1
|
Habibollahzadeh N, Yavari S, Mirazimi Y, Aghayan AH, Davoudian A, Rafiee M. MicroRNAs utilization as effective factors on hematopoietic stem cell transplantation, its outcomes and prognosis; a comprehensive systematic review. BMC Cancer 2024; 24:890. [PMID: 39048974 PMCID: PMC11267663 DOI: 10.1186/s12885-024-12640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION The therapeutic method for many malignant and non-malignant diseases is hematopoietic stem cell transplantation (HSCT), but it is not always fully successful in all patients. Indeed, HSCT can be influenced by a variety of factors. Here we reviewed the effect of microRNAs (miRs) on HSCT-related outcomes, like survival, infections, relapse, engraftment, and so on, systematically. METHOD WOS, Scopus, PubMed, Google Scholar, and ProQuest databases were searched. The PRISMA guideline was performed, and 24 studies were included through quality assessment. Classified data extraction was done based on the type of disease. RESULTS The systematic review identified 47 miRs effective on HSCT. The role of miRs as tumor suppressors or oncogenes is reported in acute myeloblastic and lymphoblastic leukemia patients undergoing HSCT due to their effects on overall or event-free survival. Additionally, relapse after HSCT in multiple myeloma is correlated with miRs expression. Also, recovery from post-autologous HSCT cytopenia or platelet and neutrophil engraftment can be influenced by miRs. We highlighted here reports on specific miRs. CONCLUSION We reported prognostic miRs for in-depth clinical management of the HSCT process and its outcomes. Also, miRs are introduced for the prevention of HSCT-related complications, and future studies are suggested to evaluate personalized medicine's utilization of miRs in therapeutic methods like HSCT in neoplasia.
Collapse
Affiliation(s)
- Negar Habibollahzadeh
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samin Yavari
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atefeh Davoudian
- Deputy of Research and Technology, Zanjan University of Medical sciences, Zanjan, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Najafi S, Rahimi Z, Mansoori B, Mohammadi A, Mohammadnejad F, Amini M, Mokhtazadeh A, Asadzadeh Z, Chi-Shing Cho W, Baradaran B. CD44 Suppression Improved the Chemosensitivity of HT-29 Colorectal Cancer Cells to 5-Fluorouracil and Inhibited Cell Migration. Adv Pharm Bull 2023; 13:551-562. [PMID: 37646068 PMCID: PMC10460815 DOI: 10.34172/apb.2023.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose CD44 plays a pivotal role through tumorigenesis by regulating cancer cell metastasis, stemness, and chemosensitivity and is considered a promising therapeutic target for human cancers, including colorectal cancer (CRC). Therefore, the present research aimed to examine the simultaneous therapeutic effect of CD44 silencing and 5-fluorouracil (5-FU) on in vitro tumorigenesis of CRC cells. Methods CD44 expression was initially evaluated in TCGA datasets and CRC tissues. Furthermore, functional analysis was performed on HT-29 CRC cells overexpressing CD44. The cells were transfected with CD44 siRNA and then treated with 5-FU. Consequently, to explore the combination therapy effect on cell viability, migration, apoptosis, and chromatin fragmentation, we performed MTT assay, scratch assay, Annexin V/PI staining and DAPI staining assays, respectively. The spheroid and colony formation assays were further employed to investigate stemness features. The gene expression at protein and mRNA levels were explored using western blotting and qPCR. Results Our findings illustrated that CD44 was significantly overexpressed in CRC tissues compared to normal samples. The suppression of CD44 considerably promoted the chemosensitivity of HT-29 cells to 5-FU by apoptosis induction. Also, the combination therapy led to overexpression of apoptotic genes, including P53, caspase-3, and caspase-9, as well as downregulation of AKT1 expression. Furthermore, CD44 suppression, separately or combined with 5-FU, hindered stemness properties in HT-29 cells via downregulation of Sox2 and Nanog expression. Besides, the combination therapy remarkably downregulated MMPs and suppressed CRC cell migration. Conclusion Considering its involvement in chemosensitivity to 5-FU, CD44 could be suggested as a potential target for improving the efficiency of CRC chemotherapy.
Collapse
Affiliation(s)
- Souzan Najafi
- Student Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
5
|
Wang Z, Xie W, Guan H. Diverse Functions of MiR-425 in Human Cancer. DNA Cell Biol 2023; 42:113-129. [PMID: 36796000 DOI: 10.1089/dna.2022.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
miRNAs are a type of small endogenous noncoding RNA composed of 20-22 nucleotides that can regulate gene expression by targeting the 3' untranslated region of mRNA. Many investigations have discovered that miRNAs have a role in the development and progression of human cancer. Several aspects of tumor development are affected by miR-425, including growth, apoptosis, invasion, migration, epithelial-mesenchymal transition, and drug resistance. In this article, we discuss the properties and research development of miR-425, focusing on the regulation and function of miR-425 in various cancers. Furthermore, we discuss the clinical implications of miR-425. This review may broaden our horizon for better understanding the role of miR-425 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Hu L, Zheng B, Yang Y, Chen C, Hu M. Construction of circRNA-miRNA-mRNA Network Reveal Functional circRNAs and Key Genes in Acute Myeloid Leukemia. Int J Gen Med 2023; 16:1491-1504. [PMID: 37123885 PMCID: PMC10145421 DOI: 10.2147/ijgm.s402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction CircRNA is closely correlated with a wide variety of processes of acute myeloid leukemia (AML), whereas the novel circRNAs, their molecular mechanism and the specific function they played in AML should be explored in depth. Methods The microarray chip data of AML patients and normal samples in the Gene Expression Omnibus (GEO) database were selected to differentially expressed (DE) circRNA, miRNA, and mRNA genes. The miRNA gene was the intersection of the circRNA target gene predicted using CSCD and the miRNA gene screened from AML patients, while the mRNA gene was the intersection of the target gene mRNA of miRNA predicted using miRanda and miRTarBase software and the mRNA gene screened from AML patients. The hub mRNAs related to survival were further screened through Cox proportional hazard regression. CircRNA/miRNA/mRNA interaction network was constructed by using Cytoscape software.10 circRNAs and 6 miRNAs in bone marrow mononuclear cells (BMMNCs) of AML patients (n=43) and healthy controls (n=35) were determined by RT-qPCR. Correlations between them were analyzed by Pearson correlation coefficient. Results 10 circRNAs, 6 miRNAs, and 33 mRNAs were identified. Subsequently, the network of circRNAs, miRNAs, and hub genes was built using Cystoscope. Four key circRNAs, seven hub genes and their regulatory pathways were identified. The result of RT-qPCRs showed that hsa_circ_0009581 and hsa_circ_0005273 were significantly upregulated in AML patients while hsa_circ_0000497 and hsa_circ_0001947 were significantly downregulated. Hsa-miR-150-5p was significantly downregulated; hsa-miR-454-3p was upregulated in AML patients. Hsa_circ_0009581 and hsa-miR-150-5p; hsa_ circ_0001947 and hsa-miR-454-3p were inversely correlated using Pearson's correlation coefficient. Conclusion This study suggests that differentially expressed circRNAs take on a critical significance to AML development and may be the effective therapeutic targets. We suppose that hsa_circ_0009581 promotes leukemia development through hsa-miR-150-5p and hsa_circ_0001947 through hsa-miR-454-3p. hsa_circ_0001947 and hsa_circ_0009581 may provide new directions in the pathogenesis of AML.
Collapse
Affiliation(s)
- Lianbo Hu
- Physical Examination Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Bingrong Zheng
- Department of Hematology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yang Yang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chunmei Chen
- Department of Hematology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Meiwei Hu
- Department of Hematology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Meiwei Hu, Department of Hematology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang, 310014, People’s Republic of China, Email
| |
Collapse
|
7
|
Bidar N, Rezaei T, Amini M, Jebelli A, Mokhtarzadeh A, Baradaran B. ZNF677 downregulation by promoter hypermethylation as a driver event through gastric tumorigenesis. Exp Mol Pathol 2021; 121:104663. [PMID: 34171355 DOI: 10.1016/j.yexmp.2021.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide, due to poor prognosis and treatment failure; demanding new diagnostic and therapeutic targets. Therefore, in the present study, the methylation and expression status of ZNF677, as a promising tumor suppressor, were investigated in GC. Gene Expression Omnibus (GEO) datasets were used to initially evaluate ZNF677 expression and methylation in GC samples. Confirmation was performed on fifty internal samples, including gastric tumors and adjacent normal specimens, using q-MSP and q-PCR methods. Further validations were done using The Cancer Genome Atlas (TCGA) data on human cancers. The obtained results in silico and experimentally illustrated that ZNF677 is significantly hypermethylated and downregulated through gastric tumorigenesis. ZNF677 methylation levels were also correlated with perineural invasion (p = 0.0382) in internal samples. Furthermore, Spearman's correlation analysis showed that ZNF677 methylation is negatively (r = -0.4614, p < 0.0001) correlated with its mRNA expression levels. ROC curve analysis also illustrated the high diagnostic value of ZNF677 methylation for early detection of GC (AUC = 0.8592). Gene set enrichment analysis further revealed that ZNF677 participates in the regulation of cellular processes such as cell proliferation in GC. Moreover, in addition to hypermethylation in other malignancies, including breast, lung, and colorectal cancers, ZNF677 was hypermethylated in precancerous gastric tissues with intestinal metaplasia, indicating its methylation as a driver event through tumorigenesis. Taken together, our results suggest ZNF677 as a potential tumor suppressor gene, which could be considered as a diagnostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Negar Bidar
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Asiyeh Jebelli
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Abdelhafiz AS, Elsayed GM, Saber MM, Gameel A, Hamdy N. Low expression of miR-204 is associated with expression of CD34 and poor performance status in denovo AML. Int J Lab Hematol 2020; 42:263-269. [PMID: 32048789 DOI: 10.1111/ijlh.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common acute leukemia in adults. There is growing evidence that microRNAs (miRNAs) provide prognostic information in AML. MiR-204 has a tumor suppressor function, and several studies have proven its role in solid cancers. The aim of this work is to evaluate the level of expression of miR-204 in adults newly diagnosed with AML with normal karyotype and to correlate its level of expression with disease outcome and different prognostic factors. PATIENTS AND METHODS The study included 87 adult patients newly diagnosed with AML. Detection of miR-204 was done using RT-PCR in patients and seven age-matched controls. RESULTS Acute myeloid leukemia patients showed significantly lower miR-204 expression, compared to control group (P = .029). Low miR-204 expression was significantly associated with positive CD34 (P = .017), with poor performance status (PS) (P = .009), and with the presence of diabetes mellitus (DM) (P = .014). Low expression of miR-204 was also significantly associated with shorter overall survival (OS) (P = .020) and disease-free survival (DFS) (P = .013). Low miR-204 expression was identified as an independent prognostic factor for prediction of shorter OS (P = .034) and DFS (P = .027) in AML. CONCLUSION To the best of our knowledge; this is the first time to prove the correlation between miR-204 expression and CD34 expression. Further study of this correlation is needed to confirm the role of miR-204 in CD34-positive cells, including leukemic stem cells. This correlation may have therapeutic implications. MiR-204 can be used as a biomarker for PS in AML patients.
Collapse
Affiliation(s)
- Ahmed S Abdelhafiz
- Department of Clinical pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ghada M Elsayed
- Department of Clinical pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magdy M Saber
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdallah Gameel
- Department of Clinical pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nayera Hamdy
- Department of Clinical pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Niu M, Zhang N, Wang R, Shao T, Feng Y, Shen Y, Liu X, Zhao K, Zhu S, Xu L, Yao Y, Xu K. MiR-340 Is a Biomarker for Selecting Treatment Between Chemotherapy and Allogeneic Transplantation in Acute Myeloid Leukemia. Front Oncol 2019; 9:1058. [PMID: 31681594 PMCID: PMC6798954 DOI: 10.3389/fonc.2019.01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) requires refined risk stratification tools to drive decisions concerning effective therapeutic strategies. Here, genome-wide screening was carried out for identifying miRNA molecules capable of predicting treatment outcome in AML patients based on the TCGA dataset. We identified miR-340 as a prognostic factor for selecting treatment between chemotherapy and allogeneic transplantation (allo-HSCT). In multivariable analyses, low miR-340 expression independently predicted reduced OS (HR = 2.07, P = 0.004) and EFS (HR = 1.909, P = 0.01) independent of other well-known prognostic factors. Meanwhile, allo-HSCT overcome deleterious outcomes related to low miR-340. Cases administered allo-HSCT showed markedly improved OS (HR = 0.316, P < 0.0001) and EFS (HR = 0.391, P = 0.002) in comparison with those receiving chemotherapy in the low miR-340 group. Gene expression assessment revealed that elevated miR-340 amounts were negatively correlated with HOXA/HOXB cluster levels, as well as the amounts of the HOX cofactor MEIS1. Strikingly, in silico analysis pointing to HOXA10, HOXB2, and MEIS1 as miR-340 targets. The miR-340 expression may help identify cases requiring strategies for selecting the optimal therapeutic option between chemotherapy and allo-HCST. AML cases showing low miR-340 levels should be strongly considered for early allo-HSCT treatment.
Collapse
Affiliation(s)
- Mingshan Niu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ninghan Zhang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rong Wang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingting Shao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Yuan Feng
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuejiao Liu
- Department of Neurosurgery, Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shengyun Zhu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Linyan Xu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yao Yao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
MicroRNA-21 promotes proliferation in acute myeloid leukemia by targeting Krüppel-like factor 5. Oncol Lett 2019; 18:3367-3372. [PMID: 31452816 DOI: 10.3892/ol.2019.10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression of microRNA (miR)-21 has been reported in various types of cancers. However, the role and mechanism of miR-21 remain to be elucidated in acute myeloid leukemia (AML). In the present study, it was observed that miR-21 was upregulated and Krüppel-like factor 5 (KLF5) was downregulated in AML cells compared with normal bone marrow cells. Dual luciferase reporter assays revealed that KLF5 was a direct target of miR-21. Indeed, miR-21 overexpression resulted in a downregulation of KLF5 expression, while miR-21 inhibition had the opposite effect in AML cells. In addition, miR-21 overexpression promoted the proliferation of AML cells in vitro. Notably, using a mouse xenograft model, miR-21 overexpression was demonstrated to result in enhanced tumor growth and suppressed KLF5 expression in the xenograft tumors in vivo. In conclusion, the present results indicated that miR-21 promoted proliferation through directly regulating KLF5 expression in AML cells. miR-21 may thus serve as an oncogene in AML, providing a potential target for AML therapy.
Collapse
|
11
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12:51. [PMID: 31126316 PMCID: PMC6534901 DOI: 10.1186/s13045-019-0734-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor of the immature myeloid hematopoietic cells in the bone marrow (BM). It is a highly heterogeneous disease, with rising morbidity and mortality in older patients. Although researches over the past decades have improved our understanding of AML, its pathogenesis has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are three noncoding RNA (ncRNA) molecules that regulate DNA transcription and translation. With the development of RNA-Seq technology, more and more ncRNAs that are closely related to AML leukemogenesis have been discovered. Numerous studies have found that these ncRNAs play an important role in leukemia cell proliferation, differentiation, and apoptosis. Some may potentially be used as prognostic biomarkers. In this systematic review, we briefly described the characteristics and molecular functions of three groups of ncRNAs, including lncRNAs, miRNAs, and circRNAs, and discussed their relationships with AML in detail.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
12
|
Niu M, Feng Y, Zhang N, Shao T, Zhang H, Wang R, Yao Y, Yao R, Wu Q, Cao J, Liu X, Liu Y, Xu K. High expression of miR-25 predicts favorable chemotherapy outcome in patients with acute myeloid leukemia. Cancer Cell Int 2019; 19:122. [PMID: 31080363 PMCID: PMC6505210 DOI: 10.1186/s12935-019-0843-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background Acute myeloid leukemia (AML) pertains to a hematologic malignancy with heterogeneous therapeutic responses. Improvements in risk stratification in AML patients are warranted. MicroRNAs have been associated with the pathogenesis of AML. Methods To examine the prognostic value of miR-25, 162 cases with de novo AML were classified into two groups according to different treatment regimens. Results In the chemotherapy group, cases with upregulated miR-25 expression showed relatively longer overall survival (OS; P = 0.0086) and event-free survival (EFS; P = 0.019). Multivariable analyses revealed that miR-25 upregulation is an independent predictor for extended OS (HR = 0.556, P = 0.015) and EFS (HR = 0.598, P = 0.03). In addition, allogeneic hematopoietic stem cell transplantation (allo-HSCT) circumvented the poor prognosis that was related to miR-25 downregulation with chemotherapy. The expression level pattern of miR-25 coincided with AML differentiation and proliferation, which included HOXA and HOXB cluster members, as well as the HOX cofactor MEIS1. The MYH9 gene was identified as a direct target of miR-25. Conclusions The miR-25 levels are correlated with prognosis in AML independently of other powerful molecular markers. The expression of miR-25 may contribute to the selection of the optimal treatment regimen between chemotherapy and allo-HCST for AML patients.
Collapse
Affiliation(s)
- Mingshan Niu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yuan Feng
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Ninghan Zhang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Tingting Shao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Huihui Zhang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Rong Wang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yao Yao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Ruosi Yao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Qingyun Wu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Jiang Cao
- 2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xuejiao Liu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,3Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yubo Liu
- 4School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Kailin Xu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| |
Collapse
|
13
|
Fu L, Qi J, Gao X, Zhang N, Zhang H, Wang R, Xu L, Yao Y, Niu M, Xu K. High expression of miR‐338 is associated with poor prognosis in acute myeloid leukemia undergoing chemotherapy. J Cell Physiol 2019; 234:20704-20712. [PMID: 30997674 DOI: 10.1002/jcp.28676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Fu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Translational Medicine Center The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Jialei Qi
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Xiang Gao
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Ninghan Zhang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Huihui Zhang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Rong Wang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Linyan Xu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Yao Yao
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Mingshan Niu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Kailin Xu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
14
|
Zhang H, Zhang N, Wang R, Shao T, Feng Y, Yao Y, Wu Q, Zhu S, Cao J, Zhang H, Li Z, Liu X, Niu M, Xu K. High expression of miR-363 predicts poor prognosis and guides treatment selection in acute myeloid leukemia. J Transl Med 2019; 17:106. [PMID: 30935386 PMCID: PMC6444823 DOI: 10.1186/s12967-019-1858-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogeneous malignancy with various outcomes, and therefore needs better risk stratification tools to help select optimal therapeutic options. Methods In this study, we identify miRNAs that could predict clinical outcome in a heterogeneous AML population using TCGA dataset. Results We found that MiR-363 is a novel prognostic factor in AML patients undergoing chemotherapy. In multivariable analyses, high miR-363 remained predictive for shorter OS (HR = 2.349, P = 0.012) and EFS (HR = 2.082, P = 0.001) independent of other well-known prognostic factors. More importantly, allogeneic hematopoietic stem cell transplantation (allo-HSCT) overcame the adverse outcomes related to high miR-363 expression. In gene expression profiling, high miR-363 expression was positively correlated with the amounts of leukemogenic transcription factors, including Myb, RUNX3, GATA3, IKZF3, ETS1 and MLLT3. Notably, we found that the in silico predicted target genes (EZH2, KLF6 and PTEN) of miR-363 were downregulated in association with high miR-363 expression. Conclusions In summary, miR-363 expression may help identify patients in need of strategies to select the optimal therapy between chemotherapeutic and allo-HCST regimens. AML patients with high miR-363 expression may be highly recommended for early allo-HSCT regimen.
Collapse
Affiliation(s)
- Huihui Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ninghan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tingting Shao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Feng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengyun Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huanxin Zhang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
15
|
Brenner AK, Aasebø E, Hernandez-Valladares M, Selheim F, Berven F, Grønningsæter IS, Bartaula-Brevik S, Bruserud Ø. The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers (Basel) 2019; 11:cancers11010073. [PMID: 30634713 PMCID: PMC6356272 DOI: 10.3390/cancers11010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Ida-Sofie Grønningsæter
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|