent studies, we hypothesize that micro-CT enables the visualization of neovascularization and stroma formation in sarcomas at high-resolution in vivo and ex vivo, including the novel techniques of whole-block and whole-tissue imaging. Finding correlations between CT, PET/CT, and micro-CT imaging features, the results of the histopathological specimen examination and clinical outcomes may significantly increase the accuracy of soft-tissue and bone tumor diagnostics, which leads to the initiation of appropriate histotype-specific management in a timely manner and, consequently, to improved outcomes.
Collapse
Affiliation(s)
- Elena Popova
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Tkachev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Igor Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-901-797-5406
| |
Collapse
|
13
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
14
|
Bownes LV, Marayati R, Quinn CH, Hutchins SC, Stewart JE, Anderson JC, Willey CD, Datta PK, Beierle EA. Serine-Threonine Kinase Receptor Associate Protein (STRAP) confers an aggressive phenotype in neuroblastoma via regulation of Focal Adhesion Kinase (FAK). J Pediatr Surg 2022; 57:1026-1032. [PMID: 35272839 PMCID: PMC9119921 DOI: 10.1016/j.jpedsurg.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Serine-threonine kinase receptor associated protein (STRAP), a scaffolding protein, is upregulated in many solid tumors. As such, we hypothesized that STRAP may be overexpressed in neuroblastoma tumors and may play a role in neuroblastoma tumor progression. METHODS We examined two publicly available neuroblastoma patient databases, GSE49710 (n = 498) and GSE49711 (n = 498), to investigate STRAP expression in human specimens. SK-N-AS and SK-N-BE(2) human neuroblastoma cell lines were stably transfected with STRAP overexpression (OE) plasmid, and their resulting phenotype studied. PamChip® kinomic peptide microarray evaluated the effects of STRAP overexpression on kinase activation. RESULTS In human specimens, higher STRAP expression correlated with high-risk disease, unfavorable histology, and decreased overall neuroblastoma patient survival. STRAP OE in neuroblastoma cell lines led to increased proliferation, growth, supported a stem-like phenotype and activated downstream FAK targets. When FAK was targeted with the small molecule FAK inhibitor, PF-573,228, STRAP OE neuroblastoma cells had significantly decreased growth compared to control empty vector cells. CONCLUSION Increased STRAP expression in neuroblastoma was associated with unfavorable tumor characteristics. STRAP OE resulted in increased kinomic activity of FAK. These findings suggest that the poorer outcomes in neuroblastoma tumors associated with STRAP overexpression may be secondary to FAK activation.
Collapse
Affiliation(s)
- Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
15
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
16
|
Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S, DeRenzo C. A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells. Front Immunol 2021; 12:691741. [PMID: 34211478 PMCID: PMC8239305 DOI: 10.3389/fimmu.2021.691741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022] Open
Abstract
The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an urgent need to develop novel therapies, and immunotherapy with CAR T cells has the potential to meet this challenge. However, there is a lack of preclinical models that mimic salient features of human disease including reliable development of metastatic disease post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice, and mice reliably developed orthotopic tumors and lung metastases as judged by bioluminescence imaging and histopathological analysis. Intratibial implantation also enabled surgical removal by lower leg amputation and monitoring for metastases development post-surgery. We then used this model to evaluate the antitumor activity of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-dependent manner and inhibited the development of pulmonary metastases resulting in a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic, spontaneously metastasizing OS model. This model may improve our ability not only to predict the safety and efficacy of current and next generation CAR T cell therapies but also other treatment modalities for metastatic OS.
Collapse
Affiliation(s)
- Lindsay Jones Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Amy Funk
- Department of Veterinary Medicine, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Phuong Nguyen
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jessica Wagner
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aaron Ross
- University of Tennessee Health Sciences School of Medicine, Memphis, TN, United States
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Andrew Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Christopher DeRenzo
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Hu Z, Li L, Lan W, Wei X, Wen X, Wu P, Zhang X, Xi X, Li Y, Wu L, Li W, Liao X. Enrichment of Wee1/CDC2 and NF-κB Signaling Pathway Constituents Mutually Contributes to CDDP Resistance in Human Osteosarcoma. Cancer Res Treat 2021; 54:277-293. [PMID: 33971703 PMCID: PMC8756126 DOI: 10.4143/crt.2021.320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/08/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Osteosarcoma (OS) universally exhibits heterogeneity and cisplatin (CDDP) resistance. Although the Wee1/CDC2 and NF-κB pathways were reported to show abnormal activation in some tumor cells with CDDP resistance, whether there is any concrete connection is currently unclear. We explored it in human OS cells. Materials and Methods Multiple OS cell lines were exposed to a Wee1 inhibitor (AZD1775) and CDDP to assess the half-maximal inhibitory concentration values. Western blot, coimmunoprecipitation, confocal immunofluorescence, cell cycle, and CCK-8 assays were performed to explore the connection between the Wee1/CDC2 and NF-κB pathways and their subsequent physiological contribution to CDDP resistance. Finally, CDDP-resistant PDX-OS xenograft models were established to confirm that AZD1775 restores the antitumor effects of CDDP. Results A sensitivity hierarchy of OS cells to CDDP and AZD1775 exists. In the highly CDDP-tolerant cell lines, Wee1 and RelA were physically crosslinked, which resulted in increased abundance of phosphorylated CDC2 (Y15) and RelA (S536) and consequent modulation of cell cycle progression, survival and proliferation. Wee1 inhibition restored the effects of CDDP on these processes in CDDP-resistant OS cells. In addition, animal experiments with CDDP-resistant PDX-OS cells showed that AZD1775 combined with CDDP not only restored CDDP efficacy but also amplified AZD1775 in inhibiting tumor growth and prolonged the median survival of the mice. Conclusion Simultaneous enrichment of molecules in the Wee1/CDC2 and NF-κB pathways and their consequent coactivation is a new molecular mechanism of CDDP resistance in OS cells. OS with this molecular signature may respond well to Wee1 inhibition as an alternative treatment strategy.
Collapse
Affiliation(s)
- Zhengbo Hu
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Lugen Li
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Wenxing Lan
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Xiao Wei
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Xiangyuan Wen
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Penghuan Wu
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China.,Orthopedics Center, Zhujiang Hospital of Southern Medical Univerty, Guangzhou, China
| | - Xianliao Zhang
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China.,Orthopedics Center, Zhujiang Hospital of Southern Medical Univerty, Guangzhou, China
| | - Xinhua Xi
- Department of Orthopaedics, the Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yufa Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Department of Pathology, Guangdong provincal people's Hospital & Guangdong, Academy of Medical Sciences, Guangzhou, China
| | - Liqi Wu
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Wenhu Li
- Derpartment of Orthopedics, Shaoguan First People's Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Xiaohong Liao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,University of Chinese Academy of Social Sciences (Graduate School), Guangzhou, China
| |
Collapse
|
18
|
Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells 2021; 10:cells10020416. [PMID: 33671173 PMCID: PMC7922432 DOI: 10.3390/cells10020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.
Collapse
|
19
|
A 3D-printed biomaterials-based platform to advance established therapy avenues against primary bone cancers. Acta Biomater 2020; 118:69-82. [PMID: 33039595 DOI: 10.1016/j.actbio.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
In this study we developed and validated a 3D-printed drug delivery system (3DPDDS) to 1) improve local treatment efficacy of commonly applied chemotherapeutic agents in bone cancers to ultimately decrease their systemic side effects and 2) explore its concomitant diagnostic potential. Thus, we locally applied 3D-printed medical-grade polycaprolactone (mPCL) scaffolds loaded with Doxorubicin (DOX) and measured its effect in a humanized primary bone cancer model. A bioengineered species-sensitive orthotopic humanized bone niche was established at the femur of NOD-SCID IL2Rγnull (NSG) mice. After 6 weeks of in vivo maturation into a humanized ossicle, Luc-SAOS-2 cells were injected orthotopically to induce local growth of osteosarcoma (OS). After 16 weeks of OS development, a biopsy-like defect was created within the tumor tissue to locally implant the 3DPDDS with 3 different DOX loading doses into the defect zone. Histo- and morphological analysis demonstrated a typical invasive OS growth pattern inside a functionally intact humanized ossicle as well as metastatic spread to the murine lung parenchyma. Analysis of the 3DPDDS revealed the implants' ability to inhibit tumor infiltration and showed local tumor cell death adjacent to the scaffolds without any systemic side effects. Together these results indicate a therapeutic and diagnostic capacity of 3DPDDS in an orthotopic humanized OS tumor model.
Collapse
|
20
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
21
|
Bertin H, Gomez-Brouchet A, Rédini F. Osteosarcoma of the jaws: An overview of the pathophysiological mechanisms. Crit Rev Oncol Hematol 2020; 156:103126. [PMID: 33113487 DOI: 10.1016/j.critrevonc.2020.103126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023] Open
Abstract
Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from long-bone OS (LBOS) in terms of the time of onset (two decades later), lower metastatic spread, and better survival. OS is characterized by the proliferation of osteoblastic precursor cells and the production of osteoid or immature bone. OS arises from a combination of genetic aberrations and a favourable microenvironment. This local microenvironment includes bone cells, blood vessels, stromal cells, and immune infiltrates, all of which may constitute potential targets for anti-cancer drugs. Differences in the clinical and biological behaviour of JOS versus LBOS are likely to at least in part be due to differences in the microenvironment between the two sites. The present review provides a brief overview of the known pathophysiological parameters involved in JOS.
Collapse
Affiliation(s)
- Hélios Bertin
- Department of Maxillofacial Surgery, Nantes University Hospital, 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| | - A Gomez-Brouchet
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, 1 Avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France.
| | - F Rédini
- Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| |
Collapse
|
22
|
Fortuna-Costa A, Granato RA, Meohas W, Lopes ACDS, Caruso AC, Castro E Silva Pinheiro R, d'Eça PDG, Dias RB, Perini JA, Barbosa APF, Moreira de Sá RA, Guimarães JAM, Murray SS, Duarte MEL. An association between successful engraftment of osteosarcoma patient-derived xenografts and clinicopathological findings. Histol Histopathol 2020; 35:1295-1307. [PMID: 32964941 DOI: 10.14670/hh-18-256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although osteosarcoma is a rare disease, with a global incidence rate estimated at 5.0/million/year, it is the most frequent primary bone sarcoma in children and adolescents. In translational research, the patient-derived xenograft (PDX) model is considered an authentic in vivo model for several types of cancer, as tumorgrafts faithfully retain the biological characteristics of the primary tumors. Our goal was to investigate the association between PDX formation and clinical findings of osteosarcoma patients and the ability of the model to preserve in immunocompromized mice the characteristics of the parental tumor. A fresh sample of the patient tumor obtained from a representative biopsy or from surgical resection was implanted into nude mice. When tumor outgrowths reached ~1,500mm³, fresh PDX fragments were re-transplanted into new hosts. Engraftment in mice was obtained after a latency period of 19-225 days (median 92 days) in 40.54% of the implanted samples. We confirmed the histopathological fidelity between the patient tumor and their respective established PDXs, including the expression of biomarkers. PDX take rate was higher in surgical resection samples, in post-chemotherapy surgical samples and in samples from patients with metastatic disease at presentation. In conclusion, we have shown that the osteosarcoma PDX model reliably recapitulates the morphological aspects of the human disease after serial passage in mice. The observation that more aggressive forms of osteosarcoma, including those with metastatic disease at presentation, have a higher efficiency to generate PDXs provides a promising scenario to address several unanswered issues in clinical oncology.
Collapse
Affiliation(s)
- Anneliese Fortuna-Costa
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | - Walter Meohas
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Ana Cristina de Sá Lopes
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Anabela Cunha Caruso
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | - Pedro da Gama d'Eça
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Rhayra Braga Dias
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Samuel S Murray
- Department of Medicine, University of California, Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maria Eugenia Leite Duarte
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Heidler CL, Roth EK, Thiemann M, Blattmann C, Perez RL, Huber PE, Kovac M, Amthor B, Neu‐Yilik G, Kulozik AE. Prexasertib (LY2606368) reduces clonogenic survival by inducing apoptosis in primary patient-derived osteosarcoma cells and synergizes with cisplatin and talazoparib. Int J Cancer 2020; 147:1059-1070. [PMID: 31782150 PMCID: PMC7384073 DOI: 10.1002/ijc.32814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
Progress in the systemic control of osteosarcoma has been limited over the past decades thus indicating the urgent clinical need for the development of novel treatment strategies. Therefore, we have recently developed new preclinical models to study promising novel agents for the treatment of pediatric osteosarcoma. The checkpoint kinase (chk) inhibitor prexasertib (LY2606368) and its salt form (LSN2940930) have recently been shown to be active in adult and pediatric malignancies, including sarcoma. We have now tested the potency of prexasertib in clonogenic survival assays in two new lines of primary patient-derived osteosarcoma cells and in two established osteosarcoma cell lines as a single agent and in combination with cisplatin and the poly ADP-ribose polymerase (PARP) inhibitor talazoparib. Prexasertib alone results in strongly reduced clonogenic survival at low nanomolar concentrations and acts by affecting cell cycle progression, induction of apoptosis and induction of double-stranded DNA breakage at concentrations that are well below clinically tolerable and safe plasma concentrations. In combination with cisplatin and talazoparib, prexasertib acts in a synergistic fashion. Chk1 inhibition by prexasertib and its combination with the DNA damaging agent cisplatin and the PARP-inhibitor talazoparib thus emerges as a potential new treatment option for pediatric osteosarcoma which will now have to be tested in preclinical primary patient derived in vivo models and clinical studies.
Collapse
Affiliation(s)
- Christopher L. Heidler
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Eva K. Roth
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Markus Thiemann
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
- Pediatrics 5 (Oncology, Hematology, Immunology)Klinikum Stuttgart OlgahospitalStuttgartGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| | - Ramon L. Perez
- Department of Molecular and Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Radiation Oncology (HIRO)National Center for Radiation Research in OncologyHeidelbergGermany
| | - Peter E. Huber
- Department of Molecular and Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Radiation Oncology (HIRO)National Center for Radiation Research in OncologyHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Michal Kovac
- Bone Tumour Reference Center, Institute of PathologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Gabriele Neu‐Yilik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| |
Collapse
|
24
|
Li W, Zhang X, Xi X, Li Y, Quan H, Liu S, Wu L, Wu P, Lan W, Shao Y, Li H, Chen K, Hu Z. PLK2 modulation of enriched TAp73 affects osteogenic differentiation and prognosis in human osteosarcoma. Cancer Med 2020; 9:4371-4385. [PMID: 32349184 PMCID: PMC7300400 DOI: 10.1002/cam4.3066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
There are three subtypes of undifferentiated human conventional osteosarcoma (HCOS): osteoblastic osteosarcoma (OOS), chondroblastic osteosarcoma (COS), and fibroblastic osteosarcoma (FOS). HCOS also exhibits heterogeneous pathological maldifferentiation in individual patients. Currently, the mechanism regulating HCOS differentiation remains unclear, and therapies are ineffective. Osteopontin (OPN) and osteocalcin (OCN) are markers of osteoblast maturation, and their expression is inhibited in HCOS. A previous study found that PLK2 inhibited TAp73 phosphorylation and consequent anti-OS function of TAp73 in OS cells with enriched TAp73. TAp73 was also reported to regulate bone cell calcification. Here, OOS was found to have higher TAp73 levels and PLK2 expression than those in COS, which is correlated with HCOS maldifferentiation according to Spearman analysis and affects patient prognosis according to Kaplan-Meier survival analysis. In the conventional OS cell-line Saos2 and in patient-derived xenograft OS (PDX-OS) cells, increased PLK2 expression owing to abundant TAp73 levels affected OPN and OCN content as measured by RT-PCR and Western blotting, and alizarin red staining showed that PLK2 affected calcium deposition in OS cells. In addition, PLK2 inhibition in PDX-OS cells prohibited clone formation, as indicated by a clonogenic assay, and sensitized OS cells to cisplatin (CDDP) (which consequently limited proliferation), as shown by the CCK-8 assay. In an established PDX animal model with abundant TAp73 levels, PLK2 inhibition or CDDP treatment prevented tumor growth and prolonged median survival. The combined therapeutic effect of PLK2 inhibition with CDDP treatment was better than that of either monotherapy. These results indicate that increased PLK2 levels due to enriched TAp73 affect osteogenic differentiation and maturation and OS prognosis. In conclusion, PLK2 is a potential target for differentiation therapy of OS with enriched TAp73.
Collapse
Affiliation(s)
- Wenhu Li
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Xianliao Zhang
- Orthopedics CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Xinhua Xi
- Department of OrthopaedicsThe Affiliated Yuebei People's Hospital of Shantou University Medical CollegeShaoguanChina
| | - Yufa Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of PathologyGuangdong provincial people's Hospital & Guangdong, Academy of Medical SciencesGuangzhouChina
| | - Hong Quan
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Shifeng Liu
- Orthopedics CenterDongguan Eighth People's HospitalDongguanChina
| | - Liqi Wu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Penghuan Wu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
- Orthopedics CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Wenxing Lan
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Yongjun Shao
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Haomiao Li
- Orthopedics CenterThe Third Affiliated Hospital of Southern Medical UniversityOrthopedics institute of Guangdong ProvinceGuangzhouChina
| | - Kebing Chen
- Orthopedics CenterThe Third Affiliated Hospital of Southern Medical UniversityOrthopedics institute of Guangdong ProvinceGuangzhouChina
| | - Zhengbo Hu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| |
Collapse
|
25
|
Yang Q, Yin H, Xu T, Zhu D, Yin J, Chen Y, Yu X, Gao J, Zhang C, Chen Y, Gao Y. Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906814. [PMID: 32108432 DOI: 10.1002/smll.201906814] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2 C MXene wrapped with S-nitrosothiol (RSNO)-grafted mesoporous silica with 3D-printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)-triggered photonic hyperthermia of MXene in the NIR-II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone-regeneration bioactivity, augmented by sufficient blood supply triggered by on-demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Haohao Yin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Tianming Xu
- Department of Orthopedics, No. 455 Hospital of PLA, The Second Military Medical University, Shanghai, 200052, P. R. China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaowei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| |
Collapse
|
26
|
Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 2020; 122:680-691. [PMID: 31919402 PMCID: PMC7054410 DOI: 10.1038/s41416-019-0682-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Predictive preclinical models play an important role in the assessment of new treatment strategies and as avatar models for personalised medicine; however, reliable and timely model generation is challenging. We investigated the feasibility of establishing patient-derived xenograft (PDX) models of high-risk neuroblastoma from a range of tumour-bearing patient materials and assessed approaches to improve engraftment efficiency. Methods PDX model development was attempted in NSG mice by using tumour materials from 12 patients, including primary and metastatic solid tumour samples, bone marrow, pleural fluid and residual cells from cytogenetic analysis. Subcutaneous, intramuscular and orthotopic engraftment were directly compared for three patients. Results PDX models were established for 44% (4/9) of patients at diagnosis and 100% (5/5) at relapse. In one case, attempted engraftment from pleural fluid resulted in an EBV-associated atypical lymphoid proliferation. Xenogeneic graft versus host disease was observed with attempted engraftment from lymph node and bone marrow tumour samples but could be prevented by T-cell depletion. Orthotopic engraftment was more efficient than subcutaneous or intramuscular engraftment. Conclusions High-risk neuroblastoma PDX models can be reliably established from diverse sample types. Orthotopic implantation allows more rapid model development, increasing the likelihood of developing an avatar model within a clinically useful timeframe.
Collapse
|
27
|
Schott C, Shah AT, Sweet-Cordero EA. Genomic Complexity of Osteosarcoma and Its Implication for Preclinical and Clinical Targeted Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:1-19. [PMID: 32767231 DOI: 10.1007/978-3-030-43085-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a genomically complex disease characterized by few recurrent single-nucleotide mutations or in-frame fusions. In contrast, structural alterations, including copy number changes, chromothripsis, kataegis, loss of heterozygosity (LOH), and other large-scale genomic alterations, are frequent and widespread across the osteosarcoma genome. These observed structural alterations lead to activation of oncogenes and loss of tumor suppressors which together contribute to oncogenesis. To date, few targeted therapies for osteosarcoma have been identified. It is likely that effectiveness of targeted therapies will vary greatly in subsets of tumors with distinct key driver events. Model systems which can recapitulate the genetic heterogeneity of this disease are needed to test this hypothesis. One possible approach is to use patient-derived xenograft (PDX) models characterized with regards to their similarity to the human tumor samples from which they were derived. Here we review evidence pointing to the genomic complexity of osteosarcoma and how this is reflected in available model systems. We also review the current state of preclinical testing for targeted therapies using these models.
Collapse
Affiliation(s)
- Courtney Schott
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Avanthi Tayi Shah
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Castillo-Tandazo W, Mutsaers AJ, Walkley CR. Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Curr Osteoporos Rep 2019; 17:343-352. [PMID: 31529263 DOI: 10.1007/s11914-019-00534-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Osteosarcoma (OS) is the most common cancer of bone, yet is classified as a rare cancer. Treatment and outcomes for OS have not substantively changed in several decades. While the decoding of the OS genome greatly advanced the understanding of the mutational landscape of OS, immediately actionable therapeutic targets were not apparent. Here we describe recent preclinical models that can be leveraged to identify, test, and prioritize therapeutic candidates. RECENT FINDINGS The generation of multiple high fidelity murine models of OS, the spontaneous disease that arises in pet dogs, and the establishment of a diverse collection of patient-derived OS xenografts provide a robust preclinical platform for OS. These models enable evidence to be accumulated across multiple stages of preclinical evaluation. Chemical and genetic screening has identified therapeutic targets, often demonstrating cross species activity. Clinical trials in both PDX models and in canine OS have effectively tested new therapies for prioritization. Improving clinical outcomes in OS has proven elusive. The integrated target discovery and testing possible through a cross species platform provides validation of a putative target and may enable the rigorous evaluation of new therapies in models where endpoints can be rapidly assessed.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Carl R Walkley
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
29
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
30
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
31
|
Bertin H, Guilho R, Brion R, Amiaud J, Battaglia S, Moreau A, Brouchet-Gomez A, Longis J, Piot B, Heymann D, Corre P, Rédini F. Jaw osteosarcoma models in mice: first description. J Transl Med 2019; 17:56. [PMID: 30813941 PMCID: PMC6391788 DOI: 10.1186/s12967-019-1807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from other OS in terms of the time of occurrence (two decades later) and better survival. The aim of our work was to develop and characterize specific mouse models of JOS. METHODS Syngenic and xenogenic models of JOS were developed in mice using mouse (MOS-J) and human (HOS1544) osteosarcoma cell lines, respectively. An orthotopic patient-derived xenograft model (PDX) was also developed from a mandibular biopsy. These models were characterized at the histological and micro-CT imaging levels, as well as in terms of tumor growth and metastatic spread. RESULTS Homogeneous tumor growth was observed in both the HOS1544 and the MOS-J JOS models by injection of 0.25 × 106 and 0.50 × 106 tumor cells, respectively, at perimandibular sites. Histological characterization of the tumors revealed features consistent with high grade conventional osteosarcoma, and the micro-CT analysis revealed both osteogenic and osteolytic lesions. Early metastasis was encountered at day 14 in the xenogenic model, while there were no metastatic lesions in the syngenic model and in the PDX models. CONCLUSION We describe the first animal model of JOS and its potential use for therapeutic applications. This model needs to be compared with the usual long-bone osteosarcoma models to investigate potential differences in the bone microenvironment.
Collapse
Affiliation(s)
- Hélios Bertin
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France. .,Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.
| | - Romain Guilho
- Faculty of Population Health Sciences, UCL Institute of Child Health, 30 Guilford Street, London, England, WC1N 1EH, UK
| | - Régis Brion
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Jérôme Amiaud
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Séverine Battaglia
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Anne Moreau
- Service d'anatomie et cytologie pathologique, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Anne Brouchet-Gomez
- Service d'anatomie et cytologie pathologique, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.,Centre de ressources biologiques - Cancer, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Julie Longis
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Benoit Piot
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Dominique Heymann
- Laboratoire Hétérogénéité Tumorale et Médecine de Précision, Institut de Cancérologie de l'Ouest, Boulevard Jacques Monod, 44805, Saint Herblain, France.,Service d'Histologie-Embryologie, Faculté de médecine de Nantes, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Pierre Corre
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.,Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Françoise Rédini
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| |
Collapse
|
32
|
Feng S, Wu ZX, Zhao Z, Liu J, Sun K, Guo C, Wang H, Wu Z. Engineering of Bone- and CD44-Dual-Targeting Redox-Sensitive Liposomes for the Treatment of Orthotopic Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7357-7368. [PMID: 30682240 DOI: 10.1021/acsami.8b18820] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to develop an efficient step-by-step osteosarcoma (OS)-targeting liposome system functionalized with a redox-cleavable, bone- and cluster of differentiation 44 (CD44)-dual-targeting polymer. Furthermore, the effect of coadministration of a tumor-penetrating peptide, internalizing RGD (iRGD), was investigated. First, a bone-targeting moiety, alendronate (ALN), was conjugated with hyaluronic acid (HA), a ligand for CD44. This ALN-HA conjugate was coupled with DSPE-PEG2000-COOH through a bioreducible disulfide linker (-SS-) to obtain a functionalized lipid, ALN-HA-SS-L, to be postinserted into preformed liposomes loaded with doxorubicin (DOX). The roles of ALN, HA, and the redox sensitivity of the ALN-HA-SS-L liposomes (ALN-HA-SS-L-L) in the anti-OS effect were critically evaluated against various reference liposomal formulations (with only ALN, HA, or redox sensitivity). ALN-HA-SS-L-L displayed a zeta potential of -26.07 ± 0.32 mV and selectively disassembled in the presence of a reducing agent, 10 mM glutathione, which can be found in cancer cells. Compared to various reference liposomes, ALN-HA-SS-L-L/DOX had significantly higher cytotoxicity to human OS MG-63 cells alongside high and rapid cellular uptake. In the orthotopic OS nude mouse models, ALN-HA-SS-L-L/DOX showed remarkable tumor growth suppression and prolonged survival time. This result was further improved by the coadministration of iRGD. The antitumor effects of various liposomes were ranked in the same order as the degree of tumor biodistribution shown by in vivo/ex vivo imaging: ALN-HA-SS-L-L coadministered with iRGD > ALN-HA-SS-L-L > HA-SS-L-L > HA-L-L > PEG-L> free drug. ALN-HA-SS-L-L/DOX also reduced the cardiotoxicity of DOX and lung metastases. Overall, this study demonstrated that ALN-HA-SS-L-L/DOX, equipped with bone- and CD44-dual-targeting abilities and redox sensitivity, could be a promising OS-targeted therapy. The efficacy could also be augmented by coadministration of iRGD.
Collapse
Affiliation(s)
- Shuaishuai Feng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
| | - Zi-Xin Wu
- Qingdao Municipal Hospital , Qingdao 266071 Shandong Province , PR China
| | - Ziyan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
| | - Jinhu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
| | - Chuanyou Guo
- Qingdao Municipal Hospital , Qingdao 266071 Shandong Province , PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
| | - Zimei Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong , Yantai University , Yantai 264005 , PR China
- School of Pharmacy , University of Auckland , Auckland 1142 , New Zealand
| |
Collapse
|
33
|
Zhan FB, Zhang XW, Feng SL, Cheng J, Zhang Y, Li B, Xie LZ, Deng QR. MicroRNA-206 Reduces Osteosarcoma Cell Malignancy In Vitro by Targeting the PAX3-MET Axis. Yonsei Med J 2019; 60:163-173. [PMID: 30666838 PMCID: PMC6342722 DOI: 10.3349/ymj.2019.60.2.163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study was undertaken to explore how miR-206 represses osteosarcoma (OS) development. MATERIALS AND METHODS Expression levels of miR-206, PAX3, and MET mRNA were explored in paired OS and adjacent tissue specimens. A patient-derived OS cell line was established. miR-206 overexpression and knockdown were achieved by lentiviral transduction. PAX3 and MET overexpression were achieved by plasmid transfection. Treatment with hepatocyte growth factor (HGF) was utilized to activate c-Met receptor. Associations between miR-206 and PAX3 or MET mRNA in OS cells were verified by AGO2-RNA immunoprecipitation assay and miRNA pulldown assay. OS cell malignancy was evaluated in vitro by cell proliferation, metastasis, and apoptosis assays. PAX3 and MET gene expression in OS cells was assayed by RT-qPCR and Western blot. Activation of PI3K-AKT and MAPK-ERK in OS cells were assayed by evaluating Akt1 Ser473 phosphorylation and total threonine phosphorylation of Erk1/2, respectively. RESULTS Expression levels of miR-206 were significantly decreased in OS tissue specimens, compared to adjacent counterparts, and were inversely correlated with expression of PAX3 and MET mRNA. miR-206 directly interacted with PAX3 and MET mRNA in OS cells. miR-206 overexpression significantly reduced PAX3 and MET gene expression in OS cells in vitro, resulting in significant decreases in Akt1 and Erk1/2 activation, cell proliferation, and metastasis, as well as increases in cell apoptosis, while miR-206 knockdown showed the opposite effects. The effects of miR-206 overexpression on OS cells were reversed by PAX3 or MET overexpression, but only partially attenuated by HGF treatment. CONCLUSION miR-206 reduces OS cell malignancy in vitro by targeting PAX3 and MET gene expression.
Collapse
Affiliation(s)
- Fang Biao Zhan
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Xian Wei Zhang
- Department of Neurology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Shi Long Feng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jun Cheng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - You Zhang
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Bo Li
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong Xie
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Qian Rong Deng
- Department of Internal Medicine, Chongqing Wanzhou District Traditional Chinese Hospital, Chongqing, China.
| |
Collapse
|
34
|
Sergi C, Shen F, Liu SM. Insulin/IGF-1R, SIRT1, and FOXOs Pathways-An Intriguing Interaction Platform for Bone and Osteosarcoma. Front Endocrinol (Lausanne) 2019; 10:93. [PMID: 30881341 PMCID: PMC6405434 DOI: 10.3389/fendo.2019.00093] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Aging is a substantial risk factor for the development of osteoarthritis (OA) and, probably, an essential substrate for the development of neoplastic disease of the bone, such as osteosarcoma, which is the most common malignant mesenchymal primary bone tumor. Genetic studies have established that the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/AKT (Protein Kinase B) signal transduction pathway is involved across species, including nematodes, fruit flies, and mammals. SIRT1, a phylogenetically-conserved family of deacetylases, seems to play pleiotropic effects in epithelial malignancies of the liver and interact with the IGF-1/PI3K/AKT signal transduction pathway. Some of the most critical processes in degenerative conditions may indeed include the insulin/IGF1R and SIRT1 signaling pathways as well as some specific transcription factors. The Forkhead box O (FOXO) transcription factors (FOXOs) control diverse cellular functions, such as metabolism, longevity, and cell death. FOXOs play a critical role in the IGF-1/PI3K/AKT signal transduction pathway. FOXOs can indeed be modulated to reduce age-related diseases. FOXOs have advantageous inhibitory effects on fibroblast and myofibroblast activation, which are accompanied by a subsequent excessive production of extracellular matrix. FOXOs can block or decrease the fibrosis levels in numerous organs. Previously, we observed a correlation between nuclear FOXO3 and high caspase-8 expression, which induces cellular apoptosis in response to harmful external stimuli. In this perspective, we emphasize the current advances and interactions involving the insulin/IGF1R, SIRT1, and FOXOs pathways in the bone and osteosarcoma for a better understanding of the mechanisms potentially underpinning tissue degeneration and tumorigenesis.
Collapse
Affiliation(s)
- Consolato Sergi
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Stollery Children's Hospital, Edmonton, AB, Canada
- *Correspondence: Consolato Sergi orcid.org/0000-0002-2779-7879
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Straessler K, Hazard FK, Spunt SL, Marina N, Kim GE, Cho SJ, Avedian RS, Mohler DG, Kim MO, DuBois SG, Hawkins DS, Sweet-Cordero EA. Genome-Informed Targeted Therapy for Osteosarcoma. Cancer Discov 2018; 9:46-63. [PMID: 30266815 DOI: 10.1158/2159-8290.cd-17-1152] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specific candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplification (identified by whole-genome sequencing) and changes in gene expression as identified by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specific dependencies could be identified within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leanne C Sayles
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Marcus R Breese
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Amanda L Koehne
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Stanley G Leung
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Heng-Yi Liu
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Aviv Spillinger
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Avanthi T Shah
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Bogdan Tanasa
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Krystal Straessler
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Sheri L Spunt
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Neyssa Marina
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, California
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, California
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Mi-Ok Kim
- Biostatistics Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchison Cancer Research Center, Seattle, Washington
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California.
| |
Collapse
|
36
|
Lu W, Chao T, Ruiqi C, Juan S, Zhihong L. Patient-derived xenograft models in musculoskeletal malignancies. J Transl Med 2018; 16:107. [PMID: 29688859 PMCID: PMC5913806 DOI: 10.1186/s12967-018-1487-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Successful oncological drug development for bone and soft tissue sarcoma is grossly stagnating. A major obstacle in this process is the lack of appropriate animal models recapitulating the complexity and heterogeneity of musculoskeletal malignancies, resulting in poor efficiency in translating the findings of basic research to clinical applications. In recent years, patient-derived xenograft (PDX) models generated by directly engrafting patient-derived tumor fragments into immunocompromised mice have recaptured the attention of many researchers due to their properties of retaining the principle histopathology, biological behaviors, and molecular and genetic characteristics of the original tumor, showing promising future in both basic and clinical studies of bone and soft tissue sarcoma. Despite several limitations including low take rate and long take time in PDX generation, deficient immune system and heterologous tumor microenvironment of the host, PDXs offer a more advantageous platform for preclinical drug screening, biomarker identification and clinical therapeutic decision guiding. Here, we provide a timely review of the establishment and applications of PDX models for musculoskeletal malignancies and discuss current challenges and future directions of this approach.
Collapse
Affiliation(s)
- Wan Lu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410010, Hunan, People's Republic of China
| | - Tu Chao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410010, Hunan, People's Republic of China
| | - Chen Ruiqi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410010, Hunan, People's Republic of China
| | - Su Juan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410010, Hunan, People's Republic of China
| | - Li Zhihong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410010, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Zarzosa P, Navarro N, Giralt I, Molist C, Almazán-Moga A, Vidal I, Soriano A, Segura MF, Hladun R, Villanueva A, Gallego S, Roma J. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clin Transl Oncol 2016; 19:44-50. [PMID: 27718156 DOI: 10.1007/s12094-016-1557-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.
Collapse
Affiliation(s)
- P Zarzosa
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Navarro
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Giralt
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Molist
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Almazán-Moga
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Vidal
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Villanueva
- Chemoresistance and Predicitive Factors Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Xenopat S.L. Business Bioincubator Bellvitge Health Science Campus, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - S Gallego
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Roma
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|