1
|
Borowczak J, Łaszczych D, Olejnik K, Michalski J, Gutowska A, Kula M, Bator A, Sekielska-Domanowska M, Makarewicz R, Marszałek A, Szylberg Ł, Bodnar M. Tight Junctions and Cancer: Targeting Claudin-1 and Claudin-4 in Thyroid Pathologies. Pharmaceuticals (Basel) 2024; 17:1304. [PMID: 39458944 PMCID: PMC11509894 DOI: 10.3390/ph17101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: Claudins are tight junction proteins partaking in epithelial-mesenchymal transition and cancer progression. In this study, we investigated the expression patterns of claudin-1 and claudin-4 in thyroid pathologies, discussed their links with the pathogenesis of thyroid cancers, and reviewed the therapeutic potential of targeting claudins in cancers. Methods: The research group 162 cores of thyroid samples from patients (70 female and 11 male) diagnosed with thyroid adenoma, goiter, papillary, medullary, and anaplastic thyroid cancers. All samples were stained for the expression of claudin-1 and claudin-4, and the analysis of IHC was performed. Results: Goiter samples showed negative claudin-1 and mostly positive expression of claudin-4. Papillary thyroid cancer and thyroid adenoma showed positive expression of claudin-1, while claudin-4 was positive in papillary thyroid cancers, goiters, and adenomas. In The Cancer Genome Atlas cohort, claudin-1 and claudin-4 were overexpressed in papillary thyroid cancer compared to normal thyroid tissues. Patients with high claudin-1 expression had significantly lower 5-year overall survival than patients with low claudin-1 levels (86.75% vs. 98.65, respectively). In multivariate analysis, high claudin-1 expression (HR 7.91, CI 95% 1.79-35, p = 0.006) and advanced clinical stage remained statistically significant prognostic factors of poor prognosis in papillary thyroid cancer. Conclusions: The pattern of claudin-1 staining was pathology-specific and changed between cancers of different histology. This phenomenon may be associated with the different pathogenesis of thyroid cancers and early metastasis. The loss of claudin-1 and claudin-4 characterized more aggressive cancers. Several studies have shown the benefits of targeting claudins in cancers, but their implementation into clinical practice requires further trials.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Dariusz Łaszczych
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Katarzyna Olejnik
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Jakub Michalski
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anna Gutowska
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Monika Kula
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anita Bator
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Collegium Medicum, Nicolaus Copernicus University, 85-796 Bydgoszcz, Poland
| | - Andrzej Marszałek
- Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| |
Collapse
|
2
|
Zadeh-Vakili A, Faam B, Afgar A, Razmpoosh E, Zarkesh M, Amouzegar A. A systematic review of dysregulated microRNAs in Hashimoto's thyroiditis. Endocrine 2024; 84:800-811. [PMID: 38212462 DOI: 10.1007/s12020-023-03673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Plenty of evidence suggests that dysregulated microRNAs are linked to developing autoimmune thyroid diseases. In this study, we aimed to identify commonly linked dysregulated microRNAs in Hashimoto's thyroiditis(HT) and explore microRNA-targeted genes and the involved pathways. METHODS Embase, PubMed, Web of Science, and Scopus databases were searched using the MeSH terms and free text terms, which yielded 11879 articles published up to July 2023. Two-step screening(first for titles and second for abstracts) was completed according to inclusion and exclusion criteria. The search strategy was formulated using the PEO format(Population, Exposure, and Outcome) for observational studies. The corresponding target genes and relevant signaling pathways were also identified using web servers of Diana Tools/its mirPath v.3 software, miRNA Enrichment Analysis, Mirpath DB2, miRPathDB 2.0, and miRmap. RESULTS Review inclusion criteria were met by 16 studies. Thirty-three microRNAs were identified as differentially expressed in HT patients compared to a healthy control after qRT-PCR or RNA sequencing confirmation. Only three miR-146a, miR-142, and miR-301 showed significant results in more than two studies comparing HT cases with healthy controls. CONCLUSION Three key microRNAs in HT were identified by systematic review; the corresponding target genes and signaling pathways involved in the target genes were also identified. These microRNAs regulate the immune response and inflammation and may favor the development and progression of HT. These data may be beneficial to make a step forward to understand the exact etiology of HT and use of these MicroRNAs as possible diagnostic and prognostic biomarkers and as target therapy.
Collapse
Affiliation(s)
- Azita Zadeh-Vakili
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bita Faam
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Razmpoosh
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sawicka B, Sulewska A, Kulczyńska-Przybik A, Bossowski F, Dulewicz M, Borysewicz-Sańczyk H, Mroczko B, Nikliński J, Bossowski A. Potential Role of Selected miRNAs in the Pathogenesis of Autoimmune Thyroid Diseases in Children and Adolescents. Biomedicines 2024; 12:731. [PMID: 38672087 PMCID: PMC11047951 DOI: 10.3390/biomedicines12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Many epigenetic factors, including microRNAs, are involved in the process of changing gene expressions. Small non-coding RNA molecules, called miRNAs, are responsible for regulating gene translation by silencing or degrading target mRNAs. It is acknowledged that for many diseases, they may be novel diagnostic and prognostic biomarkers. Patients with autoimmune thyroid diseases are more likely to develop nodules in the thyroid tissue, and Hashimoto's thyroiditis and Graves' disease predispose patients to thyroid cancer. We evaluated the concentrations of microRNA molecules (miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p, miR-150-5p) in the blood of children with thyroid disorders. In addition, we wished to identify molecules whose change in concentration predisposes to the development of thyroid cancer. AIM The aim of this study is to evaluate selected epigenetic elements by analyzing the levels of miR-15a-5p, miR-126-3p, miR-142-5p, miR-150-5p and miR-21-5p in the blood of pediatric patients with Graves' disease (n = 25), Hashimoto's thyroiditis (n = 26) and thyroid nodular disease (n = 20) compared to a control group of healthy children (n = 17). MATERIALS AND METHODS The study consists of groups of children and adolescents aged 10-18 years with autoimmune thyroid disease, with thyroid nodular disease compared to a control group. The miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p and miR-150-5p molecules were determined through an immunoenzymatic assay using BioVendor reagents. RESULTS There is a statistically significant decrease in the expression of the miR-15a-5p in children with Graves' disease (21.61 vs. 50.22 amol/μL, p = 0.03) and in patients with thyroid nodular disease compared to controls (20.23 vs. 50.22 amol/μL, p = 0.04). Higher levels of the miR-142-5p molecule are found in patients with thyroid disease (with GD-3.8 vs. 3.14 amol/μL, p = 0.01; with HT-3.7 vs. 3.14 amol/μL, p = NS, with thyroid nodular disease-4.16 vs. 3.14 amol/μL, p = 0.04). Lower levels of miR-126-3p were noted in the GD group compared to the control group (7.09 vs. 7.24 amol/μL, p = 0.02). No statistically significant changes in the expressions of miR-150-5p and miR-21-5p molecules were observed in the study groups. CONCLUSIONS 1. The overexpression of the miR-142-5p molecule occurs in children and adolescents with thyroid diseases. 2. Decreased blood levels of miR-15a-5p predispose patients to the formation of focal lesions in the thyroid gland. 3. Identifying a lower expression of the miR-126-3p molecule in the blood of children with GD requires careful follow-up for the development of focal lesions in the thyroid gland and evaluation for their potential malignancy.
Collapse
Affiliation(s)
- Beata Sawicka
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.S.)
| | | | - Filip Bossowski
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland (B.M.)
| | - Hanna Borysewicz-Sańczyk
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland (B.M.)
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.S.)
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Tian Z, Li X, Yu X, Yan S, Sun J, Ma W, Zhu X, Tang Y. The role of primary cilia in thyroid diseases. Front Endocrinol (Lausanne) 2024; 14:1306550. [PMID: 38260150 PMCID: PMC10801159 DOI: 10.3389/fendo.2023.1306550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.
Collapse
Affiliation(s)
- Zijiao Tian
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xinlin Li
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Yan
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Geiger L, Orsi G, Cseh T, Gombos K, Illés Z, Czéh B. Circulating microRNAs correlate with structural and functional MRI parameters in patients with multiple sclerosis. Front Mol Neurosci 2023; 16:1173212. [PMID: 37881368 PMCID: PMC10597671 DOI: 10.3389/fnmol.2023.1173212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters. Methods We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes. Microstructural changes in the white matter were investigated with diffusion tensor imaging. Magnetic resonance spectroscopy was performed to measure cerebral metabolites. Functional connectivity within the default mode network was examined with resting-state functional MRI. On the day of the MRI measurements, we collected serum samples and carried out quantitative analysis of ten pre-selected microRNAs using droplet digital PCR. Results Serum level of miR-143.3p could differentiate between MS subtypes and had lower levels in progressive MS types. We found significant associations between microRNA levels and MRI measures: (1) higher miR-92a.3p and miR-486.5p levels were associated with greater total white matter lesion volumes within the cervical spine, (2) decreased miR-142.5p levels was associated with reduced total creatinine concentration and (3) miR-92a.3p, miR-142.5p and miR-486.5p levels were associated with functional connectivity strengths between specific nodes of the default mode network. Specifically, we found a negative association between miR-92a.3p and miR-486.5p levels and connectivity strength between the lateral temporal cortex and posterior inferior parietal lobule, and a positive association between miR-142.5p level and connectivity strength between the retrosplenial cortex and temporal pole. However, miRNA levels were not associated with regional brain volumes. Conclusion We provide here further evidence that circulating microRNAs may show correlation with both structural and functional neuroimaging outcomes in patients with MS.
Collapse
Affiliation(s)
- Lili Geiger
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Eötvös Loránd Research Network, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
| | - Tamás Cseh
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Gombos
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsolt Illés
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Martínez-Hernández R, Marazuela M. MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract Res Clin Endocrinol Metab 2023; 37:101741. [PMID: 36801129 DOI: 10.1016/j.beem.2023.101741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level. They are emerging as potential biomarkers and as therapeutic targets for several diseases including autoimmune thyroid diseases (AITD). They control a wide range of biological phenomena, including immune activation, apoptosis, differentiation and development, proliferation and metabolism. This function makes miRNAs attractive as disease biomarker candidates or even as therapeutic agents. Because of their stability and reproducibility circulating miRNAs have been an interesting area of research in many diseases, and studies describing their role in the immune response and in autoimmune diseases have progressively developed. The mechanisms underlying AITD remain elusive. AITD pathogenesis is characterized by a multifactorial interplay based on the synergy between susceptibility genes and environmental stimulation, together with epigenetic modulation. Understanding the regulatory role of miRNAs could lead to identify potential susceptibility pathways, diagnostic biomarkers and therapeutic targets for this disease. Herein we update our present knowledge on the role of microRNAs in AITD and discuss on their importance as possible diagnostic and prognostic biomarkers in the most prevalent AITDs: Hashimoto's thyroiditis (HT), Graves' disease (GD) and Graves' Ophthalmopathy (GO). This review provides an overview of the state of the art in the pathological roles of microRNAs as well as in possible novel miRNA-based therapeutic approaches in AITD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain; Faculty of Medicine, Universidad San Pablo CEU, CEU Universities, Urbanizacion Monteprincipe, Alcorcon, Madrid, Spain.
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
7
|
Iron: Not Just a Passive Bystander in AITD. Nutrients 2022; 14:nu14214682. [PMID: 36364944 PMCID: PMC9658435 DOI: 10.3390/nu14214682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is the most prevalent autoimmune disease all over the world and the most frequent cause of hypothyroidism in areas of iodine sufficiency. The pathogenesis of AITD is multifactorial and depends on complex interactions between genetic and environmental factors, with epigenetics being the crucial link. Iron deficiency (ID) can reduce the activities of thyroid peroxidase and 5′-deiodinase, inhibit binding of triiodothyronine to its nuclear receptor, and cause slower utilization of T3 from the serum pool. Moreover, ID can disturb the functioning of the immune system, increasing the risk of autoimmune disorders. ID can be responsible for residual symptoms that may persist in patients with AITD, even if their thyrometabolic status has been controlled. The human lifestyle in the 21st century is inevitably associated with exposure to chemical compounds, pathogens, and stress, which implies an increased risk of autoimmune disorders and thyroid dysfunction. To summarize, in our paper we discuss how iron deficiency can impair the functions of the immune system, cause epigenetic changes in human DNA, and potentiate tissue damage by chemicals acting as thyroid disruptors.
Collapse
|
8
|
Bayomy NR, Shaaban MA, Dawood AEDAS, Habib MEA, Kamel MA. Correlation between circulating MicroRNA-142-5p expression and Hashimoto's thyroiditis diagnosis and autoimmunity symptoms prediction, pilot study. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes (Basel) 2022; 13:genes13020231. [PMID: 35205276 PMCID: PMC8872439 DOI: 10.3390/genes13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.
Collapse
|
10
|
Expression Profiles of miR-22-5p and miR-142-3p Indicate Hashimoto’s Disease and Are related to Thyroid Antibodies. Genes (Basel) 2022; 13:genes13020171. [PMID: 35205216 PMCID: PMC8871926 DOI: 10.3390/genes13020171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022] Open
Abstract
Hashimoto’s thyroiditis (HT) is the most prevalent autoimmune disorder of the thyroid (AITD) and characterized by the presence of circulating autoantibodies evoked by a, to date, not fully understood dysregulation of the immune system. Autoreactive lymphocytes and inflammatory processes in the thyroid gland can impair or enhance thyroid hormone secretion. MicroRNAs (miRNAs) are small noncoding RNAs, which can play a pivotal role in immune functions and the development of autoimmunity. The aim of the present study was to evaluate whether the expression of 9 selected miRNAs related to immunological functions differ in patients with HT compared to healthy controls. MiRNA profiles were analysed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 24 patients with HT and 17 healthy controls. Systemic expressions of miR-21-5p, miR-22-3p, miR-22-5p, miR-142-3p, miR-146a-5p, miR-301-3p and miR-451 were significantly upregulated in patients with HT (p ≤ 0.01) and were suitable to discriminate between HT and healthy controls in AUC analysis. Altered expressions of miR-22-5p and miR-142-3p were associated with higher levels of thyroid antibodies, suggesting their contribution to the pathogenesis of HT.
Collapse
|
11
|
Sui R, Shi W, Han S, Fan X, Zhang X, Wang N, Zhang H, Xu A, Liu C. MiR-142-5p directly targets cyclin-dependent kinase 5-mediated upregulation of the inflammatory process in acquired middle ear cholesteatoma. Mol Immunol 2021; 141:236-245. [PMID: 34875451 DOI: 10.1016/j.molimm.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cell proliferation, differentiation, apoptosis, and inflammatory responses. MiR-142-5p is an important inflammation-associated miRNA, whose abnormal expression has been associated with a variety of inflammation-related diseases. However, the role and signaling pathways targeted by miR-142-5p in acquired middle ear cholesteatoma (AMEC) have not been fully elucidated. Cyclin-dependent kinase 5 (CDK5), a special member of the CDK family compared with classic cyclins that plays a critical role in the inflammatory response. In this study, we investigated the roles of miR-142-5p and CDK5 in inflammatory responses in AMEC. Our results revealed that the expression of miR-142-5p was significantly reduced in AMEC, and was negatively correlated with the expression of CDK5 (r=-0.5451). We also found that miR-142-5p can inhibit CDK5 expression by directly target 3' untranslated region (UTR) of CDK5. Additionally, our findings indicated that the increased expression of CDK5 induces the secretion of inflammatory cytokines. In order to further confirm the involvement of miR-142-5p in the regulation of the inflammatory response in AMEC through its inhibitory effect on CDK5 expression, we studied the inflammatory response in HaCaT cells transfected with small interfering RNA against CDK5 (si-CDK5) and a miR-142-5p inhibitor. The results confirmed that miR-142-5p regulates the inflammatory response in AMEC by downregulating CDK5. In summary, miR-142-5p directly inhibits the CDK5-mediated upregulation of inflammatory cytokines in AMEC, which makes it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Rongcui Sui
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Wei Shi
- Department of Otolaryngology, Zhoucun District People's Hospital, 72 Mianhua Shi Road, Zibo, Shandong, China
| | - Shuhui Han
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xintai Fan
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xianzhao Zhang
- Department of Otolaryngology, The First People's Hospital of Jining, 6 Health Road, Jining, Shandong, China
| | - Na Wang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Hao Zhang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China.
| | - Chengcheng Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China.
| |
Collapse
|
12
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
13
|
Bayomy NR, Abo Alfottoh WM, Ali Eldeep SA, Ibrahim Mabrouk Mersal AMS, Abd El-Bary HMA, Abd El Gayed EM. Mir-142-5p as an indicator of autoimmune processes in childhood idiopathic nephrotic syndrome and as a part of MicroRNAs expression panels for its diagnosis and prediction of response to steroid treatment. Mol Immunol 2021; 141:21-32. [PMID: 34785326 DOI: 10.1016/j.molimm.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is the most frequent glomerular disease among children. Renal biopsy is the most precise procedure for diagnosing and following childhood NS; however, it is an invasive procedure with potential complications. As a result, early non-invasive diagnostic and prognostic indicators and new treatment targets are urgently needed for this disease. PURPOSE To assess the miR-142-5p expression in peripheral blood as an indicator of the autoimmune processes in children with NS and the role of differential microRNAs (miR) expression and expression panels in diagnosing and predicting the response to steroid treatment in children with NS. METHODS Eighty (80) children with NS and 100 subjects matched for age and gender used as controls constitute the study sample in this case-control study. MiR-142-5p, miR-191, miR-181-5p, miR-30a-5p and miR-50a-5p expression are measured in all enrolled children by real-time PCR. We assessed the sensitivity and accuracy of different MicroRNAs panels. RESULTS miR-142-5p, miR-191, miR-181-5p, miR-30a-5p and miR-150a-5p expressions were significantly increased in the children with NS than controls. There was a significant difference in the five mRNAs differential expressions between steroid-resistant and steroid-sensitive children with NS. Of the selected five microRNAs, miR-142a-5p was the best to allow very good discrimination of the children with NS and predict steroid resistance (AUC = 0.965 and 1.00, respectively), suggesting the possible autoimmunity processes' role in the pathogenesis of NS and the resistance to steroids. The (miR-142a-5p with miR-181a-5p and miR-30a-5p) was the best expression panel to diagnose new NS cases and predict steroid resistance. CONCLUSIONS microRNAs expressions, either differential or as a panel, are important for early diagnosing childhood NS and may provide a non-invasive clue for the response to steroid treatment in these patients. The (miR-142a-5p, miR-181-5p, and miR-30a-5p) panel was the best one to cover both the diagnosis of the new cases and prediction of response to steroid treatment. Autoimmunity has an important role in NS pathogenesis and resistance to steroid treatment.
Collapse
Affiliation(s)
- Noha Rabie Bayomy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt.
| | | | | | | | | | - Eman Masoud Abd El Gayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
14
|
Solvin ÅØ, Chawla K, Olsen LC, Hegre SA, Danielsen K, Jenssen M, Furberg AS, Saunes M, Hveem K, Saetrom P, Løset M. MicroRNA profiling of psoriatic skin identifies 11 miRNAs associated with disease severity. Exp Dermatol 2021; 31:535-547. [PMID: 34748247 DOI: 10.1111/exd.14497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as central regulators of gene expression and powerful biomarkers of disease. Much is yet unknown about their role in psoriasis pathology. To globally characterize the miRNAome of psoriatic skin, skin biopsies were collected from psoriatic cases (n = 75) and non-psoriatic controls (n = 46) and RNA sequenced. Count data were meta-analysed with a previously published dataset (cases, n = 24, controls, n = 20), increasing the number of psoriatic cases fourfold from previously published studies. Differential gene expression analyses were performed comparing lesional psoriatic (PP), non-lesional psoriatic (PN) and control (NN) skin. Further, functional enrichment and cell-specific analyses were performed. Across all contrasts, we identified 439 significantly differentially expressed miRNAs (DEMs), of which 85 were novel for psoriasis and 11 were related to disease severity. Meta-analyses identified 20 DEMs between PN and NN, suggesting an inherent change in the constitution of all skin in psoriasis. By integrating the miRNA transcriptome with mRNA target interactions, we identified several functionally enriched terms, including "thyroid hormone signalling," "insulin resistance" and various infectious diseases. Cell-specific expression analyses revealed that the upregulated DEMs were enriched in epithelial and immune cells. This study provides the most comprehensive overview of the miRNAome in psoriatic skin to date and identifies a miRNA signature related to psoriasis severity. Our results may represent molecular links between psoriasis and related comorbidities and have outlined potential directions for future functional studies to identify biomarkers and treatment targets.
Collapse
Affiliation(s)
- Åshild Ø Solvin
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Konika Chawla
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lene C Olsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv Anita Hegre
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kjersti Danielsen
- Department of Dermatology, University Hospital of North Norway, Tromsø, Norway
| | - Marita Jenssen
- Department of Dermatology, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Sofie Furberg
- Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway.,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Marit Saunes
- Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Saetrom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Zhao N, Wang Z, Cui X, Wang S, Fan C, Li Y, Shan Z, Teng W. In Vivo Inhibition of MicroRNA-326 in a NOD.H-2 h4 Mouse Model of Autoimmune Thyroiditis. Front Immunol 2021; 12:620916. [PMID: 34140947 PMCID: PMC8205278 DOI: 10.3389/fimmu.2021.620916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Background Previous studies reported that various miRNAs participate in autoimmune diseases, but the potential regulatory mechanism of miRNAs in autoimmune thyroiditis (AIT) needs further exploration. Objective This study aimed to further verify that miR-326 contributes to AIT by regulating Th17/Treg balance through Ets-1 using lentiviral gene delivery through tail vein and thyroid injection in NOD.H-2h4 mice. Materials and Methods Five-week-old NOD.H-2h4 mice were divided randomly into tail vein and thyroid injection groups, and each received either mmu-miR-326 sponge (LV-sponge) or lentiviral vector control. Mice were divided for tail vein injection: the therapeutic LV-ctrl, therapeutic LV-sponge, prophylactic LV-ctrl, and prophylactic LV-sponge groups. The control group was fed high-iodine water without vein injection. The thyroid infiltration of lymphocytes and serum TgAb value were investigated by thyroid hematoxylin and eosin (HE) staining and ELISA, respectively. Ets-1 and lymphocyte counts were measured by RT-PCR, western blotting, and flow cytometry. The thyroid CD4+IL-17a+ cells and CD4+Ets-1+ cells were detected by immunofluorescence, and the serum cytokines were tested by ELISA. Results In the tail vein injection groups, the thyroid inflammatory score and serum TgAb titer were significantly lower in the LV-sponge groups than in the control and LV-ctrl groups while Ets-1 protein expression in mouse spleens was increased in the LV-sponge groups. Moreover, Th17/Treg ratio declined in the LV-sponge group and decreased significantly in the prophylactic LV-sponge group (P = 0.036) tested by flow cytometry. Immunofluorescence showed that, in LV-sponge groups, CD4+IL-17a+ cells were decreased significantly (P = 0.001), while CD4+Ets-1+ cells were increased significantly in the LV-sponge group (P = 0.029). The serum IL-17/IL-10 was decreased significantly in the LV-sponge group (P < 0.05). In the thyroid injection groups, the thyroid inflammatory score and serum TgAb titer in the LV-sponge group decreased significantly compared with those in the LV-ctrl group (P < 0.05). In addition, in LV-sponge groups, CD4+IL-17a+ cells were decreased, while CD4+Ets-1+ cells were increased significantly in the inhibition group evaluated by immunofluorescence. Moreover, tail vein injection of LV-sponge resulted in much lower TgAb levels in thyroiditis compared with thyroid injection. Conclusion MiR-326 targeted therapy may be a promising approach for AIT. In addition, tail vein injection may achieve a better intervention effect than thyroid injection.
Collapse
Affiliation(s)
- Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejiao Cui
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Pitto L, Gorini F, Bianchi F, Guzzolino E. New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217787. [PMID: 33114343 PMCID: PMC7662297 DOI: 10.3390/ijerph17217787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, the presence in the environment of chemical compounds with thyroid-disrupting effects is progressively increased. This phenomenon has risen concern for human health as the preservation of thyroid system homeostasis is essential for fetal development and for maintaining psychological and physiological wellbeing. An increasing number of studies explored the role of different classes of toxicants in the occurrence and severity of thyroid diseases, but large epidemiological studies are limited and only a few animal or in vitro studies have attempted to identify the mechanisms of chemical action. Recently, epigenetic changes such as alteration of methylation status or modification of non-coding RNAs have been suggested as correlated to possible deleterious effects leading to different thyroid disorders in susceptible individuals. This review aims to analyze the epigenetic alterations putatively induced by chemical exposures and involved in the onset of frequent thyroid diseases such as thyroid cancer, autoimmune thyroiditis and disruption of fetal thyroid homeostasis.
Collapse
Affiliation(s)
- Letizia Pitto
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Correspondence: ; Tel.: + 39-050-3153090
| | - Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
| | - Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (F.B.); (E.G.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
17
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in autoimmune thyroid disease. Exp Mol Pathol 2020; 117:104527. [PMID: 32916160 DOI: 10.1016/j.yexmp.2020.104527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Autoimmune thyroid disease (AITD) is a complex disorder with both genetic and environmental risk factors. A number of genetic factors such as HLA and CTLA-4 loci have been associated with risk of this disorder. In addition to these factors, recent studies have shown contribution of non-coding RNAs in the pathogenesis of this condition. Several microRNAs (miRNAs) and a number of long noncoding RNAs (lncRNAs) such as IFNG-AS1, Heg, NR_038461, NR_038462, T204821 and NR_104125 have been dysregulated in peripheral blood of patients with AITD. These transcripts are mostly enriched in pathways that modulate humoral and cellular immune responses such as those associated with antigen presentation and differentiation of Th1, Th2 and Th17 cells. Functional studies verified the role of a number of lncRNAs and miRNAs in regulation of critical immune-related pathways in AITD. Thus, they participate in the pathophysiology of AITD. In the current review, we summarize the results of studies that assessed participation of non-coding RNAs in the pathophysiology of AITD.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Soudeh Ghafouri-Fard
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Yin L, Zeng C, Yao J, Shen J. Emerging Roles for Noncoding RNAs in Autoimmune Thyroid Disease. Endocrinology 2020; 161:5818080. [PMID: 32270194 DOI: 10.1210/endocr/bqaa053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune thyroid disease (AITD) is one of the most frequent autoimmune disorders. However, the pathogenesis of AITD has not been fully elucidated. Recently, accumulating evidence has demonstrated that abnormal expression of noncoding RNAs (ncRNAs) is closely related to the etiopathogenesis of AITD. microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are 3 major groups of ncRNAs that are attracting increasing attention. Herein, we summarized our present knowledge on the role of miRNAs, lncRNAs, and circRNAs in AITD. This review focused on the importance of ncRNAs in development of the most prevalent AITD, such as Hashimoto disease and Graves' diseases. Altogether, the main purpose of this review is to provide new insights in the pathogenesis of AITD and the possibility of developing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
19
|
Liu Y, Ding X, Xiong S, Wang X, Tang X, Wang L, Wang S, Peng H. Circulating microRNA Expression Profiling Identifies miR-125a-5p Promoting T Helper 1 Cells Response in the Pathogenesis of Hashimoto's Thyroiditis. Front Immunol 2020; 11:1195. [PMID: 32595646 PMCID: PMC7300231 DOI: 10.3389/fimmu.2020.01195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key regulators of cellular processes by suppressing target mRNAs at the posttranscriptional level. However, little is known regarding the expression of miRNAs in peripheral blood mononuclear cells (PBMCs) from Hashimoto's thyroiditis (HT) patients. Therefore, 38 HT patients and 36 healthy volunteers were enrolled in this study to identify HT-mediated changes in miRNA expression. Over 1,000 dysregulated miRNAs and their biological functions in the HT patients were identified. Among them, miR-125a-5p expression was upregulated and inversely correlated with low levels of MAF, a transcription factor that inhibits Th1 cells activity and the production of IFN-γ. Luciferase assay results demonstrated that MAF is a direct target gene of miR-125a-5p. Moreover, the proportion of circulating Th1 cells and the transcript levels of IFN-γ were increased in the HT patients. MiR-125a-5p expression positively correlated with the proportion of circulating Th1 cells and the serum concentrations of anti-thyroperoxidase antibodies in the HT patients. Interestingly, knockdown of miR-125a-5p in CD4+ T cells resulted in an elevated level of MAF but decreased the proportion of Th1 cells and the transcript level of IFN-γ in vitro. Furthermore, upregulated miR-125a-5p and IFN-γ transcript levels and downregulated MAF expression were detected in thyroid tissues from HT patients. Receiver operating characteristic (ROC) curves suggested that miR-125a-5p has a crucial role in the HT. Our results demonstrate that the elevated levels of miR-125a-5p contribute to the Th1 cells response in the HT patients and may be involved in the pathogenesis of HT.
Collapse
Affiliation(s)
- Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Si Xiong
- Department of Endocrinology, The Fifth People's Hospital of Wuhan, Wuhan, China
| | - Xuehua Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Li Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
20
|
Tang B, Li W, Ji T, Li X, Qu X, Feng L, Zhu Y, Qi Y, Zhu C, Bai S. Downregulation of XIST ameliorates acute kidney injury by sponging miR-142-5p and targeting PDCD4. J Cell Physiol 2020; 235:8852-8863. [PMID: 32347551 DOI: 10.1002/jcp.29729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a common kidney disease that markedly affects public health. To date, the roles of long noncoding RNA XIST in AKI are poorly understood. Here, we investigated the biological functions of XIST in AKI. We observed that XIST expression increased in patients with AKI and HK-2 cells stimulated by CoCl2 . In addition, a rat AKI model induced by ischemia-reperfusion was established. Tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 messenger RNA expression were induced in vivo; moreover, XIST expression was upregulated. Knockdown of XIST significantly repressed CoCl2 -triggered injury in HK-2 cells. However, microRNA (miR)-142-5p, a downstream target of XIST, was downregulated in AKI. miR-142-5p was repressed by XIST and miR-142-5p could inhibit CoCl2 -induced injury in HK-2 cells. Moreover, PDCD4 expression was significantly increased in AKI. PDCD4 was predicted to be the target of miR-142-5p. Subsequently, loss of PDCD4 was able to retard injury in HK-2 cells exposed to CoCl2. Thus, we suggest that XIST regulates miR-142-5p and PDCD4, and it has the potential to function as a biomarker in therapeutic strategies for AKI.
Collapse
Affiliation(s)
- Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiliang Li
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Tingting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaolei Qu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yingchun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yinghui Qi
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
21
|
MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol 2019; 323:113094. [PMID: 31676317 DOI: 10.1016/j.expneurol.2019.113094] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Given the essential role of the blood-brain barrier (BBB) in the central nervous system (CNS), cumulative investigations have been performed to elucidate how modulation of BBB structural and functional integrity affects the pathogenesis of CNS diseases such as stroke, traumatic brain injuries, dementia, and cerebral infection. Recent studies have demonstrated that microRNAs (miRNAs) contribute to the maintenance of the BBB and thereby mediate CNS homeostasis. This review summarizes emerging studies that demonstrate cerebral miRNAs regulate BBB function in CNS disorders, emphasizing the direct role of miRNAs in BBB molecular composition. Evidence presented in this review will encourage a deeper understanding of the mechanisms by which miRNAs regulate BBB function, and facilitate the development of new miRNAs-based therapies in patients with CNS diseases.
Collapse
|
22
|
Han J, Li Y, Zhang H, Guo J, Wang X, Kang Y, Luo Y, Wu M, Zhang X. MicroRNA-142-5p facilitates the pathogenesis of ulcerative colitis by regulating SOCS1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5735-5744. [PMID: 31949659 PMCID: PMC6963094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence suggests that abnormal levels of microRNAs (miRNAs) are associated with ulcerative colitis (UC). It has been demonstrated that microRNA (miR)-142-5p was upregulated in UC patients. However, it remains unclear what the role of miR-142-5p is in UC. METHODS Samples from patients with active UC and healthy controls were performed with miRNA microarray to identify miRNAs involved in the pathogenesis of UC. The results of quantitative RT-PCR verified that miR-142-5p was upregulated in UC patients. Meanwhile, the decreased expression of suppressor of cytokine signaling 1 (SOCS1) was also detected at mRNA and protein levels. The regulatory effect of miR-142-5p on SOCS1 was evaluated by luciferase reporter assay. Levels of IL-6 or IL-8 were detected by quantitative RT-PCR or enzyme-linked immunosorbent assay in HT-29 cells to evaluate the roles of SOCS1 or miR-142-5p in the progression of UC. RESULTS The expression level of miR-142-5p was significantly upregulated and inversely correlated with SOCS1. Luciferase experiments showed that miR-142-5p interfered with the expression of SOCS1 by directly targeting its 3'-UTR. Furthermore, the level of miR-142-5p plays an important role in the secretion of IL-6 and IL-8. Moreover, lost function of SOCS1 reversed the miR-142-5p inhibitory effect. CONCLUSIONS These results indicate that miR-142-5p improved the intestinal inflammation of active-UC patients by downregulating SOCS1 expression and increasing the cytokines IL-6 and IL-8 secretion.
Collapse
Affiliation(s)
- Jing Han
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
- Department of Physical Examination Center, The Second Hospital of Hebei Medical UniversityHebei, Shijiazhuang, China
| | - Yawei Li
- Department of Cardiology, The Third Hospital of ShijiazhuangShijiazhuang, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Jinbo Guo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xing Wang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yaxing Kang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yuxin Luo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Mengyao Wu
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| |
Collapse
|
23
|
Cheng D, Li J, Zhang L, Hu L. miR-142-5p suppresses proliferation and promotes apoptosis of human osteosarcoma cell line, HOS, by targeting PLA2G16 through the ERK1/2 signaling pathway. Oncol Lett 2018; 17:1363-1371. [PMID: 30655907 DOI: 10.3892/ol.2018.9712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies have revealed that miR-142-5p serves a critical role in human cancer progression. However, the biological function of miR-142-5p in osteosarcoma (OS) development remains unclear. In the present study, the role of miR-142-5p in human OS HOS cells was determined, and the underlying mechanism involved was examined. Compared with the adjacent healthy tissues, the expression level of miR-142-5p was downregulated and the expression level of group XVI phospholipase A2 (PLA2G16) protein was upregulated in human OS tissues. The aforementioned results were also indicated in human OS HOS cells when compared with human fetal osteoblastic hFOB1.19 cells. Additionally, the results demonstrated that PLA2G16 was a direct target of miR-142-5p. miR-142-5p transfection upregulated the expression level of miR-142-5p and suppressed the expression level of PLA2G16 protein in HOS cells. MTT assays indicated a time-dependent decrease by miR-142-5p transfection in the proliferation of HOS cells. 5-bromo-2'-deoxyuridine incorporation assays confirmed that miR-142-5p transfection inhibited DNA synthesis in HOS cells. In addition, miR-142-5p transfection increased the Caspase-3 (CASP3) activity and apoptotic rate. Western blot analysis indicated that miR-142-5p transfection reduced BCL2, apoptosis regulator expression and upregulated the expression of CASP3 and BCL2 associated X, apoptosis regulator in HOS cells. Furthermore, miR-142-5p transfection decreased the expression levels of phosphorylated (p)-proto-oncogene, serine/threonine kinase, p-mitogen-activated protein kinase kinase, and p-extracellular signal-regulated kinase (ERK) 1/2 proteins in HOS cells. PLA2G16 overexpression restored the expression level of p-ERK 1/2 protein, which was reduced by miR-142-5p overexpression. MTT and CASP3 activity assays indicated that restoration of PLA2G16 reversed the tumour-suppressive role of miR-142-5p transfection in HOS cells. In conclusion, the results of the present study indicated that miR-142-5p suppressed proliferation and promoted apoptosis in human OS HOS cells by targeting PLA2G16 through ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jiageng Li
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Lijun Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
24
|
MicroRNA‑142‑5p modulates breast cancer cell proliferation and apoptosis by targeting phosphatase and tensin homolog. Mol Med Rep 2018; 17:7529-7536. [PMID: 29620260 PMCID: PMC5983952 DOI: 10.3892/mmr.2018.8812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
A total of 60 breast cancer (BC) tissues and adjacent healthy tissues from patients who underwent surgery in Renmin Hospital of Wuhan University were collected for analysis in the present study. Results from reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that, compared with the adjacent healthy tissues, the expression levels of microRNA (miR)‑142‑5p were significantly elevated in BC tissues. Bioinformatics analysis was performed using TargetScan for the prediction of potential target sites that matched the seed region of miR‑142‑5p; phosphatase and tensin homolog (PTEN) exhibited the highest score and was selected for further analysis. Results of RT‑qPCR analysis demonstrated that, compared with the adjacent healthy tissues, the mRNA expression levels of PTEN were significantly decreased in breast cancer tissues. miR‑142‑5p and PTEN expression levels were positively and negatively associated, respectively, with patient tumor size and metastasis. MDA‑MB‑231 cells were divided into three groups including the Control group, the miR‑NC inhibitor group and the miR‑142‑5p inhibitor group. As for alterations in cell behavior, including cell viability and cell apoptosis, and protein expression levels, there were no significant differences between Control and miR‑NC inhibitor groups. MTT assay results revealed that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor reduced MDA‑MB‑231 cell proliferation. Flow cytometric analysis demonstrated that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor treatment induced MDA‑MB‑231 cell apoptosis. Western blotting results demonstrated that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor treatment significantly increased the expression of PTEN, reduced the activation of phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/RACα serine/threonine‑protein kinase signaling. Finally, PTEN was demonstrated to interact with miR‑142‑5p from the results of dual‑luciferase reporter assay in the present study. The findings of the present study suggested that miR‑142‑5p may be a potential therapeutic target for the future investigations and insights for breast cancer.
Collapse
|
25
|
Martínez-Hernández R, Sampedro-Núñez M, Serrano-Somavilla A, Ramos-Leví AM, de la Fuente H, Triviño JC, Sanz-García A, Sánchez-Madrid F, Marazuela M. A MicroRNA Signature for Evaluation of Risk and Severity of Autoimmune Thyroid Diseases. J Clin Endocrinol Metab 2018; 103:1139-1150. [PMID: 29325052 DOI: 10.1210/jc.2017-02318] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 02/11/2023]
Abstract
CONTEXT Circulating microRNAs (miRNAs) are emerging as an interesting research area because of their potential role as novel biomarkers and therapeutic targets. Their involvement in autoimmune thyroid diseases (AITDs) has not been fully explored. OBJECTIVE To compare the expression profile of miRNAs in thyroid tissue from patients with AITD and controls, using next-generation sequencing, further validated our findings in thyroid and serum samples. DESIGN Twenty fresh-frozen thyroid tissues (15 from patients with AITD and 5 from controls) were used for miRNA next-generation sequencing. Thirty-six thyroid samples were recruited for the qRT-PCR validation test and 58 serum samples for further validation in peripheral blood. RESULTS Expression of several miRNAs that had been previously associated with relevant immunological functions was significantly dysregulated. Specifically, eight differentially expressed miRNAs (miR-21-5p, miR-142-3p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-338-5p, miR-342-5p, and miR-766-3p) were confirmed using qRT-PCR in thyroid samples, and three had the same behavior in tissue and serum samples (miR-21-5p, miR-142-3p, and miR-146a-5p). Furthermore, when the expression of these miRNAs was assessed together with five additional ones previously related to AITD in peripheral blood, the expression of five (miR-Let7d-5p, miR-21-5p, miR-96-5p, miR-142-3p, and miR-301a-3p) was significantly expressed in AITD and, in patients with Graves disease (GD), was correlated with a higher severity of disease, including active ophthalmopathy, goiter, higher antibody titers, and/or higher recurrence rates. CONCLUSIONS The present findings identify a serum five-signature miRNA that could be an independent risk factor for developing AITD and a predisposition of a worse clinical picture in patients with GD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana M Ramos-Leví
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV) and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ancor Sanz-García
- Neurosurgery & National Reference Unit for the Treatment of Refractory Epilepsy, Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV) and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Shukla SK, Singh G, Ahmad S, Pant P. Infections, genetic and environmental factors in pathogenesis of autoimmune thyroid diseases. Microb Pathog 2018; 116:279-288. [DOI: 10.1016/j.micpath.2018.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 12/18/2022]
|
27
|
Lu M, Xu X, Xi B, Dai Q, Li C, Su L, Zhou X, Tang M, Yao Y, Yang J. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma. Genes (Basel) 2018; 9:E44. [PMID: 29351231 PMCID: PMC5793195 DOI: 10.3390/genes9010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
RNAs may act as competing endogenous RNAs (ceRNAs), a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA)-messenger RNA (mRNA)long non-coding RNA (lncRNA) networks from miRcode database and weighted correlation network analysis (WGCNA), based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB). We applied the pipeline into The Cancer Genome Atlas (TCGA) thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs) were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA-mRNA-lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients' survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.
Collapse
Affiliation(s)
- Minjia Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xingyu Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chenli Li
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Li Su
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Xiaonan Zhou
- Institute of Basic Medical Sciences, Wannan Medical College, Hefei 241000, China.
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
28
|
Suppression of microRNA-142-5p attenuates hypoxia-induced apoptosis through targeting SIRT7. Biomed Pharmacother 2017; 94:394-401. [PMID: 28772218 DOI: 10.1016/j.biopha.2017.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing study has suggested that microRNAs (miRNAs) are pivotal regulators in regulating hypoxia-induced injury. miR-142-5p has been suggested as a critical regulator for cellular survival. However, the role of miR-142-5p in regulating hypoxia-induced injury remains unknown. In this study, we aimed to investigate the mechanistic roles of miR-142-5p in regulating cell survival during hypoxia treatment using H9C2 cardiomyoblasts and primary cardiomyocytes. We showed that miR-142-5p expression level was significantly repressed by hypoxia treatment. Overexpression of miR-142-5p during hypoxia induced extensive cell injury and apoptosis whereas suppression of miR-142-5p significantly promoted cell viability and attenuated cell apoptosis with hypoxia treatment. Sirtuin7 (SIRT7) was identified as a direct target gene of miR-142-5p by bioinformatics analysis and dual-luciferase reporter assays. Overexpression of miR-142-5p significantly decreased SIRT7 expression, while suppression of miR-142-5p increased SIRT7 expression. Furthermore, overexpression of SIRT7 protected H9C2 cardiomyoblasts and primary cardiomyocytes against hypoxia-induced injury and apoptosis. The silencing of SIRT7 markedly abrogated the protective effect induced by miR-142-5p suppression. Taken together, these results suggest that downregulation of miR-142-5p alleviates hypoxia-induced injury through upregulation of SIRT7. Our study suggests miR-142-5p/SIRT7 as potential therapeutic targets for ischemic heart disease.
Collapse
|
29
|
Cao B, Zhou X, Ma J, Zhou W, Yang W, Fan D, Hong L. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci 2017; 62:1426-1438. [PMID: 28391412 DOI: 10.1007/s10620-017-4567-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD), mainly including Crohn's disease and ulcerative colitis, are characterized by chronic inflammation of the gastrointestinal tract. Despite improvements in detection, drug treatment and surgery, the pathogenesis of IBD has not been clarified. A number of miRNAs have been found to be involved in the initiation, development and progression of IBD, and they may have the potential to be used as biomarkers and therapeutic targets. Here, we have summarized the recent advances about the roles of miRNAs in IBD and analyzed the contribution of miRNAs to general diagnosis, differential diagnosis and activity judgment of IBD. Furthermore, we have also elaborated the promising role of miRNAs in IBD-related cancer prevention and prognosis prediction.
Collapse
Affiliation(s)
- Bo Cao
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Zhou
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
30
|
Wang B, Shao X, Song R, Xu D, Zhang JA. The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Front Immunol 2017; 8:396. [PMID: 28439272 PMCID: PMC5383710 DOI: 10.3389/fimmu.2017.00396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are a group of both B cell- and T cell-mediated organ-specific autoimmune diseases. Graves’ disease and Hashimoto thyroiditis are the two main clinical presentations of AITD. Both genetic and environmental factors have important roles in the development of AITD. Epigenetics have been considered to exert key roles in integrating those genetic and environmental factors, and epigenetic modifications caused by environmental factors may drive genetically susceptibility individuals to develop AITD. Recent studies on the epigenetics of AITD have provided some novel insights into the pathogenesis of AITD. The aim of this review is to provide an overview of recent advances in the epigenetic mechanisms of AITD, such as DNA methylation, histone modifications, and non-coding RNAs. This review highlights the key roles of epigenetics in the pathogenesis of AITD and potential clinical utility. However, the epigenetic roles in AITD are still not fully elucidated, and more researches are needed to provide further deeper insights into the roles of epigenetics in AITD and to uncover new therapeutic targets. Although there are many studies assessing the epigenetic modifications in AITD patients, the clinical utility of epigenetics in AITD remains poorly defined. More studies are needed to identify the underlying epigenetic modifications that can contribute to accurate diagnosis of AITD, adequate choice of treatment approach, and precise prediction of treatment outcomes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoqing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jin-An Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
Wang N, Zhang L, Lu Y, Zhang M, Zhang Z, Wang K, Lv J. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway. Biomed Pharmacother 2017; 89:1187-1195. [PMID: 28320085 DOI: 10.1016/j.biopha.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in regulating neuron survival during cerebral ischemia/reperfusion injury. miR-142-5p is reported to be an important regulator of cellular survival. However, little is known about the role of miR-142-5p in regulating neuron survival during cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the precise function and mechanism of miR-142-5p in the regulation of neuron ischemia/reperfusion injury using a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in hippocampal neurons in vitro. We found that miR-142-5p was induced in hippocampal neurons with OGD/R treatment. The inhibition of miR-142-5p attenuated OGD/R-induced cell injury and oxidative stress, whereas the overexpression of miR-142-5p aggravated them. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-142-5p. Moreover, miR-142-5p regulated Nrf2 expression and downstream signaling. Knockdown of Nrf2 abolished the protective effects of miR-142-5p suppression. In addition, we showed an inverse correlation relationship between miR-142-5p and Nrf2 in an in vivo model of middle cerebral artery occlusion in rats. Taken together, these results suggest that miR-142-5p contributes to OGD/R-induced cell injury and the down-regulation of miR-142-5p attenuates OGD/R-induced neuron injury through promoting Nrf2 expression. Our study provides a novel insight into understanding the molecular pathogenesis of cerebral ischemia/reperfusion injury and indicates a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Mingxin Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of The Fourth Military Medical University, Xi'an 710038, China
| | - Zhenni Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
32
|
Abstract
Increasing evidence suggests that epigenetic modifications, including changes in DNA methylation, covalent modifications of histone tails, and gene silencing mediated by non-coding RNA molecules, play a substantial role in the pathogenesis of autoimmune disorders and might be seen as the result of environmental insults that trigger these conditions. Studies in cells and tissues of patients with autoimmune thyroid diseases (AITD), and particularly in Graves' disease (GD) and Hashimoto's thyroiditis (HT), are increasingly revealing altered epigenetic marks and resultant deregulation of gene expression levels, but the available data are still limited to be translated into the clinical settings. Particularly, genome-wide methylation and histone tail modification screenings are limited to a few studies in GD patients, and the diagnostic values of the observed epigenetic changes or their potential prognostic utility are still unclear. Similarly, data concerning microRNA expression in AITD patients are largely descriptive and not yet translated into the clinics. In addition, studies relating certain environmental exposures to specific epigenetic changes in AITD and studies evaluating the crosstalk between different epigenetic mechanisms are largely missing. In summary, despite that there is a clear evidence of epigenetic impairment in AITD, further research is required for a better understanding of the epigenetic networks involved in disease pathogenesis, thereby opening the way for potential diagnostic and prognostic tools, as well as for epigenetic interventions in the patients.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
| |
Collapse
|