1
|
Zhou J, Zhu L, Yue R. Evolution and global research trends of immunity in diabetic nephropathy: a bibliometric and visual analysis from 2004 to 2023. Int Urol Nephrol 2024; 56:3307-3321. [PMID: 38758346 PMCID: PMC11405497 DOI: 10.1007/s11255-024-04081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, with an increasing prevalence worldwide, but its pathomechanisms remain incompletely understood. Accumulating evidence suggests that immunity plays an important role in the development of DN. Many papers have been published in the field over the last 20 years, but there has been no bibliometric review of the research hotspots and trends in the field. This study aimed to assess the current research status and future trends of the link between immune and DN using bibliometric analysis. METHODS Publications on the association between immunity and DN from 2004 to 2023 were retrieved from the Web of Science Core Collection database and screened according to inclusion criteria. VOSviewer and CiteSpace software were employed to visualize research trends and hotspots in the field. Data including author, institution, country, journal, reference, and keyword were analyzed. RESULTS Ultimately 1246 publications meeting the criteria were included in the bibliometric analysis, involving 838 articles (84.96%) and 408 reviews (15.04%). The literature covered 81 countries and regions, 1751 institutions, and 6584 authors. The top 2 countries in terms of the number of publications were China (435) and the United States (318), and they collaborated most frequently. The United States had the highest number of citations for published papers (18,161), far exceeding the other countries. England had 38 publications but had the highest average number of citations (92.32). The University of California system was the most prolific institution (25 papers, 1062 citations, 42.48 citations per paper). Frontiers in Immunology was the most prolific journal in the field (30 papers). The most cited journal was Kidney International (863 citations). The analysis of keywords and references showed that inflammation, ferroptosis, and lipid metabolism may be future research hotspots in this field. CONCLUSIONS The number of publications related to immunity and DN has increased annually over the past 20 years, with a significant increase in the last 3 years especially. Our results identified research hotspots and trends in the field. These findings provide valuable perspectives for future research, enhancing our understanding of the immune-related mechanisms of DN and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Jianlong Zhou
- Department of Clinical Medicine, People's Hospital of Deyang City, Deyang, China.
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rensong Yue
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly-Y M, Lindfors L, Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med 2024; 99:101302. [PMID: 39094449 DOI: 10.1016/j.mam.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.
Collapse
Affiliation(s)
- Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Global Patient Safety - Biopharma, AstraZeneca, 431 83, Gothenburg, Mölndal, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden.
| |
Collapse
|
3
|
Hu M, Shen X, Zhou L. Role of Extracellular Vesicle-Derived Noncoding RNAs in Diabetic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:303-312. [PMID: 39131883 PMCID: PMC11309761 DOI: 10.1159/000539024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/18/2024] [Indexed: 08/13/2024]
Abstract
Background Diabetic kidney disease (DKD), a metabolism-related syndrome characterized by abnormal glomerular filtration rate, proteinuria, and renal microangiopathy, is one of the most common forms of chronic kidney disease, whereas extracellular vesicles (EVs) have been recently evidenced as a novel cell communication player in DKD occurrence and progress via releasing various bioactive molecules, including proteins, lipids, and especially RNA, among which noncoding RNAs (including miRNAs, lncRNAs, and circRNAs) are the major regulators. However, the functional relevance of EV-derived ncRNAs in DKD is to be elucidated. Summary Studies have reported that EV-derived ncRNAs regulate gene expression via a diverse range of regulatory mechanisms, contributing to diverse phenotypes related to DKD progression. Furthermore, there are already many potential clinical diagnostic and therapeutic studies based on these ncRNAs, which can be expected to have potential applications in clinical practice for EV-derived ncRNAs. Key Messages In the current review, we summarized the mechanistic role of EVs in DKD according to biological function classifications, including inflammation and oxidative stress, epithelial-mesenchymal transition, cell death, and extracellular matrix deposition. In addition, we comprehensively discussed the potential applications of EV-derived ncRNAs as diagnostic biomarkers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Wang H, Liu S, Zhan J, Liang Y, Zeng X. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes. Int J Cancer 2024; 154:2031-2042. [PMID: 38500385 DOI: 10.1002/ijc.34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianhao Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Department of Clinical Medcine, HuanKui Academy, Nanchang University, Nanchang, China
| | - Yuqing Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Zeng
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
5
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
6
|
Choi S, Sarker MK, Yu MR, Lee H, Kwon SH, Jeon JS, Noh H, Kim H. MicroRNA-5010-5p ameliorates high-glucose induced inflammation in renal tubular epithelial cells by modulating the expression of PPP2R2D. BMJ Open Diabetes Res Care 2024; 12:e003784. [PMID: 38442987 PMCID: PMC11146382 DOI: 10.1136/bmjdrc-2023-003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1β, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Sunghee Choi
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | | | - Mi Ra Yu
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | - Haekyung Lee
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Soon Hyo Kwon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Jin Seok Jeon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyunjin Noh
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyoungnae Kim
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| |
Collapse
|
7
|
Tian F, Yi J, Liu Y, Chen B, Wang X, Ouyang Y, Liu J, Tang Y, Long H, Liu B. Integrating network pharmacology and bioinformatics to explore and experimentally verify the regulatory effect of Buyang Huanwu decoction on glycolysis and angiogenesis after cerebral infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117218. [PMID: 37806535 DOI: 10.1016/j.jep.2023.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Promoting the recovery of cerebral blood circulation after cerebral infarction (CI) is an important intervention. Buyang Huanwu decoction (BHD) is a classic prescription for treating CI that promotes angiogenesis. Cytoplasmic glycolysis ischaemic-region cells after CI may be highly activated to maintain metabolic activity under hypoxia. From the perspective of long-term maintenance of glycolytic metabolism in the ischaemic area after CI, it may be beneficial to promote angiogenesis and maintain glial cell activation and neuronal survival. In this context, the regulatory relationship of lncRNAs and miRNAs with mRNAs is worthy of attention. Mining the competitive binding relationships among RNAs will aid in the screening of key gene targets post-CI. In this study, network pharmacology and bioinformatics were used to construct a ceRNA network, screen key targets, and explore the effect of glycolysis on angiogenesis during BHD-mediated CI regulation. AIM OF THE STUDY This study aimed to explore the effect of BHD on angiogenesis after glycolysis regulation in CI. MATERIALS AND METHODS According to the 21 active BHD ingredients we identified by our research team, we conducted network pharmacology. BHD targets that can regulate glycolysis and angiogenesis after CI were screened from the GeneCards, CTD and OMIM databases. We retrieved CI-related datasets from the GEO database and screened for differentially expressed lncRNAs and miRNAs. LncRNA‒miRNA-mRNA/TF targeting relationships were screened and organized with the miRcode, miRDB, TargetScan, miRWalk, and TransmiR v2.0 databases. Cytoscape was used to construct an lncRNA‒miRNA-mRNA/TF ceRNA network. Through BioGPS, key mRNAs/TFs in the network were screened for enrichment analysis. Animal experiments were then conducted to validate some key mRNAs/TFs and enriched signalling pathways. RESULTS PFKFB3 and other genes may help regulate glycolysis and angiogenesis through AMPK and other signalling pathways. The anti-CI effect of BHD may involve maintaining activation of genes such as AMPK and PFKFB3 in the ischaemic cortex, maintaining moderate glycolysis levels in brain tissue, and promoting angiogenesis. CONCLUSION BHD can regulate glycolysis and promote angiogenesis after CI through multiple pathways and targets, in which AMPK signalling pathway activation may be important.
Collapse
Affiliation(s)
- Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Xiaoju Wang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Yin Ouyang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Jian Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Yan Tang
- Yiyang Medical College, 516 Yingbin Road, Yiyang, Hunan, 413499, China
| | - Hongping Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, Hunan, 410007, China.
| |
Collapse
|
8
|
Li X, Xu J, Lin X, Lin Q, Yu T, Chen L, Chen L, Huang X, Zhang X, Chen G, Xu L. Macrophages-derived exo-miR-4449 induced by Cryptococcus affects HUVEC permeability and promotes pyroptosis in BEAS-2B via the HIC1 pathway. Cytokine 2024; 173:156441. [PMID: 37995394 DOI: 10.1016/j.cyto.2023.156441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages have recently been discovered to assume a significant role in the progression of cryptococcosis. However, the potential involvement of macrophage-derived exosomes in the pathogenesis of cryptococcosis remains uncertain. In this study, we investigated the changes of microRNAs in macrophage exosomes (exo-miRNAs) in cryptococcal infections and the role of markedly altered exo-miRNAs in the modulation of Human Umbilical Vein Endothelial Cells (HUVEC) permeability and ROS accumulation and pyroptosis in Human Bronchial Epithelioid Cells (BEAS-2B). Techniques such as microarray analysis and real-time quantitative PCR were used to detect different exo-miRNAs and to screen for the most highly expressed exo-miRNAs. Then its mimics were transfected into HUVEC to study its effect on the monolayer permeability of HUVEC. Finally, the relationship between this exo-miRNAs and the ROS accumulation and pyroptosis was verified by bioinformatics analysis. The results showed that five exo-miRNAs were overexpressed and two exo-miRNAs were reduced, among which, exo-miR-4449 was expressed at the highest level. Exo-miR-4449 could be internalized by HUVEC and enhanced its monolayer permeability. Moreover, exo-miR-4449 was found to promote ROS accumulation and pyroptosis in BEAS-2B through HIC1 pathway. Thus, exo-miR-4449 plays an important role in the pathogenesis of cryptococcosis and holds promise as a significant biomarker for treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Junping Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xin Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Qiong Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Tianxing Yu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lifang Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xiaoqing Huang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xueping Zhang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Geng Chen
- Nursing Department, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Liyu Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| |
Collapse
|
9
|
Shankar M, Shetty A, N S M, C G S, A K, Tennankore K. Urinary exosomal miRNA signature of IgA nephropathy: a case-control study. Sci Rep 2023; 13:21400. [PMID: 38049447 PMCID: PMC10695945 DOI: 10.1038/s41598-023-47751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis worldwide and can progress to end-stage kidney disease (ESKD). The current "gold standard" for diagnosis is kidney biopsy, which is invasive and associated with morbidity. miRNAs are small, non-coding endogenous RNA that may serve as non-invasive biomarkers, and that are found in urinary exosomes. Thus far, there is a paucity of studies of the miRNA profile for the diagnosis of IgA nephropathy. Hence, we aimed to study the urinary exosomal miRNA signature of Indian patients with IgA nephropathy. Fifty biopsy-proven IgA nephropathy patients, 50 healthy controls and 25 patients with ESKD (IgA nephropathy) were recruited over 2 years (2020-2022). Urinary exosomes were isolated from which miRNA was extracted . Analysis of urinary exosomal miRNA was done using the digital multiplexed nCounter® human v3 miRNA Expression Assay which contains 799 unique miRNA barcodes. Candidate miRNAs were identified using Lasso regression and consensus clustering. The mean age of IgA nephropathy patients was 36.32 ± 3.067 years, mean creatinine was 2.26 ± 0.318 mg/dl and mean proteinuria was 2.69 ± 0.64 g/day. Compared to healthy controls, the majority (N = 150) of miRNAs were significantly downregulated. Five candidate miRNAs (hsa.miR.146b.3p, hsa.miR.599, hsa.miR.4532, hsa.miR.664b.5p and hsa.miR.221.5p) were able to differentiate between IgA nephropathy cases and controls (AUC > 0.90); the presence of all 5 was associated with 100% specificity and sensitivity for diagnosing IgA nephropathy cases. This study of Indian patients identified that there was a significant difference in the urinary exosomal miRNA profile between IgA nephropathy cases and healthy controls, suggesting that miRNAs may be valuable in the non-invasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Mythri Shankar
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India.
| | - Aditya Shetty
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Madhura N S
- Department of Biochemistry, Institute of NephroUrology, Bengaluru, India
| | - Sreedhara C G
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Kishan A
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | | |
Collapse
|
10
|
Zhang S, Jin D, Zhang Y, Wang T. Risk factors and predictive model for acute kidney Injury Transition to acute kidney disease in patients following partial nephrectomy. BMC Urol 2023; 23:156. [PMID: 37794388 PMCID: PMC10552238 DOI: 10.1186/s12894-023-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
PURPOSE Acute kidney disease (AKD) is believed to be involved in the transition from acute kidney injury (AKI) to chronic kidney disease in general populations, but little is understood about this possibility among kidney surgical populations. This study aimed to elucidate the incidence of AKD after partial nephrectomy and risk factors that promote the AKI to AKD transition. METHODS From January 2010 to January 2020, this study retrospectively collected a dataset of consecutive patients with renal masses undergoing partial nephrectomy in 4 urological centers. Cox proportional regression analyses were adopted to identify risk factors that promoted the AKI to AKD transition. To avoid overfitting, the results were then verified by logistic least absolute shrinkage and selection operator (LASSO) regression. A nomogram was then constructed and validated for AKI to AKD transition prediction. RESULTS AKI and AKD occurred in 228 (21.4%) and 42 (3.9%) patients among a total of 1062 patients, respectively. In patients with AKI, multivariable Cox regression analysis and LASSO regression identified that age (HR 1.078, 1.029-1.112, p < 0.001), baseline eGFR (HR 1.015, 1.001-1.030, p < 0.001), RENAL score (HR1.612, 1.067-2.437, p = 0.023), ischemia time > 30 min (HR 7.284, 2.210-23.999, p = 0.001), and intraoperative blood loss > 300ml (HR 8.641, 2.751-27.171, p < 0.001) were risk factors for AKD transition. These five risk factors were then integrated into a nomogram. The nomogram showed excellent discrimination, calibration, and clinical net benefit ability. CONCLUSION Around 3.9% patients following partial nephrectomy would transit from AKI to AKD. Intraoperative blood loss and ischemia time need to be diminished to avoid on-going functional decline. Our nomogram can accurately predict the transition from AKI to AKD.
Collapse
Affiliation(s)
- Sizhou Zhang
- Department of Urology, People's Hospital of Hechuan Chongqing, Chongqing, P.R. China
| | - Dachun Jin
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Daping Hospital/Army Medical Center, Army Medical University, Chongqing, P.R. China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Tianhui Wang
- Department of Urology, People's Hospital of Fengjie, Chongqing, P.R. China.
| |
Collapse
|
11
|
Han L, Cai X, Zhou H. Exosomal microRNAs: potential nanotherapeutic targets for diabetic kidney disease. Nanomedicine (Lond) 2023; 18:1669-1680. [PMID: 37909293 DOI: 10.2217/nnm-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause for end-stage renal disease, but no specific therapeutic approaches exist. Exosomal miRNAs, a key functional cargo of nanovesicles, play crucial roles in the pathophysiological processes of DKD. Exosomal miRNAs are involved in cell-to-cell transfer of biological information, mediating nephritic inflammation, oxidative stress, apoptosis, autophagy, epithelial-mesenchymal transition and fibrosis. Circulating exosomal miRNAs derived from urine or serum might function as noninvasive prognostic biomarkers for DKD. Exosomal miRNAs from stem cells have been reported to exert beneficial effects on diabetic kidneys, which suggests that these exosomes might function as potential nanotherapy tools for treating DKD. In this review, we have summarized recent studies based on the association between exosomal miRNAs and DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Endocrinology, The First Central Hospital of Baoding, Baoding, 071000, China
| | - Xiaoning Cai
- Department of Endocrinology, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
12
|
Yunusova NV, Popova NO, Udintseva IN, Klyushina TS, Kazantseva DV, Smirnova LP. The Role of Intravesicular Proteins and the Protein Corona of Extracellular Vesicles in the Development of Drug-Induced Polyneuropathy. Curr Issues Mol Biol 2023; 45:3302-3314. [PMID: 37185740 PMCID: PMC10136474 DOI: 10.3390/cimb45040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Extracellular vesicles (EVs) as membrane structures of cellular origin participating in intercellular communication are involved in the molecular mechanisms of the development of various variants of polyneuropathy. Taking into account the increasing role of the protein corona of EVs and protein-protein interactions on the surface of EVs in the pathogenesis of various diseases, we focused our attention in this review on the role of intravesicular proteins and the protein corona of EVs in the development of chemotherapy-induced polyneuropathy (CIPN). It has been shown that EVs are effectively internalized by the mechanisms of endocytosis and macropinocytosis by neurocytes and glial cells, carry markers of insulin resistance, functionally active proteins (receptors, cytokines, enzymes), and may be involved in the pathogenesis of CIPN. The mechanisms of CIPN associated with the EVs protein corona can be related with the accumulation of heavy chains of circulating IgG in it. G-class immunoglobulins in EVs are likely to have myelin hydrolyzing, superoxide dismutase, and oxidoreductase enzymatic activities. Moreover, circulating IgG-loaded EVs are a place for complement activation that can lead to membrane attack complex deposition in neuroglia and neurons. The mechanisms of CIPN development that are not associated with IgG in the EVs protein corona are somehow related to the fact that many anticancer drugs induce apoptosis of tumor cells, neurons, and neuroglial cells by various mechanisms. This process may be accompanied by the secretion of EVs with modified cargo (HSPs, 20S proteasomes, miRNAs).
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Natalia O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Irina N Udintseva
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Tatyana S Klyushina
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Daria V Kazantseva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Liudmila P Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| |
Collapse
|
13
|
Shaban AM, Raslan M, Qahl SH, Elsayed K, Abdelhameed MS, Oyouni AAA, Al-Amer OM, Hammouda O, El-Magd MA. Ameliorative Effects of Camel Milk and Its Exosomes on Diabetic Nephropathy in Rats. MEMBRANES 2022; 12:1060. [PMID: 36363614 PMCID: PMC9697163 DOI: 10.3390/membranes12111060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Contradictory results were obtained regarding the effects of extracellular vesicles such as exosomes (EXOs) on diabetes and diabetic nephropathy (DN). Some studies showed that EXOs, including milk EXOs, were involved in the pathogenesis of DN, whereas other studies revealed ameliorative effects. Compared to other animals, camel milk had unique components that lower blood glucose levels. However, little is known regarding the effect of camel milk and its EXOs on DN. Thus, the present study was conducted to evaluate this effect on a rat model of DN induced by streptozotocin. Treatment with camel milk and/or its EXOs ameliorated DN as evidenced by (1) reduced levels of kidney function parameters (urea, creatinine, retinol-binding protein (RBP), and urinary proteins), (2) restored redox balance (decreased lipid peroxide malondialdehyde (MDA) and increased the activity of antioxidants enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), (3) downregulated expression of DN-related genes (transforming growth factor-beta 1 (TGFβ1), intercellular adhesion molecules 1 (ICAM1), and transformation specific 1 (ETS1), integrin subunit beta 2 (ITGβ2), tissue inhibitors of matrix metalloproteinase 2 (TIMP2), and kidney injury molecule-1 (KIM1)), and (4) decreased renal damage histological score. These results concluded that the treatment with camel milk and/or its EXOs could ameliorate DN with a better effect for the combined therapy.
Collapse
Affiliation(s)
- Amira M. Shaban
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mai Raslan
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Khaled Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed A. El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh 33516, Egypt
| |
Collapse
|
14
|
Pandey A, Ajgaonkar S, Jadhav N, Saha P, Gurav P, Panda S, Mehta D, Nair S. Current Insights into miRNA and lncRNA Dysregulation in Diabetes: Signal Transduction, Clinical Trials and Biomarker Discovery. Pharmaceuticals (Basel) 2022; 15:1269. [PMID: 36297381 PMCID: PMC9610703 DOI: 10.3390/ph15101269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023] Open
Abstract
Diabetes is one of the most frequently occurring metabolic disorders, affecting almost one tenth of the global population. Despite advances in antihyperglycemic therapeutics, the management of diabetes is limited due to its complexity and associated comorbidities, including diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are involved in the regulation of gene expression as well as various disease pathways in humans. Several ncRNAs are dysregulated in diabetes and are responsible for modulating the expression of various genes that contribute to the 'symptom complex' in diabetes. We review various miRNAs and lncRNAs implicated in diabetes and delineate ncRNA biological networks as well as key ncRNA targets in diabetes. Further, we discuss the spatial regulation of ncRNAs and their role(s) as prognostic markers in diabetes. We also shed light on the molecular mechanisms of signal transduction with diabetes-associated ncRNAs and ncRNA-mediated epigenetic events. Lastly, we summarize clinical trials on diabetes-associated ncRNAs and discuss the functional relevance of the dysregulated ncRNA interactome in diabetes. This knowledge will facilitate the identification of putative biomarkers for the therapeutic management of diabetes and its comorbidities. Taken together, the elucidation of the architecture of signature ncRNA regulatory networks in diabetes may enable the identification of novel biomarkers in the discovery pipeline for diabetes, which may lead to better management of this metabolic disorder.
Collapse
Affiliation(s)
| | | | | | - Praful Saha
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Pranay Gurav
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | | | - Dilip Mehta
- Synergia Life Sciences Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
15
|
Luo C, Liu H, Shao L, Tang J, He Q, Jin J. The role of small extracellular vesicle non-coding RNAs in kidney diseases. Front Genet 2022; 13:1013637. [PMID: 36303545 PMCID: PMC9593037 DOI: 10.3389/fgene.2022.1013637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Kidney diseases have become an increasingly common public health concern worldwide. The discovery of specific biomarkers is of substantial clinical significance in kidney disease diagnosis, therapy and prognosis. The small extracellular vesicle (sEV) can be secreted by several cell types, like renal tubular epithelial cells, podocytes, collecting duct cells and leap cells, and functions as a communication medium between cells by delivering signaling molecules, including proteins, lipids and nucleic acids. There has been growing evidence that kidney diseases are associated with aberrant expression of sEV-derived non-coding RNAs (sEV-ncRNAs). As a result, sEV-ncRNAs may provide valuable information about kidney diseases. In this paper, a systematic review is presented of what has been done in recent years regarding sEV-ncRNAs in kidney disease diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Chuxuan Luo
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haojie Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lina Shao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiyu Tang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| |
Collapse
|
16
|
Zhu J, Yang T, Luo J, Wei M, Li H, Qi Y, He J, Chen M. Effects of Shenkang Injection Combined with Jinshuibao on Early Diabetic Nephropathy and Effects on Coagulation Fibrinolysis System and Urinary Protein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3958049. [PMID: 36267091 PMCID: PMC9578825 DOI: 10.1155/2022/3958049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022]
Abstract
Purpose To explore the effect of Shenkang injection (SKI) combined with Jinshuibao for early diabetic nephropathy (DN) and its effect on the coagulation fibrinolysis system and urinary protein. Methods 136 patients with early DN admitted to our hospital from March 2018 to October 2019 were divided into the observation group (n = 68) and the control group (n = 68) randomly. On the basis of the conventional treatment, the control group was treated with SKI, and the observation group was treated with SKI and Jinshuibao. Two weeks later, the therapeutic effects of the 2 groups were compared. The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (FIB), tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1), and D-dimer (D-D) were observed and compared before and after the treatment. 24 hour urine total protein (24 h-UTP), urine albumin excretion rate (UAER), and urine β 2 microglobulin (β 2-MG) were measured and compared before and after the treatment. Adverse reactions in the two groups were recorded during the treatment. Results The effective rate of the observation group after treatment was 92.65% higher than the control group 79.41%. the difference was statistically significant (P < 0.05). The levels of PT, APTT, TT, FIB, PAI-1, and D-D in the two groups after treatment were lower, and t-PA levels after treatment were higher than those before, and all of the above indicators were significantly changed in the observation group than in the control group. The difference was statistically significant (P < 0.05). The 24 h-UTP, UAER, and β 2-MG in the two groups after treatment were lower than those before, and all of the above indicators were significantly changed in the observation group than in the control group. The difference was statistically significant (P < 0.05). There was no statistically significant difference during the treatment for 2 groups in terms of adverse reactions. The difference was statistically significant (P > 0.05). Conclusion SKI combined with Jinshuibao has a significant effect in the treatment of early DN, which can reduce the risk of hyperfunction of coagulation and fibrinolysis system, further reduce the content of urine protein, and delay the process of DN.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Tingting Yang
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Jie Luo
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Mian Wei
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Hanyu Li
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Yue Qi
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Jiali He
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| | - Min Chen
- Department of Nephrology, Chengdu Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, Sichuan 610000, China
| |
Collapse
|
17
|
Huang W, Zhu XY, Lerman A, Lerman LO. Extracellular Vesicles as Theranostic Tools in Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1418-1429. [PMID: 35260417 PMCID: PMC9625088 DOI: 10.2215/cjn.16751221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles are important vectors for cell-cell communication and show potential value for diagnosis and treatment of kidney diseases. The pathologic diagnosis of kidney diseases relies on kidney biopsy, whereas collection of extracellular vesicles from urine or circulating blood may constitute a less invasive diagnostic tool. In particular, urinary extracellular vesicles released mainly from resident kidney cells might provide an alternative tool for detection of kidney injury. Because extracellular vesicles mirror many features of their parent cells, cargoes of several populations of urinary extracellular vesicles are promising biomarkers for disease processes, like diabetic kidney disease, kidney transplant, and lupus nephritis. Contrarily, extracellular vesicles derived from reparative cells, such as mesenchymal stem cells, tubular epithelial progenitor cells, and human umbilical cord blood represent promising regenerative tools for treatment of kidney diseases. Furthermore, induced pluripotent stem cells-derived and engineered extracellular vesicles are being developed for specific applications for the kidney. Nevertheless, some assumptions regarding the specificity and immunogenicity of extracellular vesicles remain to be established. This review focuses on the utility of extracellular vesicles as therapeutic and diagnostic (theranostic) tools in kidney diseases and future directions for studies.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Li Q, Zhang Z, Yin M, Cui C, Zhang Y, Wang Y, Liu F. What do we actually know about exosomal microRNAs in kidney diseases? Front Physiol 2022; 13:941143. [PMID: 36105281 PMCID: PMC9464820 DOI: 10.3389/fphys.2022.941143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
There are several types of kidney diseases with complex causes. If left untreated, these diseases irreversibly progress to end-stage renal disease. Thus, their early diagnosis and targeted treatment are important. Exosomes-extracellular vesicles released by a variety of cells-are ideal carriers for DNA, RNA, proteins, and other metabolites owing to their bilayer membranes. Studies have shown that almost all renal cells can secrete exosomes. While research on exosomal microRNAs in the context of renal diseases begun only recently, rapid progress has been achieved. This review summarizes the changes in exosomal microRNA expression in different kidney diseases. Thus, it highlights the diagnostic and prognostic value of these exosomal microRNAs. Further, this review analyzes their roles in the development of different kidney diseases, guiding research on molecular mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Qianyu Li
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiping Zhang
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Min Yin
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Cancan Cui
- Clinical Laboratory, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yucheng Zhang
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Chen XM, Yao DN, Wang MJ, Wu XD, Deng JW, Deng H, Huang RY, Lu CJ. Deep Sequencing of Plasma Exosomal microRNA Level in Psoriasis Vulgaris Patients. Front Med (Lausanne) 2022; 9:895564. [PMID: 35665333 PMCID: PMC9160332 DOI: 10.3389/fmed.2022.895564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a chronic skin disease affecting 1% to 3% of the world population. Psoriasis vulgaris (PV) is the most common form of psoriasis. PV patients suffer from inflamed, pruritic and painful lesions for years (even a lifetime). However, conventional drugs for PV are costly. Considering the need for long-term treatment of PV, it is urgent to discover novel biomarkers and therapeutic targets. Plasma exosomal miRNAs have been identified as the reliable biomarkers and therapy targets of human diseases. Here, we described the levels of serum exosomal miRNAs in PV patients and analyzed the functional features of differently expressed miRNAs and their potential target genes for the first time. We identified 1182 miRNAs including 336 novel miRNAs and 246 differently expressed miRNAs in serum exosomes of healthy people and PV patients. Furthermore, the functional analysis found differently expressed miRNA-regulated target genes enriched for specific GO terms including primary metabolic process, cellular metabolic process, metabolic process, organic substance metabolic process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway containing cellular processes, human diseases, metabolic pathways, metabolism and organismal systems. In addition, we found that some predicted target genes of differentially expressed miRNAs, such as CREB1, RUNX2, EGFR, are both involved in inflammatory response and metabolism. In summary, our study identifies many candidate miRNAs involved in PV, which could provide potential biomarkers for diagnosis of PV and targets for clinical therapies against PV.
Collapse
Affiliation(s)
- Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Ni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Mao-Jie Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Dong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing-Wen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Sun IO, Bae YU, Lee H, Kim H, Jeon JS, Noh H, Choi JS, Doh KO, Kwon SH. Circulating miRNAs in extracellular vesicles related to treatment response in patients with idiopathic membranous nephropathy. J Transl Med 2022; 20:224. [PMID: 35568952 PMCID: PMC9107687 DOI: 10.1186/s12967-022-03430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Background Extracellular vesicle (EV)-microRNAs (miRNAs) are potential biomarkers for various renal diseases. This study attempted to identify the circulating EV-miRNA signature not only for discriminating idiopathic membranous nephropathy (IMN) from idiopathic nephrotic syndrome (INS), but also to predict the treatment response of patients with IMN. Methods We prospectively enrolled 60 participants, including those with IMN (n = 19) and INS (n = 21) and healthy volunteers (HVs; n = 20) in this study. Using RNA sequencing, we assessed the serum EV-miRNA profiles of all participants. To identify the EV-miRNAs predictive of treatment response in IMN, we also analyzed EV-miRNAs among patients with IMN with and without clinical remission. Results The expression levels of 3 miRNAs differed between IMN patients, INS patients and HVs. In addition, compared to HVs, RNA sequencing revealed differential expression of 77 and 44 EV-miRNAs in patients with IMN without and with remission, respectively. We also identified statistically significant (|fold change ≥ 2, p < 0.05) differences in the expression levels of 23 miRNAs in IMN without remission. Biological pathway analysis of miRNAs in IMN without remission indicated that they are likely involved in various pathways, including renal fibrosis. Conclusion Our study identified EV-miRNAs associated with IMN as well as those associations with therapeutic response. Therefore, these circulating EV-miRNAs may be used as potential markers for the diagnosis and prediction of treatment response in patients with IMN. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03430-7.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Yun-Ui Bae
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jong-Soo Choi
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea.
| |
Collapse
|
21
|
Alteration of LncRNA expression in mice placentae after frozen embryo transfer is associated with increased fetal weight. Reprod Biol 2022; 22:100646. [PMID: 35567965 DOI: 10.1016/j.repbio.2022.100646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/15/2022]
Abstract
The birthweight after frozen embryo transfer (FET) was significantly higher compared with fresh embryo transfer (fresh ET), while the mechanism remains unclear. In this study, we transferred vitrified-warmed or fresh mice blastocysts into pseudopregnant recipients (n = 11 each group) produced by natural mating to avoid the influence of superovulation. The fetal weight, placental weight, placental efficiency and placental architecture were studied at E18.5. Placental RNA-Seq analysis was used to identify candidate different lncRNAs and mRNAs between the FET group and the fresh ET group. We found that the fetal weight was increased in the FET group, with increased placental efficiency and the proportion of placental function related labyrinth zone area. 554 lncRNAs and 1012 mRNAs were differentially expressed. KEGG and GO enrichment analyses showed these differentially expressed lncRNAs and their targeted mRNAs might be related to placental morphogenesis. Furthermore, the most differentially expressed 15 lncRNAs and 15 mRNAs were validated by qRT-PCR, we found the LncRNA embryonic stem cells expressed 1 (Lncenc1) was significantly decreased, and Gjb5, which played an important role in labyrinth zone development, was increased. Gjb5 protein increase was further confirmed by Western blot. Lncenc1 and Gjb5 had 48 predicted co-targeted miRNAs, while the correlation analysis of Lncenc1 and Gjb5 mRNA showed a significant inverse correlation. The results showed that FET treatment might enhance the placental function to increase mouse fetal weight via the network diagram of Lncenc1-miRNA-Gjb5.
Collapse
|
22
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
23
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Kucher AN, Koroleva IA, Zarubin AA, Nazarenko MS. MicroRNAs as the Potential Regulators of SARS-CoV-2 Infection and Modifiers of the COVID-19 Clinical Features. Mol Biol 2022; 56:29-45. [PMID: 35464324 PMCID: PMC9016216 DOI: 10.1134/s0026893322010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) warrants the identification of factors that may determine both risk and severity of infection. The factors include microRNAs that have a wide regulatory potential and hence are particularly interesting. The review focuses on the potential roles of human microRNAs and the viral genome as well as microRNAs in SARS-CoV-2 infection and clinical features of COVID-19. The review summarizes the information about the human microRNAs that are thought to specifically bind to the SARS-CoV-2 genome and considers their expression levels in various organs (cells) in both healthy state and pathologies that are risk factors for severe COVID-19. Potential mechanisms whereby SARS-CoV-2 may affect the clinical features of COVID-19 are discussed in brief. The mechanisms include blocking of human microRNAs and RNA-binding proteins, changes in gene expression in infected cells, and possible epigenetic modifications of the human genome with the participation of coronavirus microRNAs.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Iu. A. Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - A. A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| |
Collapse
|
25
|
Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY, Gao XY. Exosomal ncRNAs: Novel Therapeutic Target and Biomarker for Diabetic Complications. Pharmacol Res 2022; 178:106135. [DOI: 10.1016/j.phrs.2022.106135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
|
26
|
Chang W, Li M, Song L, Miao S, Yu W, Wang J. Noncoding RNAs from tissue-derived small extracellular vesicles: Roles in diabetes and diabetic complications. Mol Metab 2022; 58:101453. [PMID: 35121168 PMCID: PMC8866070 DOI: 10.1016/j.molmet.2022.101453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a systemic disease, and its progression involves multiple organ dysfunction. However, the exact mechanisms underlying pathological progression remain unclear. Small extracellular vesicles (sEVs) mediate physiological and pathological signaling communication between organs and have been shown to have important regulatory roles in diabetes and its complications in recent years. In particular, the majority of studies in the diabetes-related research field have focused on the noncoding RNAs carried by sEVs. Researchers found that noncoding RNA sorting into sEVs is not random but selective. Both tissue origin differences and environmental variations affect the cargo of sEVs. In addition, the function of sEVs differs according to the tissue they derive from; for example, sEVs derived from adipose tissue regulate insulin sensitivity in the periphery, while sEVs derived from bone marrow promote β-cell regeneration. Therefore, understanding the roles of sEVs from different tissues is important for elucidating their molecular mechanisms and is necessary for the application of sEVs as therapeutic agents for diabetes treatment in the future. In this review, we summarized current studies on the mechanisms of noncoding RNA sorting into sEVs, as well as the research progress on the effects of sEVs from different tissue origins and noncoding RNAs in diabetes and diabetic complications. The knowledge of noncoding RNAs in sEVs will help us better understand the role of sEVs in the diabetes progression.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China.
| | - Mengyang Li
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Lin Song
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Suo Miao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Dowling L, Duseja A, Vilaca T, Walsh JS, Goljanek-Whysall K. MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J Cachexia Sarcopenia Muscle 2022; 13:68-85. [PMID: 34984856 PMCID: PMC8818592 DOI: 10.1002/jcsm.12878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenic obesity is a distinct condition of sarcopenia in the context of obesity, with the cumulative health risks of both phenotypes. Differential expression of microRNAs (miRNAs) has been reported separately in people with obesity and sarcopenia and may play a role in the pathogenesis of sarcopenic obesity. However, this has not been explored to date. This study aimed to identify differentially expressed miRNAs reported in serum, plasma, and skeletal muscle of people with obesity and sarcopenia and whether there are any commonalities between these conditions. We performed a systematic review on Embase and MEDLINE (PROSPERO, CRD42020224486) for differentially expressed miRNAs (fold change >1.5 or P-value <0.05) in (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome. The functions and targets of miRNAs commonly changed in both conditions, in the same direction, were searched using PubMed. Following deduplication, 247 obesity and 42 sarcopenia studies were identified for full-text screening. Screening identified 36 obesity and 6 sarcopenia studies for final inclusion. A total of 351 miRNAs were identified in obesity and 157 in sarcopenia. Fifty-five miRNAs were identified in both obesity and sarcopenia-by sample type, 48 were found in plasma and one each in serum and skeletal muscle. Twenty-four miRNAs were identified from 10 of the included studies as commonly changed in the same direction (22 in plasma and one each in serum and skeletal muscle) in obesity and sarcopenia. The majority of miRNA-validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β signalling pathways. The most common targets identified were insulin-like growth factor 1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). The majority of commonly changed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis. Twenty-four miRNAs were identified as commonly dysregulated in obesity and sarcopenia with functions and targets implicated in the pathogenesis of sarcopenic obesity. Given the adverse health outcomes associated with sarcopenic obesity, understanding the pathogenesis underlying this phenotype has the potential to lead to effective screening, monitoring, or treatment strategies. Further research is now required to confirm whether these miRNAs are differentially expressed in older adults with sarcopenic obesity.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Goljanek-Whysall
- The University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
28
|
Kupsco A, Lee JJ, Prada D, Valvi D, Hu L, Petersen MS, Coull BA, Weihe P, Grandjean P, Baccarelli AA. Marine pollutant exposures and human milk extracellular vesicle-microRNAs in a mother-infant cohort from the Faroe Islands. ENVIRONMENT INTERNATIONAL 2022; 158:106986. [PMID: 34991248 PMCID: PMC8742869 DOI: 10.1016/j.envint.2021.106986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND/AIMS Early life exposures to marine contaminants can adversely impact child health but modes of action are unclear. Human milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs), and may partly mediate the effects of pollutants on child health. However, the role of marine pollutants on miRNA expression in milk EVs is unexplored. METHODS We isolated EV RNA from 333 milk samples collected between 2 and 74 days postpartum from a Faroese birth cohort born 1997-2000 and sequenced 2083 miRNAs using a targeted library preparation method. We quantified five perfluoroalkyl substances (PFAS), pesticide metabolite p,p'-dichlorodiphenyldichloroethylene (DDE), and the sum of three major polychlorinated biphenyls (ΣPCBs) in maternal serum at 34 weeks of gestation and maternal hair total mercury (Hg) at birth. We used negative binomial regressions to estimate associations between individual pollutants and 418 reliably expressed EV-miRNAs adjusted for potential confounders. We performed sparse principal components (PCs) analysis to derive the first four components of the EV-miRNA data and examined associations between pollutants and PCs using Bayesian kernel machine regression (BKMR). RESULTS We observed no associations between pollutants and individual EV-miRNA expression after controlling the false discovery rate at 0.1. However, BKMR suggested that Hg was positively associated with PC1 and negatively associated with PC3, while ΣPCBs was negatively associated with PC3, and two PFAS were associated with PC4. Exploration of PC loadings followed by pathway analyses suggested that miRNAs in PC1 (miR-200b-3p, miR-664a-3p, miR-6738-5p, miR-429, miR-1236-5p, miR-4464, and miR-30b-5p) may be related to Hg neurotoxicity, while remaining PCs require further research. CONCLUSIONS Our findings suggest that groups of milk EV-miRNAs may better serve as environmental biomarkers than individual miRNAs. Future studies are needed to elucidate the role of milk EV-miRNAs in child health following prenatal exposures.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10023, United States.
| | - Jenny Jyoung Lee
- Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, MA, United States
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10023, United States; Instituto Nacional de Cancerología, San Fernando 22, Colonia Seccion XVI, Tlalpan, Mexico City 14080, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10023, United States
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Center of Health Science, University of The Faroe Islands, Tórshavn, Faroe Islands
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Center of Health Science, University of The Faroe Islands, Tórshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10023, United States
| |
Collapse
|
29
|
Li X, Shi S, Jing D, Li X, Zhang B, Bie Q. Signal transduction mechanism of exosomes in diabetic complications (Review). Exp Ther Med 2021; 23:155. [PMID: 35069836 DOI: 10.3892/etm.2021.11078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xueting Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Shuo Shi
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Digestive Endoscopy and 4Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Bin Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Qingli Bie
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
30
|
Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S, Song Y. MicroRNA (miR)-590-3p alleviates high-glucose induced renal tubular epithelial cell damage by targeting C-X3-C motif chemokine ligand 1 (CX3CL1) in diabetic nephropathy. Bioengineered 2021; 13:634-644. [PMID: 34898373 PMCID: PMC8805927 DOI: 10.1080/21655979.2021.2012548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We attempted to analyze the clinical value of microRNA (miR)-590-3p in diabetic nephropathy (DN) patients and its role in high glucose (HG)-induced renal tubular epithelial cell (HK-2) injury. Serum levels of miR-590-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Spearman correlation coefficient analysis of the correlation between miR-590-3p and clinical indicators. The diagnostic value of miR-590-3p was analyzed by the receiver operating characteristic (ROC) curve. Then, the DN cell model induced by HG in HK-2 cells was established. Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and CCK-8 assay were employed to assess cell inflammation, oxidative stress, apoptosis, and proliferation. Dual-luciferase reporter assay confirmed the target of miR-590-3p. Serum miR-590-3p was reduced in patients of DN, which was positively correlated with eGFR and negatively associated with albuminuria. Furthermore, miR-590-3p also can diagnose patients of DN from healthy subjects or patients of T2DM. Furthermore, miR-590-3p was decreased in a concentration- and time-dependent manner during HG-induction. miR-590-3p overexpression bated HG-induced inhibition effect on cell proliferation and promotion effects on apoptosis, oxidative stress, and inflammation. C-X3-C motif chemokine ligand1 (CX3CL1) is the target of miR-590-3p, whose levels were enhanced in DN patients and are negatively regulated by miR-590-3p. Our discoveries offered new insights that reduced miR-590-3p as a potential biomarker for the diagnosis of DN, and elevated miR-590-3p can alleviate renal tubular injury by HG-induced through targeting CX3XL1, which may be a novel target for improving the development of DN.
Collapse
Affiliation(s)
- Jie Yun
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinyu Ren
- Department of Encephalopathy, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yufei Liu
- Department of Blood Purification, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Lijuan Dai
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Liqun Song
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Xiaopeng Ma
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Shan Luo
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
31
|
Serum exosomes from diabetic kidney disease patients promote pyroptosis and oxidative stress through the miR-4449/HIC1 pathway. Nutr Diabetes 2021; 11:33. [PMID: 34732690 PMCID: PMC8566490 DOI: 10.1038/s41387-021-00175-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/29/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a major contributor to end-stage renal disease. Several microRNAs (miRNAs) have been found to be enriched in exosomes of DKD patients, but it remains unclear if any of these miRNAs play an important role in the pathogenesis of DKD. Methods Exosomes from diabetic kidney disease (DKD) patients were isolated, and the expression of miR-4449 was measured by qRT-PCR. Reactive oxygen species (ROS) was determined by DCDFA assay kit, and pyroptosis was measured by quantifying the level of activated caspase 1. mRNA and protein levels were quantified by qRT-PCR and WB. Results In this study, we demonstrated that miR-4449 is enriched in the serum exosomes of DKD patients, and these exosomes regulate the expression of pro-inflammatory cytokines, ROS levels, and pyroptosis through miR-4449. Conclusions Our study uncovered a novel mechanism for the progression of DKD that is mediated through miR-4449 in serum exosomes, which highlights an important role for exosomes in the pathogenesis of DKD. ![]()
Collapse
|
32
|
Yunusova NV, Dandarova EE, Svarovsky DA, Denisov NS, Kostromitsky DN, Patysheva MR, Cheremisina OV, Spirina LV. [Production and internalization of extracellular vesicules in normal and under conditions of hyperglycemia and insulin resistance]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:465-474. [PMID: 34964440 DOI: 10.18097/pbmc20216706465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are spherical structures of cell membrane origin, ranging in the size from 40 nm to 5000 nm. They are involved in the horizontal transfer of many proteins and microRNAs. The mechanisms EV internalization include clathrin-dependent endocytosis, caveolin-dependent endocytosis, raft-mediated endocytosis, and macropinocytosis. Type 2 diabetes mellitus (T2DM) is a common group of metabolic disorders in adults; the incidence and prevalence increase in parallel with the obesity epidemic. Since adipose tissue plays a crucial role in the development of insulin resistance, EVs secreted by adipose tissue can be a kind of information transmitter in this process. EVs of adipocytic origin are predominantly absorbed by tissue macrophages, adipocytes themselves, hepatocytes, and skeletal muscles. This contributes to the M1 polarization of macrophages, a decrease in glucose uptake by hepatocytes and myocytes due to the transfer of functionally active microRNAs by these EVs, which affect carbohydrate and lipid metabolism. Patients with T2DM and impaired glucose tolerance have significantly higher levels of CD235a-positive (erythrocyte) EVs, as well as a tendency to increase CD68-positive (leukocyte) and CD62p-positive (platelets/endothelial cells) EVs. The levels of CD31+/CD146-positive BB (endothelial cells) were comparable between diabetic and euglycemic patients. EVs from diabetic patients were preferably internalized by monocytes (mainly classical and intermediate monocyte fractions and to a lesser extent by non-classical monocyte fractions) and B cells compared to euglycemic patients. Internalization of EVs from patients with T2DM by monocytes leads to decreased apoptosis, changes in differentiation, and suppression of reactions controlling oxidative stress in monocytes. Thus, insulin resistance increases secretion of EVs, which are preferentially internalized by monocytes and influence their function. EVs are considered as sources of promising clinical markers of insulin resistance, complications of diabetes mellitus (endothelial dysfunction, retinopathy, nephropathy, neuropathy), and markers of EVs can also be used to monitor the effectiveness of therapy for these complications.
Collapse
Affiliation(s)
- N V Yunusova
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | - N S Denisov
- Siberian State Medical University, Tomsk, Russia
| | - D N Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - M R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - O V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
33
|
Zhang J, Ding J, Yu M, Li F, Zhou X, Shuai H. Long non-coding RNA TTC28-AS1 attenuates high glucose-induced damage in HK-2 cells depending on the regulation of miR-320a/CD2AP axis. Genes Genomics 2021; 43:1471-1482. [PMID: 34623609 DOI: 10.1007/s13258-021-01167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play crucial roles in DN pathogenesis. OBJECTIVE The purpose of the present study was to explore the role and mechanism of lncRNA tetratricopeptide repeat domain 2B antisense RNA 1 (TTC28-AS1) in DN. METHODS Cell viability and apoptosis were assessed by the Cell Counting-8 Kit (CCK-8) assay and flow cytometry, respectively. The levels of TTC28-AS1, miR-320a and CD2-associated protein (CD2AP) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-8 were gauged by enzyme-linked immunosorbent assay (ELISA). Targeted relationship between miR-320a and TTC28-AS1 or CD2AP was evaluated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Our data indicated that high glucose (HG) induced HK-2 cell damage by the repression of cell viability and autophagy and the enhancement of cell apoptosis, fibrosis and pro-inflammatory cytokines production. TTC28-AS1 was down-regulated and miR-320a was up-regulated in HG-induced HK-2 cells. TTC28-AS1 overexpression or miR-320a knockdown alleviated HG-induced damage in HK-2 cells. MiR-320 was a molecular mediator of TTC28-AS1 in regulating HG-induced HK-2 cell damage. Moreover, TTC28-AS1 functioned as a post-transcriptional regulator of CD2AP expression by miR-320a. MiR-320a knockdown relieved HG-induced damage in HK-2 cells by up-regulating CD2AP. CONCLUSIONS Our findings suggest that TTC28-AS1 attenuates HG-induced damage in HK-2 cells at least partially by targeting the miR-320a/CD2AP axis, highlighting its role as a promising therapeutic approach for DN treatment.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Juan Ding
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Ming Yu
- Department of General Practice, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Fang Li
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Xue Zhou
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Hongxia Shuai
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
34
|
Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122:154834. [PMID: 34217734 DOI: 10.1016/j.metabol.2021.154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Exosomes, a major type of extracellular vesicles (EVs), are nanoscale vesicles excreted by almost all cell types via invagination of the endosomal membrane pathway. Exosomes play a crucial role in the mediation of intercellular communication both in health and disease, which can be ascribed to their capacity to be transported to neighboring or distant cells, thus regulating the biological function of recipient cells through cargos such as DNA, mRNA, proteins and microRNA. Diabetic nephropathy (DN) is a serious microvascular complication associated with diabetes mellitus as well as a significant cause of end-stage renal disease worldwide, which has resulted in a substantial economic burden on individuals and society. However, despite extensive efforts, therapeutic approaches that prevent the progression of DN do not exist, which implies new approaches are required. An increasing number of studies suggest that exosomes are involved in the pathophysiological processes associated with DN, which may potentially provide novel biomarkers and therapeutic targets for DN. Hence, this review summarizes recent advances involving exosome mechanisms in DN and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Qing Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| |
Collapse
|
35
|
Cai X, Zou F, Xuan R, Lai XY. Exosomes from mesenchymal stem cells expressing microribonucleic acid-125b inhibit the progression of diabetic nephropathy via the tumour necrosis factor receptor-associated factor 6/Akt axis. Endocr J 2021; 68:817-828. [PMID: 34024846 DOI: 10.1507/endocrj.ej20-0619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic nephropathy (DN) seriously threatens the health of patients with diabetes. Moreover, it has been reported that mesenchymal stem cell (MSC)-derived exosomal miRNAs can modulate the progression of multiple diseases, including DN. It has been suggested that miR-125b is involved in DN. However, the biological functions of exosomal miRNAs, especially miR-125b, in DN are still unclear. To establish a DN model in vitro, we used a model of human embryonic kidney epithelial cells (HKCs) injury induced by high glucose (HG). Then, miR-125b was delivered to the model cells in vitro via MSC-derived exosomes (MSC-Exos), and the effect of exosomal miR-125b on HKCs apoptosis was evaluated by flow cytometry. qRT-PCR or western blotting was performed to measure miR-125b or tumour necrosis factor receptor-associated factor 6 (TRAF6) expression in HKC. The effect of MSC-Exos on HKCs apoptosis after miR-125b knockdown was determined by flow cytometry. Moreover, dual-luciferase reporter assays were used to determine the targeting relationship between miR-125b and TRAF6 in HKCs. Our data revealed that MSC-Exos increased HG-induced autophagy in HKCs and reversed HKCs apoptosis. Moreover, our study found that miR-125b was enriched in MSC-Exos and directly targeted TRAF6 in HKCs. In addition, exosomally transferred miR-125b inhibited the apoptosis of HG-treated HKCs by mediating Akt signalling. In summary, MSC-derived exosomal miR-125b induced autophagy and inhibited apoptosis in HG-treated HKCs via the downregulation of TRAF6. Therefore, our study provided a new idea for DN treatment.
Collapse
Affiliation(s)
- Xia Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Fang Zou
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Rui Xuan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| | - Xiao-Yang Lai
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P.R.China
| |
Collapse
|
36
|
Hashemi E, Dehghanbanadaki H, Baharanchi AA, Forouzanfar K, Kakaei A, Mohammadi SM, Zeidi S, Razi F. WT1 and ACE mRNAs of blood extracellular vesicle as biomarkers of diabetic nephropathy. J Transl Med 2021; 19:299. [PMID: 34246281 PMCID: PMC8272332 DOI: 10.1186/s12967-021-02964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diabetic nephropathy (DN) has an increasing global prevalence with excessive health expenditure and burden. Exosomal mRNAs regulate intercellular communications and participate in the pathogenesis of various disorders like DN. This study aimed to assess the expression levels of ACE, ELMO1, and WT1 mRNAs in the blood extracellular vesicles (EVs) of DN patients and diabetic patients without nephropathy (DM group) in comparison to healthy controls and investigate their correlations with the severity of DN. Methods The performed investigation is a cross-sectional study of 256 participants including 103 DN patients, 100 DM patients, and 53 healthy controls. The quantification of WT1, ACE, and ELMO1 mRNAs in the blood EVs were executed using qRT-PCR. The ROC analysis was performed to determine the diagnostic accuracy of mRNAs. Results DN patients had significantly higher expressed WT1 mRNA (1.70-fold change) and lower expressed ACE mRNA (0.55-fold change) in the blood EVs compared to DM patients and controls. ELMO1 mRNA was not expressed in EVs of any groups. A positive correlation between WT1 mRNA level and urine Alb/Cr ratio (r = 0.602, p < 0.001) and a negative correlation between ACE mRNA expression and urine Alb/Cr ratio within DN patients (r = − 0.474, p < 0.001) was identified. The accuracy of WT1 mRNA and 1/ACE mRNA for predicting incipient DN was 0.63 (95% CI 0.55, 0.72) and 0.62 (95% CI 0.54, 0.71), and for predicting overt DN was 0.83 (95% CI 0.74, 0.92) and 0.75 (95% CI 0.66, 0.83), respectively. Conclusions WT1 and ACE mRNAs level in blood EVs were predictors for early diagnosis of DN therefore their quantifications might be used to determine the severity of albuminuria and glomerular injuries. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02964-6.
Collapse
Affiliation(s)
- Ehsan Hashemi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abbasi Baharanchi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical SciencesInstitute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mohammadi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Zeidi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Cho NJ, Kim DY, Kwon SH, Ha TW, Kim HK, Lee MR, Chun SW, Park S, Lee EY, Gil HW. Urinary exosomal microRNA profiling in type 2 diabetes patients taking dipeptidyl peptidase-4 inhibitor compared with sulfonylurea. Kidney Res Clin Pract 2021; 40:383-391. [PMID: 34233436 PMCID: PMC8476296 DOI: 10.23876/j.krcp.21.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/13/2021] [Indexed: 11/04/2022] Open
Abstract
Background Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to have kidney-protective benefits. To elucidate how antidiabetic agents prevent diabetic kidney disease progression, it is important to investigate their effect on the kidney environment in type 2 diabetes mellitus (DM) patients. Herein, we investigated the expression pattern of urinary exosome-derived microRNA (miRNA) in patients taking a combination of DPP-4 inhibitor and metformin (DPP-4 inhibitor group) and compared them with patients taking a combination of sulfonylurea and metformin (sulfonylurea group). Methods This was a prospective study involving 57 patients with type 2 DM (DPP-4 inhibitor group, n = 34; sulfonylurea group, n = 23) and healthy volunteers (n = 7). We measured urinary exosomal miRNA using the NanoString nCounter miRNA array (NanoString Technologies) across the three groups (n = 4 per each group) and validated findings using real-time polymerase chain reaction. Results Twenty-one differentially expressed candidate miRNAs were identified, and six (let-7c-5p, miR-23a-3p, miR-26a-3p, miR-30d, miR-205, and miR-200a) were selected for validation. Validation showed no significant difference in miRNA expression between the DPP-4 inhibitor and sulfonylurea groups. Only miR-23a-3p was significantly overexpressed in the diabetes group compared with the control group (DPP-4 inhibitor vs. control, p = 0.01; sulfonylurea vs. control, p = 0.007). This trend was consistent even after adjusting for age, sex, and body mass index. Conclusion There was no significant difference in urine exosome miRNA expression between diabetic participants taking DPP-4 inhibitor and those taking sulfonylurea. The miR-23a levels were higher in diabetic participants than in nondiabetic controls.
Collapse
Affiliation(s)
- Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Dae-Yeon Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Soon Hyo Kwon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Tae Won Ha
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sung Wan Chun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Eun-Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
38
|
Barutta F, Bellini S, Canepa S, Durazzo M, Gruden G. Novel biomarkers of diabetic kidney disease: current status and potential clinical application. Acta Diabetol 2021; 58:819-830. [PMID: 33528734 DOI: 10.1007/s00592-020-01656-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Although both albuminuria and glomerular filtration rate (GFR) are well-established diagnostic/prognostic biomarkers of DKD, they have important limitations. There is, thus, increasing quest to find novel biomarkers to identify the disease in an early stage and to improve risk stratification. In this review, we will outline the major pitfalls of currently available markers, describe promising novel biomarkers, and discuss their potential clinical relevance. In particular, we will focus on the importance of recent advancements in multi-omic technologies in the discovery of new DKD biomarkers. In addition, we will provide an update on new emerging approaches to explore renal function and structure, using functional tests and imaging.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Canepa
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
39
|
Saenz-Pipaon G, Echeverria S, Orbe J, Roncal C. Urinary Extracellular Vesicles for Diabetic Kidney Disease Diagnosis. J Clin Med 2021; 10:jcm10102046. [PMID: 34064661 PMCID: PMC8151759 DOI: 10.3390/jcm10102046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Saioa Echeverria
- Endocrinology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
40
|
Liu J, Yoo J, Ho JY, Jung Y, Lee S, Hur SY, Choi YJ. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J Ovarian Res 2021; 14:59. [PMID: 33910598 PMCID: PMC8082916 DOI: 10.1186/s13048-021-00814-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exosomal miRNAs regulate gene expression and play important roles in several diseases. We used exosomal miRNA profiling to investigate diagnostic biomarkers of epithelial ovarian cancer (EOC). METHODS In total, 55 individuals were enrolled, comprising healthy (n = 21) and EOC subjects (n = 34). Small mRNA (smRNA) sequencing and real-time PCR (RT-PCR) were performed to identify potential biomarkers. Receiver operating characteristic (ROC) curves were conducted to determine biomarker sensitivity and specificity. RESULTS Using smRNA sequencing, we identified seven up-regulated (miR-4732-5p, miR-877-5p, miR-574-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7f-5p) and two down-regulated miRNAs (miR-1273f and miR-342-3p) in EOC patients when compared with healthy subjects. Of these, miR-4732-5p and miR-1273f were the most up-regulated and down-regulated respectively, therefore they were selected for RT-PCR analysis. Plasma derived exosomal miR-4732-5p had an area under the ROC curve of 0.889, with 85.7% sensitivity and 82.4% specificity in distinguishing EOC patients from healthy subjects (p<0.0001) and could be a potential biomarker for monitoring the EOC progression from early stage to late stage (p = 0.018). CONCLUSIONS Plasma derived exosomal miR-4732-5p may be a promising candidate biomarker for diagnosing EOC.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jigeun Yoo
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yuyeon Jung
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sanha Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Recent Highlights of Research on miRNAs as Early Potential Biomarkers for Cardiovascular Complications of Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22063153. [PMID: 33808800 PMCID: PMC8003798 DOI: 10.3390/ijms22063153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.
Collapse
|
42
|
Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl) 2021; 99:335-348. [PMID: 33481059 PMCID: PMC7900031 DOI: 10.1007/s00109-021-02037-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD). Both conditions are rising in incidence as well as prevalence, creating poor outcomes for patients and high healthcare costs. Recent data suggests CKD to be an independent risk factor for CVD. Accumulation of uremic toxins, chronic inflammation, and oxidative stress have been identified to act as CKD-specific alterations that increase cardiovascular risk. The association between CKD and cardiovascular mortality is markedly influenced through vascular alterations, in particular atherosclerosis and vascular calcification (VC). While numerous risk factors promote atherosclerosis by inducing endothelial dysfunction and its progress to vascular structural damage, CKD affects the medial layer of blood vessels primarily through VC. Ongoing research has identified VC to be a multifactorial, cell-mediated process in which numerous abnormalities like mineral dysregulation and especially hyperphosphatemia induce a phenotype switch of vascular smooth muscle cells to osteoblast-like cells. A combination of pro-calcifying stimuli and an impairment of inhibiting mechanisms like fetuin A and vitamin K-dependent proteins like matrix Gla protein and Gla-rich protein leads to mineralization of the extracellular matrix. In view of recent studies, intercellular communication pathways via extracellular vesicles and microRNAs represent key mechanisms in VC and thereby a promising field to a deeper understanding of the involved pathomechanisms. In this review, we provide an overview about pathophysiological mechanisms connecting CKD and CVD. Special emphasis is laid on vascular alterations and more recently discovered molecular pathways which present possible new therapeutic targets.
Collapse
Affiliation(s)
- Philip Düsing
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Roger Goody
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Georg Nickenig
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
43
|
Moreira-Costa L, Barros AS, Lourenço AP, Leite-Moreira AF, Nogueira-Ferreira R, Thongboonkerd V, Vitorino R. Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes 2021; 9:proteomes9010008. [PMID: 33535467 PMCID: PMC7930981 DOI: 10.3390/proteomes9010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are widely recognized as the leading cause of mortality worldwide. Despite the advances in clinical management over the past decades, the underlying pathological mechanisms remain largely unknown. Exosomes have drawn the attention of researchers for their relevance in intercellular communication under both physiological and pathological conditions. These vesicles are suggested as complementary prospective biomarkers of CVDs; however, the role of exosomes in CVDs is still not fully elucidated. Here, we performed a literature search on exosomal biogenesis, characteristics, and functions, as well as the different available exosomal isolation techniques. Moreover, aiming to give new insights into the interaction between exosomes and CVDs, network analysis on the role of exosome-derived mediators in coronary artery disease (CAD) and heart failure (HF) was also performed to incorporate the different sources of information. The upregulated exosomal miRNAs miR-133a, miR-208a, miR-1, miR-499-5p, and miR-30a were described for the early diagnosis of acute myocardial infarction, while the exosome-derived miR-192, miR-194, miR-146a, and miR-92b-5p were considered as potential biomarkers for HF development. In CAD patients, upregulated exosomal proteins, including fibrinogen beta/gamma chain, inter-alpha-trypsin inhibitor heavy chain, and alpha-1 antichymotrypsin, were assessed as putative protein biomarkers. From downregulated proteins in CAD patients, albumin, clusterin, and vitamin D-binding protein were considered relevant to assess prognosis. The Vesiclepedia database included miR-133a of exosomal origin upregulated in patients with CAD and the exosomal miR-192, miR-194, and miR-146a upregulated in patients with HF. Additionally, Vesiclepedia included 5 upregulated and 13 downregulated exosomal proteins in patients in CAD. The non-included miRNAs and proteins have not yet been identified in exosomes and can be proposed for further research. This report highlights the need for further studies focusing on the identification and validation of miRNAs and proteins of exosomal origin as biomarkers of CAD and HF, which will enable, using exosomal biomarkers, the guiding of diagnosis/prognosis in CVDs.
Collapse
Affiliation(s)
- Liliana Moreira-Costa
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Correspondence: (L.M.-C.); (R.V.)
| | - António S. Barros
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - André P. Lourenço
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Rui Vitorino
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (L.M.-C.); (R.V.)
| |
Collapse
|
44
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Nazimek K. The complex functions of microRNA-150 in allergy, autoimmunity and immune tolerance. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>At present, special efforts are being made to develop the strategies allowing for activation of long-lasting antigen-specific immune tolerance in therapy of allergic and autoimmune diseases. Some of these therapeutic approaches are aimed at modulating cell functions at genetic level by using miRNA-based and miRNA-targeting treatments. Simultaneously, the crucial role of extracellular vesicles as natural miRNA conveyors is highlighted for induction of antigen-specific immune tolerance, especially that they appear to be easily manipulatable for therapeutic applications. Among other immune-related miRNAs, miR-150 is getting special attention as it is differently expressed by immune cells at various stages of their maturation and differentiation. In addition, miR-150 is involved in different signaling cascades orchestrating humoral and cell-mediated mechanisms of both innate and adaptive immune responses. Therefore, miR-150 is considered a master regulator of immunity in mammals. Currently, physiological miR-150-dependent regulatory circuits and causes of their malfunctioning that underlie the pathogenesis of allergic and autoimmune disorders are being unraveled. Thus, present review summarizes the current knowledge of the role of miR-150 in the pathogenesis and complications of these diseases. Furthermore, the involvement of miR-150 in regulation of immune responses to allergens and self-antigens and in induction of antigen-specific immune tolerance is discussed with the special emphasis on the therapeutic potential of this miRNA.</p>
</abstract>
Collapse
|
46
|
Kim H, Bae YU, Lee H, Kim H, Jeon JS, Noh H, Han DC, Byun DW, Kim SH, Park HK, Ryu S, Kwon SH. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res Care 2020; 8:8/1/e001403. [PMID: 32883688 PMCID: PMC7473624 DOI: 10.1136/bmjdrc-2020-001403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease. T2DM increases the risk of cardiovascular-related death. We investigated changes in circulating exosomal microRNA (miRNA) profiles in patients with DM with obesity compared with patients without DM with obesity. RESEARCH DESIGN AND METHODS This prospective study involved 29 patients with obesity (patients without DM=16, patients with DM=13) and healthy volunteers (HVs) (n=18). We measured circulating levels of exosomal miRNAs by next-generation sequencing and compared miRNA levels across the three groups. RESULTS The expression levels of 25 miRNAs (upregulated=14, downregulated=11) differed between patients with obesity with DM and patients with obesity without DM. Compared with HV, patients with DM with obesity had 53 dysregulated miRNAs. Additionally, moving stepwise from HV to patients with obesity without DM to patients with obesity with DM, there was a consistent increase in expression levels of miR-23a-5p and miR-6087 and a consistent decrease in expressions levels of miR-6751-3p. CONCLUSIONS Our data show that the exosomal miRNAs is altered by dysregulated glucose metabolism in patients with obesity. This circulating exosomal miRNA signature in patients with obesity with or without DM is a potential biomarker and therapeutic target in these patients.
Collapse
Affiliation(s)
- Hyoshik Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Yun-Ui Bae
- Department of Clinical Endocrinology and Metabolism, Keimyung University School of Medicine, Daegu, Kyungsang buk do, The Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Dong Cheol Han
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Dong Won Byun
- Division of Endocrinology and Metabolism, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Sang Hyun Kim
- Department of Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyeong Kyu Park
- Division of Endocrinology and Metabolism, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Asan, Chungcheongnam-do, The Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| |
Collapse
|
47
|
Jeon JS, Kim E, Bae YU, Yang WM, Lee H, Kim H, Noh H, Han DC, Ryu S, Kwon SH. microRNA in Extracellular Vesicles Released by Damaged Podocytes Promote Apoptosis of Renal Tubular Epithelial Cells. Cells 2020; 9:cells9061409. [PMID: 32517075 PMCID: PMC7349539 DOI: 10.3390/cells9061409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/17/2023] Open
Abstract
Tubular injury and fibrosis are associated with progressive kidney dysfunction in advanced glomerular disease. Glomerulotubular crosstalk is thought to contribute to tubular injury. microRNAs (miRNAs) in extracellular vesicles (EVs) can modulate distant cells. We hypothesized that miRNAs in EVs derived from injured podocytes lead to tubular epithelial cell damage. As proof of this concept, tubular epithelial (HK2) cells were cultured with exosomes from puromycin-treated or healthy human podocytes, and damage was assessed. Sequencing analysis revealed the miRNA repertoire of podocyte EVs. RNA sequencing identified 63 upregulated miRNAs in EVs from puromycin-treated podocytes. Among them, five miRNAs (miR-149, -424, -542, -582, and -874) were selected as candidates for inducing tubular apoptosis according to a literature-based search. To validate the effect of the miRNAs, HK2 cells were treated with miRNA mimics. EVs from injured podocytes induced apoptosis and p38 phosphorylation of HK2 cells. The miRNA-424 and 149 mimics led to apoptosis of HK2 cells. These results show that miRNAs in EVs from injured podocytes lead to damage to tubular epithelial cells, which may contribute to the development of tubular injury in glomerular disease.
Collapse
Affiliation(s)
- Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Eunbit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
- Department of Physiology, Keimyung University School of Medicine, Daegu, Kyungsang buk do 42601, Korea
| | - Won Mi Yang
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Dong Cheol Han
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
- Correspondence: (S.R.); (S.H.K.); Tel.: +82-41-530-4839 (S.R.); Tel.: +82-2-710-3274 (S.H.K.); Fax: +82-2-792-5812 (S.H.K.)
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
- Correspondence: (S.R.); (S.H.K.); Tel.: +82-41-530-4839 (S.R.); Tel.: +82-2-710-3274 (S.H.K.); Fax: +82-2-792-5812 (S.H.K.)
| |
Collapse
|
48
|
Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy. J Clin Med 2020; 9:jcm9041220. [PMID: 32340338 PMCID: PMC7231152 DOI: 10.3390/jcm9041220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD). Elucidating the mechanisms underlying proteinuria in DKD is crucial because it is a common problem in DKD-related mortality and morbidity. MicroRNAs (miRs) associated with DKD have been detected in experimental diabetes models and in patients with both diabetes and CKD. Here, we aimed to investigate pathologic miRs in diabetic nephropathy (DN) by prospectively following six nephrotic, biopsy-proven isolated DN patients (enrolled between August 2015 and July 2017) for one year. The urinary exosomes were isolated at the time of the biopsy and the contained miRs were analyzed by next-generation sequencing. The results were compared to the control group, composed of age-, gender-, and CKD stage-matched patients with proteinuric CKD who did not present diabetes. Among the 72 identified miRs, we investigated eight (miR-188-5p, miR-150-3p, miR-760, miR-3677-3p, miR-548ah-3p, miR-548p, miR-320e, and miR-23c) exhibiting the strongest upregulation (13–15 fold) and two (miR-133a-3p and miR-153-3p) with the strongest downregulation (7–9 fold). The functional analysis of these miRs showed that they were involved in known and novel pathways of DN, supporting their pathologic roles. The bioinformatics-based prediction of the target genes of these miRs will inspire future research on the mechanisms underlying DN pathogenesis.
Collapse
|
49
|
Liu P, Li F, Xu X, Li S, Dong X, Chen L, Bai B, Wang Y, Qiu M, Dong Y. 1,25(OH) 2D 3 provides protection against diabetic kidney disease by downregulating the TLR4-MyD88-NF-κB pathway. Exp Mol Pathol 2020; 114:104434. [PMID: 32240615 DOI: 10.1016/j.yexmp.2020.104434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
The over-activation of Toll-like receptors (TLRs) is a typical immune response to injury. Previous work has suggested that controlling the over-activation of TLR4-MyD88-NF-κB may represent a new therapeutic option for diabetic kidney disease (DKD). 1,25(OH)2D3 has also been shown to exert a protective effect on DKD, although the mechanism involved has yet to be elucidated. The aim of this study was to investigate whether 1,25(OH)2D3 protects against DKD by down-regulating the innate immune TLR-NF-κB pathway. NRK-52E cells were cultured under normal or high-glucose conditions. We then used siRNA to knock down TLR4 expression under high-glucose conditions. NRK-52E cells cultured under high-glucose conditions, and streptozotocin (STZ)-induced diabetic rats, were treated with different doses of 1,25(OH)2D3 and used as in vitro and in vivo models, respectively. Renal biochemical indicators were then measured to evaluate the influence of 1,25(OH)2D3 treatment on DKD in diabetic rats. Histological analysis was also performed to determine the extent of infiltration by inflammatory cells and tubulointerstitial fibrosis. Using RT-qPCR, western blotting, immunohistochemistry and immunofluorescence, we determined the expression levels of TLR4, MyD88, NF-κB p65, MCP-1 and α-SMA to investigate whether 1,25(OH)2D3 could reduce the development of tubulointerstitial fibrosis. Knocking down TLR4 abolished the tubulointerstitial fibrosis caused by high-glucose conditions. High doses of 1,25(OH)2D3 consistently reduced the expression of TLR4-MyD88-NF-κB in NRK-52E cells. Moreover, high doses of 1,25(OH)2D3 had an obvious protective effect on kidney injury and inhibited the infiltration of inflammatory cells and tubulointerstitial fibrosis in diabetic rats. In conclusion, high doses of 1,25(OH)2D3 protected against tubulointerstitial fibrosis both in vitro and in vivo by downregulating the expression of TLR4-MyD88-NF-κB.
Collapse
Affiliation(s)
- Ping Liu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Fengao Li
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin 300041, China
| | - Xiaoyan Xu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Suning Li
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoying Dong
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ling Chen
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Bin Bai
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yarong Wang
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Mingcai Qiu
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin 300041, China
| | - Youping Dong
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
50
|
Loganathan TS, Sulaiman SA, Abdul Murad NA, Shah SA, Abdul Gafor AH, Jamal R, Abdullah N. Interactions Among Non-Coding RNAs in Diabetic Nephropathy. Front Pharmacol 2020; 11:191. [PMID: 32194418 PMCID: PMC7062796 DOI: 10.3389/fphar.2020.00191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic Nephropathy (DN) is the most common cause of End-stage renal disease (ESRD). Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden. Recent findings showed that noncoding RNAs (ncRNAs) play an important role in DN progression, potentially can be used as biomarkers and therapeutic targets. NcRNAs refers to the RNA species that do not encode for any protein, and the most known ncRNAs are the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Dysregulation of these ncRNAs was reported before in DN patients and animal models of DN. Importantly, there are some interactions between these ncRNAs to regulate the crucial steps in DN progression. Here, we aimed to discuss the reported ncRNAs in DN and their interactions with critical genes in DN progression. Elucidating these ncRNAs regulatory network will allow for a better understanding of the molecular mechanisms in DN and how they can act as new biomarkers for DN and also as the potential targets for treatment.
Collapse
Affiliation(s)
- Tamil Selvi Loganathan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shamsul Azhar Shah
- Department of Community Health, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Abdul Halim Abdul Gafor
- Nephrology Unit, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|