1
|
Wang L, Kong P, Zhang C, Gao L, Zhu L, Liu J, Gao S, Chen T, Liu H, Yao H, Liu Y, Feng Y, Zhao L, Li Y, Gao L, Zhang X. Outcomes of patients with hematological malignancies who undergo unrelated donor hematopoietic stem cell transplantation with ATG-Fresenius versus ATG-Genzyme. Ann Hematol 2023; 102:1569-1579. [PMID: 37097455 PMCID: PMC10182153 DOI: 10.1007/s00277-023-05220-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
To compare the outcomes of patients with hematological malignancies who received ATG-Fresenius (ATG-F) 20 mg/kg versus those who received ATG-Genzyme (ATG-G) 10 mg/kg in an unrelated donor hematopoietic stem cell transplantation (HSCT) procedure, a total of 186 patients who underwent their first allogeneic HSCT with an unrelated donor were retrospectively analyzed. One hundred and seven patients received ATG-F, and seventy-nine patients received ATG-G. Multivariate analysis showed that the type of ATG preparation had no effect on neutrophil engraftment (P = 0.61), cumulative incidence of relapse (P = 0.092), nonrelapse mortality (P = 0.44), grade II-IV acute graft-versus-host disease (GVHD) (P = 0.47), chronic GVHD (P = 0.29), overall survival (P = 0.795), recurrence-free survival (P = 0.945) or GVHD-free relapse-free survival (P = 0.082). ATG-G was associated with a lower risk of extensive chronic GVHD and a higher risk of cytomegaloviremia (P = 0.01 and HR = 0.41, P < 0.001 and HR = 4.244, respectively). The results of this study suggest that the preparation of rabbit ATG used for unrelated HSCT should be selected based on the incidence of extensive chronic GVHD of each center, and the posttransplant management strategy should be adjusted according to the ATG preparation.
Collapse
Affiliation(s)
- Lu Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Peiyan Kong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jia Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shichun Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ting Chen
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Huanfeng Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Han Yao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuqing Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yimei Feng
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuxia Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Huang Z, Yan H, Teng Y, Shi W, Xia L. Lower dose of ATG combined with basiliximab for haploidentical hematopoietic stem cell transplantation is associated with effective control of GVHD and less CMV viremia. Front Immunol 2022; 13:1017850. [PMID: 36458000 PMCID: PMC9705727 DOI: 10.3389/fimmu.2022.1017850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
Currently, the graft-versus-host disease (GVHD) prophylaxis consists of an immunosuppressive therapy mainly based on antithymocyte globulin (ATG) or post-transplant cyclophosphamide (PTCy). GVHD remains a major complication and limitation to successful allogeneic haploidentical hematopoietic stem cell transplantation (haplo-HSCT). We modified the ATG-based GVHD prophylaxis with the addition of basiliximab in the setting of haplo-HSCT and attempted to explore the appropriate dosages. We conducted a retrospective analysis of 239 patients with intermediate- or high-risk hematologic malignancies who received haplo-HSCT with unmanipulated peripheral blood stem cells combined or not with bone marrow. All patients received the same GVHD prophylaxis consisting of the combination of methotrexate, cyclosporine or tacrolimus, mycofenolate-mofetil, and basiliximab with different doses of ATG (5-9mg/kg). With a median time of 11 days (range, 7-40 days), the rate of neutrophil engraftment was 96.65%. The 100-day cumulative incidences (CIs) of grade II-IV and III-IV aGVHD were 15.8 ± 2.5% and 5.0 ± 1.5%, while the 2-year CIs of total cGVHD and extensive cGVHD were 9.8 ± 2.2% and 4.1 ± 1.5%, respectively. The 3-year CIs of treatment-related mortality (TRM), relapse, overall survival (OS), and disease-free survival (DFS) were 14.6 ± 2.6%, 28.1 ± 3.4%, 60.9 ± 3.4%, 57.3 ± 3.4%, respectively. Furthermore, the impact of the reduction of the ATG dose to 6 mg/kg or less in combination with basiliximab on GVHD prevention and transplant outcomes among patients was analyzed. Compared to higher dose of ATG(>6mg/kg), lower dose of ATG (≤6mg/kg) was associated with a significant reduced risk of CMV viremia (52.38% vs 79.35%, P<0.001), while the incidences of aGVHD and cGVHD were similar between the two dose levels. No significant effect was found with regard to the risk of relapse, TRM, and OS. ATG combined with basiliximab could prevent GVHD efficiently and safely. The optimal scheme of using this combined regimen of ATG and basiliximab is that administration of lower dose ATG (≤6mg/kg), which seems to be more appropriate for balancing infection control and GVHD prophylaxis.
Collapse
Affiliation(s)
| | | | | | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Li Y, Wang M, Fang X, Jiang Y, Sui X, Li Y, Liu X, Wang X, Lu D, Sun X, Xu H, Wang X. The impact of different doses of antithymocyte globulin conditioning on immune reconstitution upon hematopoietic stem cell transplantation. Transpl Immunol 2021; 69:101486. [PMID: 34678462 DOI: 10.1016/j.trim.2021.101486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Anti-thymocyte globulin (ATG) is used prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT) for graft-versus-host disease (GVHD) prophylaxis. Two different ATG doses (7.5 or 10 mg/kg) were evaluated in comparison with a group without ATG therapy. METHODS We retrospectively analyzed 132 patients who were transplanted with HSCT without ATG (non-ATG), or who received 7.5 mg/kg ATG (ATG-7.5) or 10 mg/kg ATG (ATG-10) prior to transplantation. The immune cells (CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells and CD16+CD56+ NK cells) were examined in peripheral blood every three months post-HSCT for 12 months. RESULTS Compared with non-ATG group, combined ATG-7.5/ATG-10 groups had significantly lower CD3+CD4+ T cells and higher CD3+CD8+ T cells at 3, 6, 9, 12 months post-HSCT; thus, displaying a lower CD4/CD8 ratio in the ATG groups compared to non-ATG group. The ratio of CD19+ B cells was statistically lower (at 3rd month, p = .014; at 6th month, p = .025) in combined ATG-7.5/ATG-10 groups at 3 and 6 months post-HSCT, but not at 9 and 12 months after HSCT. The ratios of CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells and CD16+CD56+ NK cells were similar between the ATG-7.5 and ATG-10 groups at all examined time points. The overall survival (OS), progression-free survival (PFS), relapse and acute GVHD (aGVHD) were comparable among recipients without ATG therapy and with ATG-7.5 or/and ATG-10 therapies. Multivariate analysis revealed that immune cells ratios were not independent factors affecting prognosis. CONCLUSION The ATG therapy at higher and lower doses led to a delayed reconstitution of T cells and the inversion of CD4/CD8 ratio for at least one year after HSCT.
Collapse
Affiliation(s)
- Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China..
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xianghua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dongyue Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.; School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Liu J, Gao H, Xu LP, Mo XD, Liu R, Liang S, Wu N, Wang M, Wang Z, Chang YJ, Wang Y, Zhang XH, Huang XJ. Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vδ2 + T cells activities after hematopoietic transplantation for blood malignancies. J Immunother Cancer 2021; 8:jitc-2019-000208. [PMID: 32221014 PMCID: PMC7206968 DOI: 10.1136/jitc-2019-000208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Following the extensive use of immunosuppressive drugs in the clinic, immunosuppression-associated side effects have received increasing attention. Epstein-Barr virus (EBV) reactivation and related lymphoproliferative diseases (LPD) are the lethal complications observed after allogeneic hematopoietic cell transplantation (alloHCT). While studies generally suggest an association between immunosuppressants and EBV reactivation, the effects of specific immunosuppressive drugs and which T-cell subsets mediate these correlations are unclear. Vδ2+ T cells are correlated with EBV reactivation after alloHCT. Researchers have not determined whether Vδ2+ T-cell activities are affected by immunosuppressants and thereby facilitate EBV reactivation and related LPD. Methods A clinical cohort study of 170 patients with hematopoietic malignancies who received haploidentical hematopoietic cell transplantation (haploHCT) was performed to investigate whether the early cessation of mycophenolate mofetil (MMF) decreases EBV reactivation and related LPD and to determine whether this change is associated with the recovery of Vδ2 + T cells after transplantation. The effects of MMF on the expansion and anti-EBV capacity of Vδ2+ T cells were detected in vitro and in an immunodeficient mouse model. Results A reduction in the course of MMF significantly improved the recovery of Vδ2+ T cells from 30 to 90 days after haploHCT (p=0.002, p=0.042 and p=0.035, respectively), accompanied by a significant decrease in EBV reactivation (from 26% to 13%, p=0.033) and EBV-LPD (from 10.6% to 2.4%, p=0.029). The day-30 Vδ2+ T level remained an independent factor for EBV reactivation in patients with different MMF durations (p=0.007). In the in-vitro experiments, MMF inhibited Vδ2+ T-cell expansion and its cytotoxicity on EBV-transformed malignant cells. Furthermore, the therapeutic and prophylactic effects of adoptively transferred human Vδ2+ T cells were attenuated by the MMF treatment in immunodeficient mice with EBV-LPD. Conclusions These results elucidated a negative effect of immunosuppressants on the anti-EBV capacity of Vδ2+ T cells. Strategies that appropriately relieve the immunosuppression may improve anti-EBV immunity by increasing the activity of Vδ2+ T cells after alloHCT.
Collapse
Affiliation(s)
- Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ruoyang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhidong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wang M, Fang X, Jiang Y, Sui X, Li Y, Liu X, Wang X, Li P, Xu H, Wang X. Comparison of 2 Different Doses of Antithymocyte Globulin in Conditioning Regimens for Haploidentical Hematopoietic Stem Cell Transplantation. EXP CLIN TRANSPLANT 2021; 20:69-76. [PMID: 34387153 DOI: 10.6002/ect.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Antithymocyte globulin is extensively used for prophylaxis of graft-versus-host disease in patients undergoing haploidentical hematopoietic stem cell transplantation. However, different doses of antithymocyte globulin are administered in clinical practice. This study aimed to identify the optimal dose of antithymocyte globulin (thymoglobulin) in haploidentical hematopoietic stem cell transplantation. MATERIALS AND METHODS We retrospectively analyzed the effects of 10 mg/kg (2.5 mg/kg on days -5 to -2) versus 7.5 mg/kg thymoglobulin (2.5 mg/kg on days -4 to -2) on patients receiving haploidentical hematopoietic stem cell transplantation with myeloablative conditioning. RESULTS We observed significant differences between the 2 treatment groups with regard to cumulative incidence of grade II to IV acute graft-versus-host disease (15.3% vs 14.6%; P = .93) and 3-year chronic graft-versus-host disease (12.1% vs 14.3%; P = .77). The probabilities of 3-year overall survival (68.9% vs 73.5%; P = .98) and graft-versus-host disease-free/relapse-free survival (66.7% vs 53.1%; P = .14) were comparable between the 2 groups. However, there was a trend for lower cumulative incidence of hemorrhagic cystitis in the 7.5 mg/kg treatment group compared with the 10 mg/kg treatment group (40.7% vs 24.4%; P = .07). CONCLUSIONS For patients who received a reduced dose of antithymocyte globulin (7.5 vs 10 mg/kg), there was no impaired effect on prophylaxis of graft-versus-host disease, with a trend of reduced incidence of hemorrhagic cystitis. Further studies of the 7.5 mg/kg dose of antithymocyte globulin are warranted for patients receiving haploidentical hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Mingyang Wang
- From the Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,the Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,the State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin,China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin R, Wang Y, Huang F, Fan Z, Zhang S, Yang T, Xu Y, Xu N, Xuan L, Ye J, Sun J, Huang X, Liu Q. Two dose levels of rabbit antithymocyte globulin as graft-versus-host disease prophylaxis in haploidentical stem cell transplantation: a multicenter randomized study. BMC Med 2019; 17:156. [PMID: 31401973 PMCID: PMC6689871 DOI: 10.1186/s12916-019-1393-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The optimal dose of rabbit antithymocyte globulin (ATG, ImtixSangstat) minimizing infections without increasing graft-versus-host disease (GVHD) is unknown in T cell-replete, G-CSF-primed haploidentical hematopoietic stem cell transplantation (haplo-HSCT). METHODS Four hundred and eight patients were enrolled in this multicenter study to evaluate the effect of 7.5 mg/kg and 10.0 mg/kg rabbit ATG on viral infections and GVHD prophylaxis after haplo-HSCT. The primary endpoint was EBV DNAemia within 1 year posttransplantation. RESULTS The 1-year incidence of EBV DNAemia was 20.7% (95% confidence interval, 15.4-26.5) and 40.0% (33.3-46.6) in the 7.5 mg/kg and 10.0 mg/kg groups, respectively (P < 0.001). The 100-day cumulative incidence of grade II to IV aGVHD was 27.1% (21.1-33.4) and 25.4% (19.6-31.5) in the 7.5 mg/kg and 10.0 mg/kg ATG groups, respectively (P = 0.548). The 2-year incidence of chronic GVHD was 34.6% (27.8-41.4) and 36.2% (29.1-43.2) in the 7.5 mg and 10.0 mg groups (P = 0.814). The 1-year incidence of CMV DNAemia was 73.4% (67.2-79.4) and 83.4% (77.5-87.9) in the 7.5 mg/kg and 10.0 mg/kg groups (P = 0.038). The 3-year overall survival posttransplantation was 69.5% (63.2-75.8) and 63.5% (56.2-70.8), and the disease-free survival was 62.2% (55.3-69.1) and 60.3% (53.0-67.6) in the 7.5 mg/kg and 10.0 mg/kg groups, respectively (OS: P = 0.308; DFS: P = 0.660). The counts of EBV- and CMV-specific cytotoxic T cells (CTLs) were higher in the 7.5 mg/kg group than in the 10.0 mg/kg group early posttransplantation. CONCLUSIONS Compared with 10.0 mg/kg, 7.5 mg/kg ATG for GVHD prophylaxis was associated with reduced EBV and CMV infections without increased incidence of GVHD in haplo-HSCT, probably by affecting EBV- and CMV-specific CTLs. TRIAL REGISTRATION clinicaltrials.gov, NCT01883180 . Registered 14 June 2013.
Collapse
Affiliation(s)
- Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shen Zhang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Sun Y, Wei C, Cao C, Tan X, Zeng H, Luo Y, Chen L. New Strategy of Acute Graft-vs-Host Disease: Investigation of a Reduced Dose of Antithymocyte Globulin in Haploidentical Hematopoietic Stem Cell Transplantation. Transplant Proc 2019; 51:890-895. [PMID: 30979481 DOI: 10.1016/j.transproceed.2018.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Graft-vs-host disease (GVHD) is one of the biggest challenges in haploidentical hematopoietic stem cell transplantation. Antithymocyte globulins (ATGs) are widely used to overcome GVHD, but excessive immunosuppression increases the chances of relapse and infection following transplantation. No defined standard of the appropriate dose of ATG usage is recognized. The study included 11 patients who were treated with a reduced dose of ATG to prevent GVHD in haploidentical hematopoietic stem cell transplantation. A reduced dose of ATG-Thymoglobulin (total dose of 5 mg/kg) was used in the pretreatment protocol for 2 consecutive days. All patients had successful transplantation. The median time of neutrophil engraftment was 12 days. All chimerism tests passed on day 30, 60, and 90 post transplantation. None of the patients had acute GVHD, while only 2 patients had I to II degree chronic GVHD (18.2%). No transplantation-related deaths were observed. The current findings suggest that the reduced dose of ATG can effectively prevent the incidence of acute GVHD in haploidentical hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Y Sun
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - C Wei
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - C Cao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - X Tan
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - H Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Y Luo
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - L Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
9
|
van der Maas NG, Berghuis D, van der Burg M, Lankester AC. B Cell Reconstitution and Influencing Factors After Hematopoietic Stem Cell Transplantation in Children. Front Immunol 2019; 10:782. [PMID: 31031769 PMCID: PMC6473193 DOI: 10.3389/fimmu.2019.00782] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
B cell reconstitution after hematopoietic stem cell transplantation (HSCT) is variable and influenced by different patient, donor, and treatment related factors. In this review we describe B cell reconstitution after pediatric allogeneic HST, including the kinetics of reconstitution of the different B cell subsets and the development of the B cell repertoire, and discuss the influencing factors. Observational studies show important roles for stem cell source, conditioning regimen, and graft vs. host disease in B cell reconstitution. In addition, B cell recovery can play an important role in post-transplant infections and vaccine responses to encapsulated bacteria, such as pneumococcus. A substantial number of patients experience impaired B cell function and/or dependency on Ig substitution after allogeneic HSCT. The underlying mechanisms are largely unresolved. The integrated aspects of B cell recovery after HSCT, especially BCR repertoire reconstitution, are awaiting further investigation using modern techniques in order to gain more insight into B cell reconstitution and to develop strategies to improve humoral immunity after allogeneic HSCT.
Collapse
Affiliation(s)
- Nicolaas G van der Maas
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Oostenbrink LVE, Jol-van der Zijde CM, Kielsen K, Jansen-Hoogendijk AM, Ifversen M, Müller KG, Lankester AC, van Halteren AGS, Bredius RGM, Schilham MW, van Tol MJD. Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 10:315. [PMID: 30894854 PMCID: PMC6414431 DOI: 10.3389/fimmu.2019.00315] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/06/2019] [Indexed: 01/11/2023] Open
Abstract
Anti-thymocyte globulin (ATG) is a lymphocyte depleting agent applied in hematopoietic stem cell transplantation (HSCT) to prevent rejection and Graft-vs.-Host Disease (GvHD). In this study, we compared two rabbit ATG products, ATG-Genzyme (ATG-GENZ), and ATG-Fresenius (ATG-FRES), with respect to dosing, clearance of the active lymphocyte binding component, post-HSCT immune reconstitution and clinical outcome. Fifty-eigth pediatric acute leukemia patients (n = 42 ATG-GENZ, n = 16 ATG-FRES), who received a non-depleted bone marrow or peripheral blood stem cell graft from an unrelated donor were included. ATG-GENZ was given at a dosage of 6-10 mg/kg; ATG-FRES at 45-60 mg/kg. The active component of ATG from both products was cleared at different rates. Within the ATG-FRES dose range no differences were found in clearance of active ATG or T-cell re-appearance. However, the high dosage of ATG-GENZ (10 mg/kg), in contrast to the low dosage (6-8 mg/kg), correlated with prolonged persistence of active ATG and delayed T-cell reconstitution. Occurrence of serious acute GvHD (grade III-IV) was highest in the ATG-GENZ-low dosage group. These results imply that dosing of ATG-GENZ is more critical than dosing of ATG-FRES due to the difference in clearance of active ATG. This should be taken into account when designing clinical protocols.
Collapse
Affiliation(s)
| | | | - Katrine Kielsen
- Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Marianne Ifversen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus G Müller
- Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Sestili S, Labopin M, Ruggeri A, Velardi A, Ciceri F, Maertens J, Kanz L, Aversa F, Lewalle P, Bunjes D, Mohty M, Nagler A. T-cell-depleted haploidentical stem cell transplantation results improve with time in adults with acute leukemia: A study from the Acute Leukemia Working Party of the European Society of Blood and Marrow Transplantation (EBMT). Cancer 2018; 124:2142-2150. [PMID: 29469924 DOI: 10.1002/cncr.31310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND T-cell-depleted, haploidentical transplantations (haplos) are commonly offered to patients who have high-risk, acute leukemia in the absence of a human leukocyte antigen (HLA) full-matched donor. METHODS To determine the effect of transplantation period, the authors divided 308 adults with de novo, acute leukemia who underwent T-cell-depleted haplo from 2005 to 2015 into 2 groups, according the year in which they underwent transplantation (2005-2011 [n = 191] and 2012-2015 [n = 117]). RESULTS The median age was 41 years in patients who underwent transplantation before 2012 and 46 years in those who underwent transplantation after 2012 (P = .04). Most patients had acute myeloid leukemia (75% vs 69%; P = .26) and were in first complete remission (CR1) (55% vs 64%; P = .12) at the time of transplantation. The cumulative incidence of grade 2, 3, and 4 acute graft-versus-host disease (GvHD) and chronic GvHD were not different between the 2 groups (acute GvHD: 20% vs 22% cumulative incidence in patients who underwent haplo before and after 2012, respectively [P = .67]; chronic GvHD: 19% vs 11% cumulative incidence, respectively; P = .12]. The 2-year relapse incidence was 20%, the nonrelapse mortality (NRM) rate was 48%, and no difference was observed over time (21% vs 19% [P = .72] and 54% vs 38% [P = .11] for patients who underwent haplo before and after 2012, respectively). The main cause of NRM was infection. Haplo after 2012 (hazard ratio [HR], 0.57; P = .01), younger age (HR, 0.82; P = .02), and receipt of a reduced-intensity conditioning (RIC) regimen (HR, 0.53; P = .01) were independently associated with lower NRM. The 2-year overall survival rate was 36% and improved after 2012 (29% vs 47% before 2012; P = .02); and it was higher for patients who underwent transplantation in CR1 (41% vs 29%; P = .01). In multivariate analysis, haplo after 2012 (HR, 0.54; P = .003) and receipt of a RIC regimen (HR, 0.54; P = .005) were independently associated with better overall survival. Similarly, leukemia-free survival and GvHD-free/relapse-free survival (GRFS) improved over time: the leukemia-free survival rate was 31% (25% vs 43% in the groups who underwent transplantation before and after 2012, respectively; P = .05), and the GRFS rate was 24% (19% vs 34%, respectively; P = .09). In addition, leukemia-free survival and GRFS improved among patients who received a RIC regimen. CONCLUSIONS The outcome of patients with acute leukemia who underwent T-cell-depleted haplo has improved over time. Cancer 2018;124:2142-50. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Simona Sestili
- Hematology Clinic and Cellular Therapy, St. Antoine Hospital, Public Assistance Hospitals of Paris (AP-HP), Paris, France
| | - Myriam Labopin
- European Society of Blood and Marrow Transplantation Paris Office, St. Antoine Hospital, Paris, France
| | - Annalisa Ruggeri
- Hematology Clinic and Cellular Therapy, St. Antoine Hospital, Public Assistance Hospitals of Paris (AP-HP), Paris, France.,European Society of Blood and Marrow Transplantation Paris Office, St. Antoine Hospital, Paris, France.,Eurocord, St. Louis Hospital AP-HP and University Institute of Hematology Paris VII, Paris, France
| | - Andrea Velardi
- Hematology Section, Department of Clinical and Experimental Medicine, University of Perugia, Santa Maria della Perugia Hospital, Perugia, Italy
| | - Fabio Ciceri
- Department of Hematology and Bone Marrow Transplantation, Institute for Research and Health Care, San Raffaele Hospital, Milan, Italy
| | - Johan Maertens
- Department of Hematology, Gasthuisberg University Hospital, Leuven, Belgium
| | - Lothar Kanz
- Medical Clinic, Tubingen University, Tubingen, Germany
| | - Franco Aversa
- Hematology Unit, Bone Marrow Transplant Center, University of Parma, Parma, Italy
| | - Philippe Lewalle
- Department of Hematology and Transplantation, Jules Bordet Institute, Brussels, Belgium
| | - Donald Bunjes
- Third Clinic of Internal Medicine, Ulm University Clinic, Ulm, Germany
| | - Mohamad Mohty
- Hematology Clinic and Cellular Therapy, St. Antoine Hospital, Public Assistance Hospitals of Paris (AP-HP), Paris, France.,European Society of Blood and Marrow Transplantation Paris Office, St. Antoine Hospital, Paris, France
| | - Arnon Nagler
- European Society of Blood and Marrow Transplantation Paris Office, St. Antoine Hospital, Paris, France.,Division of Hematology and Bone Marrow Transplantation, the Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
12
|
Sun YQ, Chang YJ, Huang XJ. Update on current research into haploidentical hematopoietic stem cell transplantation. Expert Rev Hematol 2018; 11:273-284. [PMID: 29493370 DOI: 10.1080/17474086.2018.1447379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Haploidentical stem cell transplantation (Haplo-SCT) is currently a suitable alternative worldwide for patients with hematological diseases, who lack human leukocyte antigen (HLA)-matched siblings or unrelated donors. Areas covered: This review summarizes the advancements in Haplo-SCT in recent years, primarily focusing on the global trends of haploidentical allograft, the comparison of outcomes between Haplo-SCT and other transplantation modalities, strategies for improving clinical outcomes, including donor selection, hematopoietic reconstitution promotion, and graft-versus-host disease, and relapse prevention/management, as well as the expanded indications of Haplo-SCT, such as severe aplastic anemia, myeloma and lymphoma. Expert commentary: Haploidentical allografts, including granulocyte colony-stimulating factor-based protocol and a post-transplant cyclophosphamide-based protocol, have been the mainstream strategy for Haplo-SCT. However, there are many unanswered questions in this field.
Collapse
Affiliation(s)
- Yu-Qian Sun
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China
| | - Ying-Jun Chang
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China
| | - Xiao-Jun Huang
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China.,c Peking-Tsinghua Center for Life Sciences , Beijing , China
| |
Collapse
|
13
|
Sano H, Mochizuki K, Kobayashi S, Ohara Y, Ito M, Waragai T, Takahashi N, Ikeda K, Ohto H, Kikuta A. T-cell-replete haploidentical stem cell transplantation using low-dose antithymocyte globulin in children with relapsed or refractory acute leukemia. Int J Hematol 2018; 108:76-84. [DOI: 10.1007/s12185-018-2423-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/01/2022]
|
14
|
Liu J, Bian Z, Wang X, Xu LP, Fu Q, Wang C, Chang YJ, Wang Y, Zhang XH, Jiang Z, Huang XJ. Inverse correlation of Vδ2 + T-cell recovery with EBV reactivation after haematopoietic stem cell transplantation. Br J Haematol 2017; 180:276-285. [PMID: 29270985 DOI: 10.1111/bjh.15037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Epstein-Barr virus (EBV) reactivation remains a life-threatening complication in recipients of a haploidentical haematopoietic stem cell transplantation (haploHSCT). Reconstitution of adaptive T lymphocytes is generally compromised at the early stages following transplant, suggesting an important role of other effector cells in preventing EBV infection. Our previous studies demonstrated that recovery of CD4- CD8- T cells negatively correlated with EBV reactivation after haploHSCT. In this prospective study on 132 adult patients with haematopoietic malignancy, recovery of T-cell subpopulations was characterized post-haploHSCT. We showed that the median counts of peripheral Vδ2 cells were continuously lower in recipients with EBV reactivation compared with controls at 30, 60 and 90 days after haploHSCT (P values: 0·006, <0·001 and 0·019, respectively). Landmark study further indicated that the cumulative incidence of EBV reactivation was significantly decreased in recipients with higher day-30 Vδ2 counts. Activation of Vδ2 cells upon EBV reactivation was accompanied by an induction of cell apoptosis. Cytotoxic effect of Vδ2 cells on EBV-infected cells was confirmed by in vitro experiments. Together, our findings uncovered a significant correlation of recovered Vδ2 with EBV reactivation following haploHSCT. These results will help to better understand the intrinsic anti-virus immunity and develop γδ T-based therapy strategies after haematopoietic transplantation.
Collapse
Affiliation(s)
- Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhilei Bian
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaoyu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qiang Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chenguang Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhengfan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
15
|
Bian Z, Xu LP, Fu Q, Huo M, Liu L, Zhao X, Huang XJ, Liu J. Homeostatic γδ T Cell Contents Are Preserved by Granulocyte Colony-Stimulating Factor Priming and Correlate with the Early Recovery of γδ T Cell Subsets after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:252-259. [PMID: 29061533 DOI: 10.1016/j.bbmt.2017.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
Emerging evidence from graft manipulations and immunotherapeutic treatments has highlighted a favorable effect of γδ T cells in the setting of allogeneic hematopoietic stem cell transplantation (alloHSCT). However, γδ T cell subsets and their distinct features in the allograft have not been characterized. Additionally, whether homeostatic γδ T cell fractions are influenced by treatment with granulocyte colony-stimulating factor (G-CSF) remains elusive. We initially compared the phenotypes of γδ T cell subsets, including CD27+, CD27-, Vδ1+, Vδ2+, Vδ1+CD27+, Vδ1+CD27-, Vδ2+CD27+, and Vδ2+CD27- cells, in the peripheral blood of 20 healthy donors before and after G-CSF mobilization. The effects of G-CSF on the cytokine production capacities of γδ T cell subsets were also detected. Moreover, the correlation between donor homeostatic γδ T cell content and the early recoveries of γδ T cell subgroups after haploidentical HSCT was investigated in 40 pairs of donors and recipients. We found that both the proportions and IFN-γ secretion capacities of peripheral γδ T cell subsets were preserved in G-CSF-primed grafts. Homeostatic Vδ1 and Vδ2 proportions of donors significantly correlated with the early recoveries of Vδ1 and Vδ2 cells after haploidentical HSCT. Interestingly, a higher day 30 Vδ1 concentration was associated with a lower incidence of cytomegalovirus reactivation in recipients. These results not only clarify the preservation of γδ T cell phenotypes and functional features by G-CSF mobilization but also suggest the importance of homeostatic γδ T cell content for immune recovery after alloHSCT.
Collapse
Affiliation(s)
- Zhilei Bian
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qiang Fu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Mingrui Huo
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Long Liu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
16
|
Willicombe M, Goodall D, McLean AG, Taube D. Alemtuzumab dose adjusted for body weight is associated with earlier lymphocyte repletion and less infective episodes in the first year post renal transplantation - a retrospective study. Transpl Int 2017; 30:1110-1118. [DOI: 10.1111/tri.12978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle Willicombe
- Imperial College Renal and Transplant Centre; Imperial College NHS Trust; Hammersmith Hospital; London UK
| | - Dawn Goodall
- Imperial College Renal and Transplant Centre; Imperial College NHS Trust; Hammersmith Hospital; London UK
| | - Adam G McLean
- Imperial College Renal and Transplant Centre; Imperial College NHS Trust; Hammersmith Hospital; London UK
| | - David Taube
- Imperial College Renal and Transplant Centre; Imperial College NHS Trust; Hammersmith Hospital; London UK
| |
Collapse
|
17
|
Association of Epstein-Barr virus reactivation with the recovery of CD4/CD8 double-negative T lymphocytes after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transplant 2016; 52:264-269. [PMID: 27797369 DOI: 10.1038/bmt.2016.238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 11/08/2022]
Abstract
EBV infection is one of the life-threatening clinical complications in patients who underwent haploidentical hematopoietic stem cell transplantation (haploHSCT). Although immune recovery is recognized to be crucial for decreasing subsequent morbidity of infections, the link between T-cell recovery and EBV infection after haploHSCT remains elusive. We recently compared the influences of different doses of antithymocyte globulin conditioning on the T-cell reconstitution post haploHSCT and suggested that CD4-CD8-T cells might interact with the occurrence of EBV reactivation. In the current study, haploHSCT recipients with EBV-DNAemia (n=64) were compared with a control group without EBV reactivation (n=192), with regard to the recoveries of T-cell subpopulations. In contrast to other T-cell subpopulations, the median counts ofCD4-CD8-T cells in recipients with EBV-DNAemia were significantly lower than the control group at a serial time course (30, 90 and 180 days) after transplantation. Landmark studies further confirmed the correlation of CD4-CD8-T cells with the EBV infection. Multivariate analysis showed that hampered recovery of CD4-CD8-T cells and EBV reactivation were the independent risk factors to predict transplant-related mortality. Our findings may facilitate the intervention strategies to improve the overall survival of haploHSCT recipients.
Collapse
|
18
|
Immunity to Infections after Haploidentical Hematopoietic Stem Cell Transplantation. Mediterr J Hematol Infect Dis 2016; 8:e2016057. [PMID: 27872737 PMCID: PMC5111540 DOI: 10.4084/mjhid.2016.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
The advantage of using a Human Leukocyte Antigen (HLA)-mismatched related donor is that almost every patient who does not have an HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT) has at least one family member with whom shares one haplotype (haploidentical) and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD). Advances in graft processing and pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs), others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY). Today, the graft can be a megadose of T-cell depleted PBPCs or a standard dose of unmanipulated bone marrow and/or PBPCs. Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC) showed promise in decreasing early transplant-related mortality (TRM), and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.
Collapse
|