1
|
Ju Y, Jin C, Chen S, Wang J, Li C, Wang X, Wang P, Yue L, Jiang X, Tuohetaerbaike B, Li Y, Sheng Y, Qimanguli W, Wang J, Chen F. Proteomic analyses of smear-positive/negative tuberculosis patients uncover differential antigen-presenting cell activation and lipid metabolism. Front Cell Infect Microbiol 2023; 13:1240516. [PMID: 37908762 PMCID: PMC10613889 DOI: 10.3389/fcimb.2023.1240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tuberculosis (TB) remains a major global health concern, ranking as the second most lethal infectious disease following COVID-19. Smear-Negative Pulmonary Tuberculosis (SNPT) and Smear-Positive Pulmonary Tuberculosis (SPPT) are two common types of pulmonary tuberculosis characterized by distinct bacterial loads. To date, the precise molecular mechanisms underlying the differences between SNPT and SPPT patients remain unclear. In this study, we aimed to utilize proteomics analysis for identifying specific protein signatures in the plasma of SPPT and SNPT patients and further elucidate the molecular mechanisms contributing to different disease pathogenesis. Methods Plasma samples from 27 SPPT, 37 SNPT patients and 36 controls were collected and subjected to TMT-labeled quantitative proteomic analyses and targeted GC-MS-based lipidomic analysis. Ingenuity Pathway Analysis (IPA) was then performed to uncover enriched pathways and functionals of differentially expressed proteins. Results Proteomic analysis uncovered differential protein expression profiles among the SPPT, SNPT, and Ctrl groups, demonstrating dysfunctional immune response and metabolism in both SPPT and SNPT patients. Both groups exhibited activated innate immune responses and inhibited fatty acid metabolism, but SPPT patients displayed stronger innate immune activation and lipid metabolic inhibition compared to SNPT patients. Notably, our analysis uncovered activated antigen-presenting cells (APCs) in SNPT patients but inhibited APCs in SPPT patients, suggesting their critical role in determining different bacterial loads/phenotypes in SNPT and SPPT. Furthermore, some specific proteins were detected to be involved in the APC activation/acquired immune response, providing some promising therapeutic targets for TB. Conclusion Our study provides valuable insights into the differential molecular mechanisms underlying SNPT and SPPT, reveals the critical role of antigen-presenting cell activation in SNPT for effectively clearing the majority of Mtb in bodies, and shows the possibility of APC activation as a novel TB treatment strategy.
Collapse
Affiliation(s)
- Yingjiao Ju
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengji Jin
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shan Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peihan Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Yue
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaoyuan Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Bahetibieke Tuohetaerbaike
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Ying Li
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wushou’er Qimanguli
- Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Fei Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| |
Collapse
|
2
|
Kulkarni S, Endsley JJ, Lai Z, Bradley T, Sharan R. Single-Cell Transcriptomics of Mtb/HIV Co-Infection. Cells 2023; 12:2295. [PMID: 37759517 PMCID: PMC10529032 DOI: 10.3390/cells12182295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) co-infection continues to pose a significant healthcare burden. HIV co-infection during TB predisposes the host to the reactivation of latent TB infection (LTBI), worsening disease conditions and mortality. There is a lack of biomarkers of LTBI reactivation and/or immune-related transcriptional signatures to distinguish active TB from LTBI and predict TB reactivation upon HIV co-infection. Characterizing individual cells using next-generation sequencing-based technologies has facilitated novel biological discoveries about infectious diseases, including TB and HIV pathogenesis. Compared to the more conventional sequencing techniques that provide a bulk assessment, single-cell RNA sequencing (scRNA-seq) can reveal complex and new cell types and identify more high-resolution cellular heterogeneity. This review will summarize the progress made in defining the immune atlas of TB and HIV infections using scRNA-seq, including host-pathogen interactions, heterogeneity in HIV pathogenesis, and the animal models employed to model disease. This review will also address the tools needed to bridge the gap between disease outcomes in single infection vs. co-infection. Finally, it will elaborate on the translational benefits of single-cell sequencing in TB/HIV diagnosis in humans.
Collapse
Affiliation(s)
- Smita Kulkarni
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Janice J. Endsley
- Departments of Microbiology & Immunology and Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Riti Sharan
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
3
|
Elmadbouly AA, Abdul-Mohymen AM, Eltrawy HH, Elhasan HAA, Althoqapy AA, Amin DR. The association of IL-17A rs2275913 single nucleotide polymorphism with anti-tuberculous drug resistance in patients with pulmonary tuberculosis. J Genet Eng Biotechnol 2023; 21:90. [PMID: 37665411 PMCID: PMC10477154 DOI: 10.1186/s43141-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Drug-resistant Tuberculosis (DR-TB) is a global health burden with high morbidity and mortality in developing countries including Egypt. The susceptibility to infection with DR-TB strains may be genetically determined. Several interleukin gene polymorphisms were investigated as risk factors for tuberculosis infection but focusing on their association with DR-TB was limited. Therefore, the objective of this study is to assess the association of IL 17 - 197 G > A (rs2275913) single nucleotide polymorphism (SNP) with susceptibility to DR-TB strains in comparison to drug-sensitive tuberculosis (DS-TB) strains in Egyptian patients with pulmonary TB. This cross-sectional study was conducted on 80 patients with DR-TB strains and 80 with DS-TB strains as a control group. Both age and sex were comparable among the study's groups. IL-17 - 197 G > A (rs2275913) SNP was genotyped by real-time PCR, and IL-17 serum concentration was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The GA and AA genotype frequencies of IL 17 - 197 G > A (rs2275913) SNP were significantly higher in patients with DR-TB strains than those with DS-TB strains (p < 0.001). The frequency of the A allele was significantly (p < 0.001) higher in patients with DR-TB group (32.5%) compared to the control group (13.8%). Substantial higher serum levels of IL-17 were detected in the DR-TB group with significant association with AA and AG genotypes. CONCLUSION Polymorphism in IL-17 -197 G > A (rs2275913) resulted in higher serum levels of IL-17 and Egyptian patients with such polymorphism are three times at risk of infection with DR-TB strains than patients with wild type.
Collapse
Affiliation(s)
- Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt.
| | | | - Heba H Eltrawy
- Chest Diseases Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hanaa A Abou Elhasan
- Community Medicine Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Azza Ali Althoqapy
- Medical Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa R Amin
- Biochemistry Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Nosik M, Belikova MG, Ryzhov K, Avdoshina D, Sobkin A, Zverev V, Svitich O. Unique Profile of Proinflammatory Cytokines in Plasma of Drug-Naïve Individuals with Advanced HIV/TB Co-Infection. Viruses 2023; 15:1330. [PMID: 37376629 DOI: 10.3390/v15061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-1 infection is characterized by aberrant immune activation, and infection with M. tuberculosis by an unbalanced production of proinflammatory cytokines. The expression of these cytokines in HIV-1/TB coinfection is still understudied. Here, we aimed to compare the production of proinflammatory cytokines in drug-naive patients coinfected with HIV-1 and M. tuberculosis (HIV/TB) compared to patients with respective monoinfections. Plasma samples of patients with HIV/TB coinfection (n = 36), HIV-1 monoinfection (n = 36), and TB monoinfection (n = 35) and healthy donors (n = 36) were examined for the levels of eight proinflammatory cytokines. Their levels were significantly increased in all patient groups compared to healthy donors. At the same time, a drastic decrease in the plasma levels of IFN-γ, TNF-α, Il-1β, IL-15, and IL-17 was detected in patients with HIV/TB coinfection compared to patients with HIV-1 or TB monoinfections. The plasma levels of IL-17 characterized the TB severity: in HIV/TB-coinfected patients with disseminated TB, plasma levels of IL-17 were eight times lower than in patients with less severe TB forms (infiltrative TB or TB of intrathoracic lymph nodes; p < 0.0001). At the same time, HIV/TB-coinfected patients had increased plasma levels of IL-8, IL-12, and IL-18, with the levels of IL-8 correlating with mortality (p < 0.0001). Thus, on the contrary to the patients with HIV-1 or TB monoinfections, HIV/TB-coinfected patients had suppressed production of most of the proinflammatory cytokines associated with antimicrobial immune response, specifically of T-cells involved in the containment of both infections. At the same time, they demonstrated an expansion of proinflammatory cytokines known to originate from both hematopoietic and nonhematopoietic cells, and manifest tissue inflammation. In HIV-1/TB coinfection, this leads to the disruption of granuloma formation, contributing to bacterial dissemination and enhancing morbidity and mortality.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Maria G Belikova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
- Translational Medicine Cluster, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | | | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - Alexandr Sobkin
- Department for Treatment of TB Patients with HIV Infection, G.A. Zaharyan Moscow Tuberculosis Clinic, 125466 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia
| |
Collapse
|
5
|
Chen Y, Zeng Y, Wang J, Meng C. Immune and inflammation-related gene polymorphisms and susceptibility to tuberculosis in Southern Xinjiang population: A case-control analysis. Int J Immunogenet 2021; 49:70-82. [PMID: 34958532 DOI: 10.1111/iji.12564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023]
Abstract
Genetic and immune factors play an important role in tuberculosis. Under different ethnicities and genetic backgrounds, different immune and inflammation-related gene polymorphisms may confer different susceptibility to tuberculosis. This study investigated the relationship between immune and inflammation-related gene polymorphism and susceptibility to tuberculosis in Xinjiang Uyghur population, China. In this case-control study, we enrolled 507 pulmonary tuberculosis patients and 454 healthy controls from Southern Xinjiang. single nucleotide polymorphism (SNP) genotyping was performed. The 12 SNPs of nine immune and inflammation-related genes (including TNF rs361525, IL6 rs2066992 and rs1524107, IL17A rs3748067, IL17F rs763780, VDR rs731236, rs2228570 and rs1544410, IFNGR1 rs1327474, P2RX7 rs3751143, CTAGE1 rs4331426 and Toll-like receptor 4 (TLR4) rs4986790) and their relationship with tuberculosis were evaluated. The T allele and TT genotype of IL-6 rs2066992 and rs1524107 increased the risk of active tuberculosis. The C allele of IFNGR1 rs1327474 was related to the reduced risk of tuberculosis in the Xinjiang Uyghur population. The G allele and AG/GG genotypes of TLR4 rs4986790 were associated with an increased risk of tuberculosis (p < .05). Furthermore, haplotype analysis found that the haplotype TT of interleukin (IL)-6 was a risk factor, whereas the CG type was a protective factor for active tuberculosis in the Xinjiang Uyghur population. There were three immune and inflammation-related genes (IL-6, IFNGR1 and TLR4) and a total of four SNPs (rs2066992, rs1524107, rs1327474 and rs4986790) related to the susceptibility of the Uyghur population to tuberculosis. Our findings may provide evidence for further understanding the mechanism of tuberculosis susceptibility in the Xinjiang Uyghur population.
Collapse
Affiliation(s)
- Yahao Chen
- Medical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanhua Zeng
- Medical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jialu Wang
- Medical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunren Meng
- Medical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Pollara G, Turner CT, Rosenheim J, Chandran A, Bell LCK, Khan A, Patel A, Peralta LF, Folino A, Akarca A, Venturini C, Baker T, Ecker S, Ricciardolo FLM, Marafioti T, Ugarte-Gil C, Moore DAJ, Chain BM, Tomlinson GS, Noursadeghi M. Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Sci Transl Med 2021; 13:13/592/eabg7673. [PMID: 33952677 PMCID: PMC7610803 DOI: 10.1126/scitranslmed.abg7673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Host immune responses at the site of Mycobacterium tuberculosis (Mtb) infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modelled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin (IL)-17A and Th17 responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis. Curative antimicrobial treatment reversed these observed changes. Increased IL-1β and IL-6 responses to mycobacterial stimulation were evident in both circulating monocytes and in molecular changes at the site of TST in individuals with active TB, supporting a model in which monocyte-derived IL-1β and IL-6 promote Th17 differentiation within tissues. Modulation of these cytokine pathways may provide a rational strategy for host-directed therapy in active TB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Folino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | - Cesar Ugarte-Gil
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.,TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - David A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK.,Laboratorio de Investigación de Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
7
|
Druszczynska M, Seweryn M, Wawrocki S, Kowalewska-Pietrzak M, Pankowska A, Rudnicka W. Cytokine Biosignature of Active and Latent Mycobacterium Tuberculosis Infection in Children. Pathogens 2021; 10:pathogens10050517. [PMID: 33923293 PMCID: PMC8145955 DOI: 10.3390/pathogens10050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
None of the currently used diagnostic tools are efficient enough in diagnosing Mycobacterium tuberculosis (M.tb) infection in children. The study was aimed to identify cytokine biosignatures characterizing active and latent tuberculosis (TB) in children. Using a multiplex bead-based technology, we analyzed the levels of 53 Th17-related cytokines and inflammatory mediators in sera from 216 BCG-vaccinated children diagnosed with active TB (TB) or latent TB (LTBI) as well as uninfected controls (HC). Children with active TB, compared to HC children, showed reduced serum levels of IL-17A, MMP-2, OPN, PTX-3, and markedly elevated concentrations of APRIL/TNFSF13. IL-21, sCD40L, MMP-2, and IL-8 were significantly differentially expressed in the comparisons between groups: (1) HC versus TB and LTBI (jointly), and (2) TB versus LTBI. The panel consisting of APRIL/TNFSF13, sCD30/TNFRSF8, IFN-α2, IFN-γ, IL-2, sIL-6Rα, IL-8, IL-11, IL-29/IFN-λ1, LIGHT/TNFSF14, MMP-1, MMP-2, MMP-3, osteocalcin, osteopontin, TSLP, and TWEAK/TNFSF12 possessed a discriminatory potential for the differentiation between TB and LTBI children. Serum-based host biosignatures carry the potential to aid the diagnosis of childhood M.tb infections. The proposed panels of markers allow distinguishing not only children infected with M.tb from uninfected individuals but also children with active TB from those with latent TB.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
- Correspondence: ; Tel.: +48-42-635-44-70
| | - Michal Seweryn
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
| | - Magdalena Kowalewska-Pietrzak
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Lodz, Okolna 181, 91-520 Lodz, Poland; (M.K.-P.); (A.P.)
| | - Anna Pankowska
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Lodz, Okolna 181, 91-520 Lodz, Poland; (M.K.-P.); (A.P.)
| | - Wieslawa Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
| |
Collapse
|
8
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Kim S, Park HE, Park WB, Kim SY, Park HT, Yoo HS. Mycobacterium avium Modulates the Protective Immune Response in Canine Peripheral Blood Mononuclear Cells. Front Cell Infect Microbiol 2021; 10:609712. [PMID: 33520738 PMCID: PMC7840563 DOI: 10.3389/fcimb.2020.609712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-tuberculous mycobacteria species. M. avium causes respiratory disease in immunosuppressed individuals and a wide range of animals, including companion dogs and cats. In particular, the number of infected companion dogs has increased, although the underlying mechanism of M. avium pathogenesis in dogs has not been studied. Therefore, in the present study, the host immune response against M. avium in dogs was investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M. avium was shown to induce different immune responses in canine peripheral blood mononuclear cells at different time points after infection. The expression of Th1-associated genes occurred early during M. avium infection, while that of Th17-associated genes increased after 12 h. In addition, the expression of apoptosis-related genes decreased and the abundance of intracellular M. avium increased in monocyte-derived macrophages after infection for 24 h. These results reveal the M. avium induces Th17 immune response and avoids apoptosis in infected canine cells. As the number of M. avium infection cases increases, the results of the present study will contribute to a better understanding of host immune responses to M. avium infection in companion dogs.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Depression and recovery of IL-17A secretion in mitogen responses in patients with active tuberculosis-a prospective observational study. J Formos Med Assoc 2020; 120:1080-1089. [PMID: 33020006 DOI: 10.1016/j.jfma.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE T-helper cell 17 (Th17) is a distinct subset of CD4+ T lymphocytes that is important in the pathogenesis of Mycobacterium tuberculosis infection. This study aims to investigate the characteristics of interleukin (IL)-17A and Th17-related cytokines after stimulation with phytohemagglutinin in patients with active tuberculosis (TB). METHODS This prospective cohort study enrolled patients with culture-confirmed active TB. QuantiFERON-TB Gold In-Tube (QFT-GIT) assay was performed upon TB diagnosis and at 2 months after TB treatment. Their non-TB-specific secretion of IL-17A and Th17-related cytokines were measured in supernatants of mitogen tubes in QFT-GIT and compared to those of active TB contacts with or without latent TB infection. We analyzed the association between IL-17A secretions and TB presentation and treatment outcomes. RESULTS A total of 108 patients with TB and 64 non-TB cases were enrolled. The secretion of IL-17A, IL-21, IL-23, and IL-6 were lower in active TB patients upon TB diagnosis. In active TB patients, lower IL-17A secretions were associated with higher grades of sputum smear. In the multivariate analysis, lower IL-17A secretions served as an independent factor associated with 2-month culture non-conversion (odds ratio 23.04, 95% confidence interval [CI] 1.69-84.78) and on-treatment mortality (hazard ratio 28.54, 95% CI 1.30-99.25). The levels of IL-23, and IL-6 significantly increased after 2 months of anti-TB treatment. CONCLUSION The non-TB-specific IL-17A secretions were lower in active TB patients upon TB diagnosis and associated with higher disease severity and worse treatment outcomes. Trend of recovery of the depressed Th17-related cytokines was noted after effective anti-TB treatment.
Collapse
|
11
|
Song Q, Zhao F, Yao J, Dai H, Hu L, Yu S. Protective effect of microRNA-134-3p on multiple sclerosis through inhibiting PRSS57 and promotion of CD34 + cell proliferation in rats. J Cell Biochem 2020; 121:4347-4363. [PMID: 32619071 DOI: 10.1002/jcb.29643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) have been extensively studied for their involvement in multiple sclerosis (MS). We investigated the involvement of miR-134-3p on MS. The MS rat model was established, and positive expression of interleukin-17 (IL-17) was detected using the immunohistochemical method while the expression of miR-134-3p and serine protease 57 (PRSS57) was determined by means of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Second, the miR-134-3p overexpression or short hairpin RNA against PRSS57 was introduced into the CD34+ cells to investigate the levels of proliferation and apoptosis-related genes by RT-qPCR and Western blot analysis. In addition, analysis of the targeting relations of miR-134-3p and PRSS57 was conducted using online software and dual-luciferase reporter gene assay. Furthermore, neuronal functions, inflammatory response, proliferation, and apoptosis of CD34+ cells were assayed by flow cytometry, enzyme-linked immunosorbent assay, and methyl thiazolyl tetrazolium. IL-17 and PRSS57 expression increased while miR-134-3p expression decreased in the spinal cord from MS rats. miR-134-3p could target PRSS57. miR-134-3p overexpression or PRSS57 silencing enhanced mitochondrial activity of neurons, mitochondrial membrane potential content, CD34+ cell proliferation, while decreasing Cyt C content, inflammatory response, and cell apoptosis. Collectively, overexpression of miR-134-3p promotes CD34+ cell proliferation via inhibition of PRSS57 in MS, which may serve as a promising target for MS intervention.
Collapse
Affiliation(s)
- Qihan Song
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Fengli Zhao
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Jingfan Yao
- Department of Neurology, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Hailin Dai
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Lei Hu
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Wang C, Sun R, Wang C, Qian A, Jiang X. M.neoaurum infection increased the inhibitory function of Tregs and the death rate associated with Salmonella coinfection. Res Vet Sci 2020; 132:108-115. [PMID: 32544633 DOI: 10.1016/j.rvsc.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Mycobacterium neoaurum belongs to the nontuberculous mycobacteria (NTM) and is ubiquitously present in the environment. However, the changes in Treg percentages and suppressive properties in mice infected with M. neoaurum are still not elucidated. In this study, mice were intraperitoneally injected with M. neoaurum. The change in the CD4+CD25+ Treg cell percentage in the spleen was analyzed using flow cytometry. There was a significant increase in the number of CD4+CD25+ cells by week 6 postinfection, with a peak proportion of approximately 2%. The Foxp3 and IL-10 mRNA expression in CD4+CD25+ cells from the spleens of M.neoaurum-infected mice was higher than that in CD4+CD25+ cells from the spleens of noninfected controls. Proliferation suppression assay results indicated that CD4+CD25+ cells suppressed the proliferation of CD4+CD25- cells at week 6 after M.neoaurum infection, and the suppression rate reached 89.8%. However, CD4+CD25+ cells from the noninfected control group did not suppress the proliferation of CD4+CD25- cells. Based on the above results, mice were subjected to oral administration of S. Typhimurium at 6 weeks postinfection with M. neoaurum, and we found that the mortality of the M.neoaurum-S. Typhimurium infection group was higher than that of the S. Typhimurium infection group. In addition, serious pathological changes appeared in the liver and cecum of the M.neoaurum-S.Typhimurium infection group compared with those of the S. Typhimurium infection group. M. neoaurum increased Treg percentages and suppressed spleen function in mice. These results revealed the possibility that persistent M.neoaurum infection could increase the occurrence of secondary infection.
Collapse
Affiliation(s)
- Chunfang Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rongkuan Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Xiuyun Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
13
|
RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010067. [PMID: 32033104 PMCID: PMC7158685 DOI: 10.3390/vaccines8010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is still an important global threat and although the causing organism has been discovered long ago, effective prevention strategies are lacking. Mycobacterium tuberculosis (MTB) is a unique pathogen with a complex host interaction. Understanding the immune responses upon infection with MTB is crucial for the development of new vaccination strategies and therapeutic targets for TB. Recently, it has been proposed that sensing bacterial nucleic acid in antigen-presenting cells via intracellular pattern recognition receptors (PRRs) is a central mechanism for initiating an effective host immune response. Here, we summarize key findings of the impact of mycobacterial RNA sensing for innate and adaptive host immunity after MTB infection, with emphasis on endosomal toll-like receptors (TLRs) and cytosolic sensors such as NLRP3 and RLRs, modulating T-cell differentiation through IL-12, IL-21, and type I interferons. Ultimately, these immunological pathways may impact immune memory and TB vaccine efficacy. The novel findings described here may change our current understanding of the host response to MTB and potentially impact clinical research, as well as future vaccination design. In this review, the current state of the art is summarized, and an outlook is given on how progress can be made.
Collapse
|
14
|
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol 2019; 10:2583. [PMID: 31736982 PMCID: PMC6838131 DOI: 10.3389/fimmu.2019.02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/18/2019] [Indexed: 01/29/2023] Open
Abstract
Although IL17A plays a protective role at the mucosal surface, when IL17A signaling becomes dysregulated, a pathological response is locally induced. At the early stages of Mycobacterium tuberculosis (M.tb) infection, IL17A contributes to granuloma formation and pathogen containment. In contrast, during disease progression, a dysregulated IL17A hyperinflammatory response drives tissue destruction through enhanced neutrophil recruitment. Cumulative research has implicated the PI3-Kinase pathways as one of the most relevant in the pathophysiology of inflammation. Evidence shows that IL-17A secretion and the expansion of the Th17 population is dependant in PI3-Kinase signaling, with the p110δ and p110γ isoforms playing a prominent role. The p110γ isoform promotes disease progression through dampening of the Th17 response, preventing pathogen clearance and containment. The p110γ gene, PIK3CG is downregulated in TB patients during late-stage disease when compared to healthy controls, demonstrating an important modulatory role for this isoform during TB. Conversely, the p110δ isoform induces IL-17A release from pulmonary γδ T-cells, committed Th17 cells and promotes neutrophil recruitment to the lung. Inhibiting this isoform not only suppresses IL-17A secretion from Th17 cells, but it also inhibits cytokine production from multiple T-helper cell types. Since increased IL-17A levels are observed to be localized in the lung compartments (BAL and lymphocytes) in comparison to circulating levels, an inhalable PI3Kδ inhibitor, which is currently utilized for inflammatory airway diseases characterized by IL-17A over-secretion, may be a therapeutic option for active TB disease.
Collapse
Affiliation(s)
- Gina R Leisching
- SA MRC Centre for TB Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Cardona P, Cardona PJ. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol 2019; 10:2139. [PMID: 31572365 PMCID: PMC6749097 DOI: 10.3389/fimmu.2019.02139] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-inflammatory regulatory T cells have lately attracted attention as part of the immune response to Mycobacterium tuberculosis infection, where they counterbalance the protective but pro-inflammatory immune response mediated by Th17 cells and especially by the better-known Th1 cells. In chronic infectious diseases there is a delicate balance between pro- and anti-inflammatory responses. While Th1 and Th17 are needed in order to control infection by Mycobacterium tuberculosis, the inflammatory onset can ultimately become detrimental for the host. In this review, we assess current information on the controversy over whether counterbalancing regulatory T cells are promoting pathogen growth or protecting the host.
Collapse
Affiliation(s)
- Paula Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
16
|
IL-10 Dampens the Th1 and Tc Activation through Modulating DC Functions in BCG Vaccination. Mediators Inflamm 2019; 2019:8616154. [PMID: 31281230 PMCID: PMC6594250 DOI: 10.1155/2019/8616154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
BCG, the only registered vaccine against Mycobacterial Tuberculosis (TB) infection, has been questioned for its protective efficacy for decades. Although lots of efforts were made to improve the BCG antigenicity, few studies were devoted to understand the role of host factors in the variability of the BCG protection. Using the IL-10KO mice and pulmonary tuberculosis infection model, we have addressed the role of IL-10 in the BCG vaccination efficacy. The data showed that IL-10-deficient dendritic cells (DCs) could promote the immune responses through upregulation of the surface costimulatory molecule expression and play an orchestra role through activating CD4+T cell. IL-10-deficient mice had higher IFN γ, TNF α, and IL-6 production after BCG vaccination, which was consistent with the higher proportion of IFN γ+CD3+, IFN γ+CD4+, and IFN γ+CD8+ T cells in the spleen. Particularly, the BCG-vaccinated IL-10KO mice showed less inflammation after TB challenge compared to WT mice, which was supported by the promoted Th1 and Tc, as well as the downregulated Treg responses in IL-10 deficiency. In a conclusion, we demonstrated the negative relationship between Th1/Tc responses with IL-10 production. IL-10 deficiency restored the type 1 immune response through DC activation, which provided better protection against TB infection. Hence, our study offers the first experimental evidence that, contrary to the modulation of BCG, host immunity plays a critical role in the BCG protective efficacy against TB.
Collapse
|
17
|
Potential Immunological Biomarkers for Detection of Mycobacterium tuberculosis Infection in a Setting Where M. tuberculosis Is Endemic, Ethiopia. Infect Immun 2018; 86:IAI.00759-17. [PMID: 29311240 DOI: 10.1128/iai.00759-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Accurate diagnosis and early treatment of tuberculosis (TB) and latent TB infection (LTBI) are vital to prevent and control TB. The lack of specific biomarkers hinders these efforts. This study's purpose was to screen immunological markers that discriminate Mycobacterium tuberculosis infection outcomes in a setting where it is endemic, Ethiopia. Whole blood from 90 participants was stimulated using the ESAT-6/CFP-10 antigen cocktail. The interferon gamma (IFN-γ)-based QuantiFERON diagnostic test was used to distinguish between LTBI and uninfected control cases. Forty cytokines/chemokines were detected from antigen-stimulated plasma supernatants (SPSs) and unstimulated plasma samples (UPSs) using human cytokine/chemokine antibody microarrays. Statistical tests allowed us to identify potential biomarkers that distinguish the TB, LTBI, and healthy control groups. As expected, the levels of IFN-γ in SPSs returned a high area under the receiver operating characteristic curve (AUC) value comparing healthy controls and LTBI cases (Z = 0.911; P < 0.001). The SPS data also indicated that interleukin 17 (IL-17) abundance discriminates LTBI from healthy controls (Z = 0.763; P = 0.001). RANTES and MIP-1β were significantly elevated in SPSs of TB-infected compared to healthy controls (P < 0.05), while IL-12p40 and soluble tumor necrosis factor receptor II (sTNF-RII) were significantly increased in active TB cases compared to the combined LTBI and control groups (P < 0.05). Interestingly, quantitative changes for RANTES were observed using both SPSs and UPSs, with P values of 0.013 and 0.012, respectively, in active TB versus LTBI cases and 0.001 and 0.002, respectively, in active TB versus healthy controls. These results encourage biomarker verification studies for IL-17 and RANTES. Combinations of these cytokines may complement IFN-γ measurements to diagnose LTBI and distinguish active TB from LTBI cases.
Collapse
|
18
|
Interleukin 23/interleukin 17 axis activated by Mycobacterium avium complex (MAC) is attenuated in patients with MAC-lung disease. Tuberculosis (Edinb) 2018; 110:7-14. [PMID: 29779777 DOI: 10.1016/j.tube.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 02/03/2018] [Accepted: 03/01/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mycobacterium avium complex (MAC)-lung disease (LD) is increasing in patients without human immunodeficiency virus infection. However, data on host vulnerability to MAC-related immune responses, and in particular the interleukin (IL)-23/IL-17 axis, are lacking. METHODS We enrolled 50 patients with MAC-LD, 25 age-matched patients with tuberculosis (TB) and 25 controls. We measured levels of plasma cytokines, and studied IL-12/IL-17 responses in macrophage and lymphocyte activation to MAC. RESULTS The plasma level of IL-17 in the MAC group was higher than in the TB and control groups. In in-vitro macrophage stimulation, the expression of IL-23 in macrophages was similar in the patients with MAC-LD and controls, although the expression of IL-12 p40 was lower in the patients with MAC-LD. In assays of lymphocyte activation, IL-17 was induced by MAC-primed macrophages, but its level was lower in the patients with MAC-LD and TB than in the controls. The expression of programmed death (PD)-1 receptor was higher in CD4+IL17A+ lymphocytes in the patients with MAC-LD, and the production of IL-17 was significantly increased by blockade of PD-1 and PD-ligand 1. CONCLUSIONS MAC induced a similar expression of IL-23 from macrophages in the patients with MAC-LD compared to the controls, but a lower expression of IL-17 from lymphocytes, which may be through an increased expression of PD-1. The macrophage response of IL-12 p40 was stronger than that of IL-12 p70, and higher in the controls during MAC disease, which may suggest another kind of MAC-related immune evasion.
Collapse
|
19
|
Singh S, Maniakis‐Grivas G, Singh UK, Asher RM, Mauri F, Elkington PT, Friedland JS. Interleukin-17 regulates matrix metalloproteinase activity in human pulmonary tuberculosis. J Pathol 2018; 244:311-322. [PMID: 29210073 PMCID: PMC5838784 DOI: 10.1002/path.5013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/21/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is characterized by extensive pulmonary matrix breakdown. Interleukin-17 (IL-17) is key in host defence in TB but its role in TB-driven tissue damage is unknown. We investigated the hypothesis that respiratory stromal cell matrix metalloproteinase (MMP) production in TB is regulated by T-helper 17 (TH -17) cytokines. Biopsies of patients with pulmonary TB were analysed by immunohistochemistry (IHC), and patient bronchoalveolar lavage fluid (BALF) MMP and cytokine concentrations were measured by Luminex assays. Primary human airway epithelial cells were stimulated with conditioned medium from human monocytes infected with Mycobacterium tuberculosis (Mtb) and TH -17 cytokines. MMP secretion, activity, and gene expression were determined by ELISA, Luminex assay, zymography, RT-qPCR, and dual luciferase reporter assays. Signalling pathways were examined using phospho-western analysis and siRNA. IL-17 is expressed in TB patient granulomas and MMP-3 is expressed in adjacent pulmonary epithelial cells. IL-17 had a divergent, concentration-dependent effect on MMP secretion, increasing epithelial secretion of MMP-3 (p < 0.001) over 72 h, whilst decreasing that of MMP-9 (p < 0.0001); mRNA levels were similarly affected. Both IL-17 and IL-22 increased fibroblast Mtb-dependent MMP-3 secretion but IL-22 did not modulate epithelial MMP-3 expression. Both IL-17 and IL-22, but not IL-23, were significantly up-regulated in BALF from TB patients. IL-17-driven MMP-3 was dependent on p38 MAP kinase and the PI3K p110α subunit. In summary, IL-17 drives airway stromal cell-derived MMP-3, a mediator of tissue destruction in TB, alone and with monocyte-dependent networks in TB. This is regulated by p38 MAP kinase and PI3K pathways. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shivani Singh
- Infectious Diseases and ImmunityImperial CollegeLondonUK
| | | | - Utpal K Singh
- Tuberculosis Unit, Department of MedicineNalanda University HospitalsAgam KuanPatnaIndia
| | - Radha M Asher
- Infectious Diseases and ImmunityImperial CollegeLondonUK
| | - Francesco Mauri
- Department of Histopathology, Hammersmith HospitalsImperial College LondonUK
| | | | | |
Collapse
|
20
|
Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 2017; 15:206-215. [PMID: 29151578 DOI: 10.1038/cmi.2017.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The lack of an effective preventative vaccine against tuberculosis (TB) presents a great challenge to TB control. Since it takes an extremely long time to accurately determine the protective efficacy of TB vaccines, there is a great need to identify the surrogate signatures of protection to facilitate vaccine development. Unfortunately, antigen-specific Th1 cytokines that are currently used to evaluate the protective efficacy of the TB vaccine, do not align with the protection and failure of TB vaccine candidates in clinical trials. In this review, we discuss the limitation of current Th1 cytokines as surrogates of protection and address the potential elements that should be considered to finalize the true functional signatures of protective immunity against TB.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guoliang Zhang
- Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong 518112, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
21
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
22
|
Gupta N, Agrawal B, Kumar R. Controlling inflammation: a superior way to control TB. Immunotherapy 2016; 8:1157-61. [DOI: 10.2217/imt-2016-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|