1
|
Petersen C, Satheesh Babu AK, Della Lucia CM, Paz HA, Iglesias-Carres L, Zhong Y, Jalili T, Symons JD, Shankar K, Neilson AP, Wankhade UD, Anandh Babu PV. Gut microbes metabolize strawberry phytochemicals and mediate their beneficial effects on vascular inflammation. Gut Microbes 2025; 17:2446375. [PMID: 39760464 DOI: 10.1080/19490976.2024.2446375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited. We addressed this knowledge gap using strawberry phytochemicals as a model. C57BL/6J mice were fed a standard diet [C]; strawberry-supplemented diet (~2 human servings) [CS]; strawberry-supplemented diet and treated with antibiotics (to deplete gut microbes) [CSA]; high-fat diet (HFD) [HF]; strawberry-supplemented HFD [HS]; and strawberry-supplemented HFD and treated with antibiotics [HSA] for 12 weeks. First, antibiotic treatment suppressed the production of selected metabolites (CSA vs. CS), and p-coumaric acid was identified as a strawberry-derived microbial metabolite. Second, HFD-induced dysbiosis negatively affected metabolite production (HS vs. HF), and hippuric acid was identified as a microbial metabolite in HFD conditions. Third, dietary strawberries improved HFD-induced vascular inflammation (HS vs. HF). However, antibiotic treatment reduced metabolite production and abolished the vascular effects of strawberries (HSA vs. HS), indicating the importance of gut microbes in mediating the vascular benefits of strawberries via metabolites. Fourth, strawberry supplementation decreased Coprobacillus that was positively associated with vascular inflammation, whereas it increased Lachnospiraceae that was negatively associated with vascular inflammation and positively associated with hippuric acid. Fifth, hippuric acid was negatively associated with vascular inflammation. Our study fills in some pieces of the giant puzzle regarding the influence of gut microbes on the biological activities of phytochemicals. HFD-induced gut dysbiosis negatively impacts metabolite production and a strong association exists among gut microbes, strawberry-derived microbial metabolites, and the vascular benefits of dietary strawberries. Further, our study provides significant proof of concept to warrant future research on the use of strawberries as a nutritional strategy to prevent vascular complications.
Collapse
Affiliation(s)
- Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | | | - Ceres Mattos Della Lucia
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Zhou HM, Yang XY, Yue SJ, Wang WX, Zhang Q, Xu DQ, Li JJ, Tang YP. The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:145-155. [PMID: 38412071 DOI: 10.1080/21691401.2024.2319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.
Collapse
Affiliation(s)
- Hao-Ming Zhou
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Xiao Wang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
3
|
Xie K, Xiao C, Lin L, Li F, Hu W, Yang Y, Chen D, Miao Z, Sun TY, Yan Y, Zheng JS, Chen YM. Erythrocyte Very Long-Chain Saturated Fatty Acids, Gut Microbiota-Bile Acid Axis, and Incident Coronary Artery Disease in Adults: A Prospective Cohort Study. J Nutr 2024; 154:3019-3030. [PMID: 39128547 DOI: 10.1016/j.tjnut.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Prior research has highlighted inverse associations between concentrations of circulating very long-chain saturated fatty acids (VLCSFAs) and coronary artery disease (CAD). However, the intricate links involving VLCSFAs, gut microbiota, and bile acids remain underexplored. OBJECTIVES This study examined the association of erythrocyte VLCSFAs with CHD incidence, focusing on the mediating role of gut microbiota and fecal bile acids. METHODS This 10-y prospective study included 2383 participants without CHD at baseline. Erythrocyte VLCSFAs [arachidic acid (C20:0), behenic acid (C22:0), and lignoceric acid (C24:0)] were measured using gas chromatography at baseline, and 274 CHD incidents were documented in triennial follow-ups. Gut microbiota in 1744 participants and fecal bile acid metabolites in 945 participants were analyzed using 16S ribosomal ribonucleic acid sequencing and ultra-performance liquid chromatography-tandem mass spectrometry at middle-term. RESULTS The multivariable-adjusted hazard ratios (95% confidence interval) for CHD incidence in highest compared with lowest quartiles were 0.87 (0.61, 1.25) for C20:0, 0.63 (0.42, 0.96) for C22:0, 0.59 (0.41, 0.85) for C24:0, and 0.57 (0.39, 0.83) for total VLCSFAs. Participants with higher total VLCSFA concentrations exhibited increased abundances of Holdemanella, Coriobacteriales Incertae Sedis spp., Ruminococcaceae UCG-005 and UCG-010, and Lachnospiraceae ND3007 group. These 5 genera generated overlapping differential microbial scores (ODMSs) that accounted for 11.52% of the total VLCSFAs-CHD association (Pmediation = 0.018). Bile acids tauro_α_ and tauro_β_muricholic acid were inversely associated with ODMS and positively associated with incident CHD. Opposite associations were found for glycolithocholic acid and glycodeoxycholic acid. Mediation analyses indicated that glycolithocholic acid, glycodeoxycholic acid, and tauro_α_ and tauro_β_muricholic acid explained 56.40%, 35.19%, and 26.17% of the ODMS-CHD association, respectively (Pmediation = 0.002, 0.008, and 0.020). CONCLUSIONS Elevated erythrocyte VLCSFAs are inversely associated with CHD risk in the Chinese population, with gut microbiota and fecal bile acid profiles potentially mediating this association. The identified microbiota and bile acid metabolites may serve as potential intervention targets in future studies. This trial was registered at www. CLINICALTRIALS gov as NCT03179657.
Collapse
Affiliation(s)
- Keliang Xie
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lishan Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ting-Yu Sun
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; School of Medicine, Westlake University, Hangzhou, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|
5
|
Ren YM, Zhuang ZY, Xie YH, Yang PJ, Xia TX, Xie YL, Liu ZH, Kang ZR, Leng XX, Lu SY, Zhang L, Chen JX, Xu J, Zhao EH, Wang Z, Wang M, Cui Y, Tan J, Liu Q, Jiang WH, Xiong H, Hong J, Chen YX, Chen HY, Fang JY. BCAA-producing Clostridium symbiosum promotes colorectal tumorigenesis through the modulation of host cholesterol metabolism. Cell Host Microbe 2024; 32:1519-1535.e7. [PMID: 39106870 DOI: 10.1016/j.chom.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/21/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024]
Abstract
Identification of potential bacterial players in colorectal tumorigenesis has been a focus of intense research. Herein, we find that Clostridium symbiosum (C. symbiosum) is selectively enriched in tumor tissues of patients with colorectal cancer (CRC) and associated with higher colorectal adenoma recurrence after endoscopic polypectomy. The tumorigenic effect of C. symbiosum is observed in multiple murine models. Single-cell transcriptome profiling along with functional assays demonstrates that C. symbiosum promotes the proliferation of colonic stem cells and enhances cancer stemness. Mechanistically, C. symbiosum intensifies cellular cholesterol synthesis by producing branched-chain amino acids (BCAAs), which sequentially activates Sonic hedgehog signaling. Low dietary BCAA intake or blockade of cholesterol synthesis by statins could partially abrogate the C. symbiosum-induced cell proliferation in vivo and in vitro. Collectively, we reveal C. symbiosum as a bacterial driver of colorectal tumorigenesis, thus identifying a potential target in CRC prediction, prevention, and treatment.
Collapse
Affiliation(s)
- Yi-Meng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Peng-Jie Yang
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Xue Xia
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhu-Hui Liu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Shi-Yuan Lu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jin-Xian Chen
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia Xu
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - En-Hao Zhao
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Wang
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Wang
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Juan Tan
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hong Jiang
- Chinese Academy of Sciences Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Xiong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
6
|
Xiao JH, Wang Y, Zhang XM, Wang WX, Zhang Q, Tang YP, Yue SJ. Intestinal permeability in human cardiovascular diseases: a systematic review and meta-analysis. Front Nutr 2024; 11:1361126. [PMID: 39086542 PMCID: PMC11289889 DOI: 10.3389/fnut.2024.1361126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background There is a link between cardiovascular diseases and intestinal permeability, but it is not clear. This review aimed to elucidate intestinal permeability in cardiovascular diseases by meta-analysis. Methods Multidisciplinary electronic databases were searched from the database creation to April 2023. All included studies were assessed for risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist. The heterogeneity of each study was estimated using the I2 statistic, and the data were analyzed using Review Manager 5.3 and Stata 16.0. Results In total, studies in 13 pieces of literature were included in the quantitative meta-analysis. These studies were conducted among 1,321 subjects mostly older than 48. Patients had higher levels of intestinal permeability markers (lipopolysaccharide, d-lactate, zonulin, serum diamine oxidase, lipopolysaccharide-binding protein, intestinal fatty acid binding protein, and melibiose/rhamnose) than controls (standard mean difference SMD = 1.50; 95% CI = 1.31-1.88; p < 0.00001). Similarly, lipopolysaccharide levels were higher in patients than in controls (SMD = 1.61; 95% CI = 1.02-2.21; p < 0.00001); d-lactate levels were higher in patients than in controls (SMD = 1.16; 95% CI = 0.23-2.08; p = 0.01); zonulin levels were higher in patients than in controls (SMD = 1.74; 95% CI = 1.45-2.03; p < 0.00001); serum diamine oxidase levels were higher in patients than in controls (SMD = 2.51; 95% CI = 0.29-4.73; p = 0.03). Conclusion The results of the meta-analysis verified that the intestinal barrier was damaged and intestinal permeability was increased in patients with cardiovascular diseases. These markers may become a means of the diagnosis and treatment of cardiovascular diseases. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=414296, identifier CRD42023414296.
Collapse
Affiliation(s)
- Jiang-Hong Xiao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Xi-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
7
|
Guan Y, Zhao S, Li J, Zhang W, Guo Z, Luo Y, Jiang X, Li J, Liu J, Chen X, Zhao Z, Zhang Z. Insights from metagenomics into gut microbiome associated with acute coronary syndrome therapy. Front Microbiol 2024; 15:1369478. [PMID: 39035441 PMCID: PMC11258018 DOI: 10.3389/fmicb.2024.1369478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Acute coronary syndrome (ACS) is a predominant cause of mortality, and the prompt and precise identification of this condition is crucial to minimize its impact. Recent research indicates that gut microbiota is associated with the onset, progression, and treatment of ACS. To investigate its role, we sequenced the gut microbiota of 38 ACS patients before and after percutaneous coronary intervention and statin therapy at three time points, examining differential species and metabolic pathways. We observed a decrease in the abundance of Parabacteroides, Escherichia, and Blautia in patients after treatment and an increase in the abundance of Gemalla, Klebsiella variicola, Klebsiella pneumoniae, and others. Two pathways related to sugar degradation were more abundant in patients before treatment, possibly correlated with disorders of sugar metabolism and risk factors, such as hyperglycemia, insulin resistance, and insufficient insulin secretion. Additionally, seven pathways related to the biosynthesis of vitamin K2 and its homolog were reduced after treatment, suggesting that ACS patients may gradually recover after therapy. The gut microbiota of patients treated with different statins exhibited notable differences after treatment. Rosuvastatin appeared to promote the growth of anti-inflammatory bacteria while reducing pro-inflammatory bacteria, whereas atorvastatin may have mixed effects on pro-inflammatory and anti-inflammatory bacteria while increasing the abundance of Bacteroides. Our research will provide valuable insights and enhance comprehension of ACS, leading to better patient diagnosis and therapy.
Collapse
Affiliation(s)
- Yuee Guan
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Shuru Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Jing Li
- University of Science and Technology of China, Hefei, China
| | - Wenqian Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi'an, China
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, China
| | - Zhonghao Guo
- School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yi Luo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jun Li
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jianxiong Liu
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Zhe Zhang
- Department of Cardiology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Department of Cardiology, The Zhuhai National Hi-tech Industrial Development District People’s Hospital (Zhuhai People’s Hospital Medical Group, High-tech Zone), Zhuhai, China
| |
Collapse
|
8
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
9
|
Zhou S, Liu L, Ye B, Xu Y, You Y, Zhu S, Ju J, Yang J, Li W, Xia M, Liu Y. Gut microbial metabolism is linked to variations in circulating non-high density lipoprotein cholesterol. EBioMedicine 2024; 104:105150. [PMID: 38728837 PMCID: PMC11090025 DOI: 10.1016/j.ebiom.2024.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Non-high-density lipoprotein cholesterol (non-HDL-c) was a strong risk factor for incident cardiovascular diseases and proved to be a better target of lipid-lowering therapies. Recently, gut microbiota has been implicated in the regulation of host metabolism. However, its causal role in the variation of non-HDL-c remains unclear. METHODS Microbial species and metabolic capacities were assessed with fecal metagenomics, and their associations with non-HDL-c were evaluated by Spearman correlation, followed by LASSO and linear regression adjusted for established cardiovascular risk factors. Moreover, integrative analysis with plasma metabolomics were performed to determine the key molecules linking microbial metabolism and variation of non-HDL-c. Furthermore, bi-directional mendelian randomization analysis was performed to determine the potential causal associations of selected species and metabolites with non-HDL-c. FINDINGS Decreased Eubacterium rectale but increased Clostridium sp CAG_299 were causally linked to a higher level of non-HDL-c. A total of 16 microbial capacities were found to be independently associated with non-HDL-c after correcting for age, sex, demographics, lifestyles and comorbidities, with the strongest association observed for tricarboxylic acid (TCA) cycle. Furthermore, decreased 3-indolepropionic acid and N-methyltryptamine, resulting from suppressed capacities for microbial reductive TCA cycle, functioned as major microbial effectors to the elevation of circulating non-HDL-c. INTERPRETATION Overall, our findings provided insight into the causal effects of gut microbes on non-HDL-c and uncovered a novel link between non-HDL-c and microbial metabolism, highlighting the possibility of regulating non-HDL-c by microbiota-modifying interventions. FUNDING A full list of funding bodies can be found in the Sources of funding section.
Collapse
Affiliation(s)
- Shiyi Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Ludi Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Bingqi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Yingxi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Yi You
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Jingmeng Ju
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Jialu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Wenkang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
10
|
Li Y, Liu Y, Cui J, Zhu M, Wang W, Chen K, Huang L, Liu Y. Oral-gut microbial transmission promotes diabetic coronary heart disease. Cardiovasc Diabetol 2024; 23:123. [PMID: 38581039 PMCID: PMC10998415 DOI: 10.1186/s12933-024-02217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
11
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
12
|
Yang P, Tian J, Zhang L, Zhang H, Yang G, Ren Y, Fang J, Gu Y, Jiang W. A toolbox for genetic manipulation in intestinal Clostridium symbiosum. Synth Syst Biotechnol 2024; 9:43-54. [PMID: 38234413 PMCID: PMC10793094 DOI: 10.1016/j.synbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024] Open
Abstract
Gut microbes are closely related with human health, but remain much to learn. Clostridium symbiosum is a conditionally pathogenic human gut bacterium and regarded as a potential biomarker for early diagnosis of intestinal tumors. However, the absence of an efficient toolbox that allows diverse genetic manipulations of this bacterium limits its in-depth studies. Here, we obtained the complete genome sequence of C. symbiosum ATCC 14940, a representative strain of C. symbiosum. On this basis, we further developed a series of genetic manipulation methods for this bacterium. Firstly, following the identification of a functional replicon pBP1 in C. symbiosum ATCC 14940, a highly efficient conjugative DNA transfer method was established, enabling the rapid introduction of exogenous plasmids into cells. Next, we constructed a dual-plasmid CRISPR/Cas12a system for genome editing in this bacterium, reaching over 60 % repression for most of the chosen genes as well as efficient deletion (>90 %) of three target genes. Finally, this toolbox was used for the identification of crucial functional genes, involving growth, synthesis of important metabolites, and virulence of C. symbiosum ATCC 14940. Our work has effectively established and optimized genome editing methods in intestinal C. symbiosum, thereby providing strong support for further basic and application research in this bacterium.
Collapse
Affiliation(s)
- Pengjie Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Lu Zhang
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Gaohua Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Straket 16, Gothenburg, 41345, Sweden
| | - Yimeng Ren
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
13
|
Cao L, Ni H, Gong X, Zang Z, Chang H. Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota. Drugs 2024; 84:179-202. [PMID: 38265546 DOI: 10.1007/s40265-024-01994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hongxia Ni
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China.
| |
Collapse
|
14
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
15
|
Zhang Y, Gao X, Gao S, Liu Y, Wang W, Feng Y, Pei L, Sun Z, Liu L, Wang C. Effect of gut flora mediated-bile acid metabolism on intestinal immune microenvironment. Immunology 2023; 170:301-318. [PMID: 37317655 DOI: 10.1111/imm.13672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023] Open
Abstract
According to reports, gut microbiota and metabolites regulate the intestinal immune microenvironment. In recent years, an increasing number of studies reported that bile acids (BAs) of intestinal flora origin affect T helper cells and regulatory T cells (Treg cells). Th17 cells play a pro-inflammatory role and Treg cells usually act in an immunosuppressive role. In this review, we emphatically summarised the influence and corresponding mechanism of different configurations of lithocholic acid (LCA) and deoxycholic acid (DCA) on intestinal Th17 cells, Treg cells and intestinal immune microenvironment. The regulation of BAs receptors G protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and farnesoid X receptor (FXR) on immune cells and intestinal environment are elaborated. Furthermore, the potential clinical applications above were also concluded in three aspects. The above will help researchers better understand the effects of gut flora on the intestinal immune microenvironment via BAs and contribute to the development of new targeted drugs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyan Gao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuochen Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yudi Feng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Pei
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Zhang J, Lyu A, Wang C. The molecular insights of bile acid homeostasis in host diseases. Life Sci 2023; 330:121919. [PMID: 37422071 DOI: 10.1016/j.lfs.2023.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Bile acids (BAs) function as detergents promoting nutrient absorption and as hormones regulating nutrient metabolism. Most BAs are key regulatory factors of physiological activities, which are involved in the regulation of glucose, lipid, and drug metabolisms. Hepatic and intestinal diseases have close connections with the systemic cycling disorders of BAs. The abnormal in BA absorption came up with overmuch BAs could be involved in the pathophysiology of liver and bowel and metabolic disorders such as fatty liver diseases and inflammatory bowel diseases. The primary BAs (PBAs), which are synthesized in the liver, can be transformed into the secondary BAs (SBAs) by gut microbiota. The transformation processes are tightly associated with the gut microbiome and the host endogenous metabolism. The BA biosynthesis gene cluster bile-acid-inducible operon is essential for modulating BA pool, gut microbiome composition, and the onset of intestinal inflammation. This forms a bidirectional interaction between the host and its gut symbiotic ecosystem. The subtle changes in the composition and abundance of BAs perturb the host physiological and metabolic activity. Therefore, maintaining the homeostasis of BAs pool contributes to the balance of the body's physiological and metabolic system. Our review aims to dissect the molecular mechanisms underlying the BAs homeostasis, assess the key factors sustaining the homeostasis and the role of BA acting on host diseases. By linking the BAs metabolic disorders and their associated diseases, we illustrate the effects of BAs homeostasis on health and potential clinical interventions can be taken under the latest research findings.
Collapse
Affiliation(s)
- Jinfang Zhang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chao Wang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
17
|
Gu YY, Cui XB, Jiang J, Zhang YX, Liu MH, Cheng SB, Li YY, Liu LL, Liao RX, Zhao P, Jin W, Jia YH, Wang J, Zhou FH. Dingxin recipe Ⅲ ameliorates hyperlipidemia injury in SD rats by improving the gut barrier, particularly the SCFAs/GPR43 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116483. [PMID: 37059245 DOI: 10.1016/j.jep.2023.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dingxin Recipe Ⅲ (DXR Ⅲ) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR Ⅲ in hyperlipidemia. MATERIALS AND METHODS The bioactive compounds of DXR Ⅲ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR Ⅲ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS DXR Ⅲ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR Ⅲ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR Ⅲ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR Ⅲ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR Ⅲ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION DXR Ⅲ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Collapse
Affiliation(s)
- Yu-Yan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Bing Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai-Bo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ye Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Ling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong-Xin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yu-Hua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Feng-Hua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
18
|
Belli M, Barone L, Longo S, Prandi FR, Lecis D, Mollace R, Margonato D, Muscoli S, Sergi D, Federici M, Barillà F. Gut Microbiota Composition and Cardiovascular Disease: A Potential New Therapeutic Target? Int J Mol Sci 2023; 24:11971. [PMID: 37569352 PMCID: PMC10418329 DOI: 10.3390/ijms241511971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
A great deal of evidence has revealed an important link between gut microbiota and the heart. In particular, the gut microbiota plays a key role in the onset of cardiovascular (CV) disease, including heart failure (HF). In HF, splanchnic hypoperfusion causes intestinal ischemia resulting in the translocation of bacteria and their metabolites into the blood circulation. Among these metabolites, the most important is Trimethylamine N-Oxide (TMAO), which is responsible, through various mechanisms, for pathological processes in different organs and tissues. In this review, we summarise the complex interaction between gut microbiota and CV disease, particularly with respect to HF, and the possible strategies for influencing its composition and function. Finally, we highlight the potential role of TMAO as a novel prognostic marker and a new therapeutic target for HF.
Collapse
Affiliation(s)
- Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Susanna Longo
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Rocco Mollace
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
- Cardiovascular Department, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Davide Margonato
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Saverio Muscoli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Domenico Sergi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| |
Collapse
|
19
|
Dong Y, Xu R, Chen X, Yang C, Jiang F, Shen Y, Li Q, Fang F, Li Y, Shen X. Characterization of gut microbiota in adults with coronary atherosclerosis. PeerJ 2023; 11:e15245. [PMID: 37220524 PMCID: PMC10200099 DOI: 10.7717/peerj.15245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Cardiovascular disease, which is mainly caused by coronary atherosclerosis, is one of the leading causes of death and disability worldwide. Gut microbiota likely play an important role in coronary atherosclerosis. This study aims to investigate the microbiota profile of adults with coronary atherosclerosis to provide a theoretical basis for future research. Methods Fecal samples were collected from 35 adult patients diagnosed with coronary atherosclerosis and 32 healthy adults in Nanjing, China, and the V3-V4 region of 16S rDNA genes was sequenced using high-throughput sequencing. Differences in alpha diversity, beta diversity, and gut microbiota composition between the two groups were then compared. Results A beta diversity analysis revealed significant differences between adults with coronary atherosclerosis and controls, but there was no statistical difference in alpha diversity between the two groups. There were also differences in the composition of the gut microbiota between the two groups. The genera, Megamonas, Streptococcus, Veillonella, Ruminococcus_torques_group, Prevotella_2, Tyzzerella_4, were identified as potential biomarkers for coronary atherosclerosis. Conclusion There are some differences in the gut microbiota of adults with coronary atherosclerosis compared to healthy adults. The insights from this study could be used to explore microbiome-based mechanisms for coronary atherosclerosis.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Sun CY, Yang N, Zheng ZL, Liu D, Xu QL. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed Pharmacother 2023; 161:114483. [PMID: 36906976 DOI: 10.1016/j.biopha.2023.114483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Na Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | | | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Qi-Lin Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
21
|
Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023; 15:nu15081850. [PMID: 37111068 PMCID: PMC10141989 DOI: 10.3390/nu15081850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.
Collapse
Affiliation(s)
- Tess Yntema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
22
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
Tousoulis D, Guzik T, Padro T, Duncker DJ, De Luca G, Eringa E, Vavlukis M, Antonopoulos AS, Katsimichas T, Cenko E, Djordjevic-Dikic A, Fleming I, Manfrini O, Trifunovic D, Antoniades C, Crea F. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc Res 2022; 118:3171-3182. [PMID: 35420126 PMCID: PMC11023489 DOI: 10.1093/cvr/cvac057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
The human gut microbiota is the microbial ecosystem in the small and large intestines of humans. It has been naturally preserved and evolved to play an important role in the function of the gastrointestinal tract and the physiology of its host, protecting from pathogen colonization, and participating in vitamin synthesis, the functions of the immune system, as well as glucose homeostasis and lipid metabolism, among others. Mounting evidence from animal and human studies indicates that the composition and metabolic profiles of the gut microbiota are linked to the pathogenesis of cardiovascular disease, particularly arterial hypertension, atherosclerosis, and heart failure. In this review article, we provide an overview of the function of the human gut microbiota, summarize, and critically address the evidence linking compositional and functional alterations of the gut microbiota with atherosclerosis and coronary artery disease and discuss the potential of strategies for therapeutically targeting the gut microbiota through various interventions.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Tomasz Guzik
- Institute of Cardiovascular Medical Sciences, BHF Glasgow Cardiovascular Research Centre, UK
| | - Teresa Padro
- Sant Pau Institute for Biomedical Research, Barcelona, Spain
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus MC, Rotterdam, the Netherlands
| | - Giuseppe De Luca
- Division of Cardiology, Eastern Piedmont University, Novara, Italy
| | - Etto Eringa
- Institute of Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Themistoklis Katsimichas
- 1st Cardiology Department, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, 11527 Athens, Greece
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Ingrid Fleming
- Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
24
|
Hou Y, Zhang Z, Cui Y, Peng C, Fan Y, Tan C, Wang Q, Liu Z, Gong J. Pu-erh Tea and Theabrownin Ameliorate Metabolic Syndrome in Mice via Potential Microbiota-Gut-Liver-Brain Interactions. Food Res Int 2022; 162:112176. [DOI: 10.1016/j.foodres.2022.112176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
25
|
Ma Y, Liu X, Liu D, Yin Z, Yang X, Zeng M. Oyster ( Crassostrea gigas) Polysaccharide Ameliorates High-Fat-Diet-Induced Oxidative Stress and Inflammation in the Liver via the Bile Acid-FXR-AMPKα Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8662-8671. [PMID: 35797440 DOI: 10.1021/acs.jafc.2c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oyster polysaccharides (OPS) have a variety of biological activities. In this study, we aimed to investigate the potential mechanisms of OPS to ameliorate hepatic oxidative stress and inflammation in mice induced by a high-fat diet (HFD). The results showed that OPS reduced the HFD-induced increases in serum transaminase levels and alleviated hepatic oxidative stress and inflammation. Moreover, OPS regulated bile acid metabolism and increased bile acid content in the liver, serum, and feces. Serum bile acid profile results indicated that OPS reduced levels of chenodeoxycholic acid, deoxycholic acid, and lithocholic acid associated with high-affinity agonists of Farnesol X receptor (FXR). Western blot analysis showed that OPS accelerated bile acid metabolism by downregulating hepatic FXR expression and promoting its downstream CYP7A1, CYP27A1, and CYP8B1 protein expression. Meanwhile, OPS ameliorated oxidative stress and inflammation in the liver by modulating FXR-AMPKα-Nrf2/NF-κB signaling to reduce p-IκBα/IκBα, p-NF-κB p65/NF-κB p65, IL-1β, and TNF-α expression and increase p-Nrf2/Nrf2, HO-1, and NQO-1 expression. This study was the first to explore the possible mechanism of OPS in improving liver oxidative stress and inflammation from the perspective of bile acid metabolism, providing a theoretical basis for OPS as a new source of functional food.
Collapse
Affiliation(s)
- Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Defu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Zihao Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xinyi Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, Shandong, China
| |
Collapse
|
26
|
The Gut Microbiota and Vascular Aging: A State-of-the-Art and Systematic Review of the Literature. J Clin Med 2022; 11:jcm11123557. [PMID: 35743626 PMCID: PMC9224769 DOI: 10.3390/jcm11123557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is a critical regulator of human physiology, deleterious changes to its composition and function (dysbiosis) have been linked to the development and progression of cardiovascular diseases. Vascular ageing (VA) is a process of progressive stiffening of the arterial tree associated with arterial wall remodeling, which can precede hypertension and organ damage, and is associated with cardiovascular risk. Arterial stiffness has become the preferred marker of VA. In our systematic review, we found an association between gut microbiota composition and arterial stiffness, with two patterns, in most animal and human studies: a direct correlation between arterial stiffness and abundances of bacteria associated with altered gut permeability and inflammation; an inverse relationship between arterial stiffness, microbiota diversity, and abundances of bacteria associated with most fit microbiota composition. Interventional studies were able to show a stable link between microbiota modification and arterial stiffness only in animals. None of the human interventional trials was able to demonstrate this relationship, and very few adjusted the analyses for determinants of arterial stiffness. We observed a lack of large randomized interventional trials in humans that test the role of gut microbiota modifications on arterial stiffness, and take into account BP and hemodynamic alterations.
Collapse
|
27
|
Fan Y, Gao Y, Ma Q, Yang Z, Zhao B, He X, Yang J, Yan B, Gao F, Qian L, Wang W, Zhu F, Ma X. Multi-Omics Analysis Reveals Aberrant Gut-Metabolome-Immune Network in Schizophrenia. Front Immunol 2022; 13:812293. [PMID: 35309369 PMCID: PMC8927969 DOI: 10.3389/fimmu.2022.812293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is associated with several immune dysfunctions, including elevated levels of pro-inflammatory cytokines. Microorganisms and their metabolites have been found to regulate the immune system, and that intestinal microbiota is significantly disturbed in schizophrenic patients. To systematically investigate aberrant gut-metabolome-immune network in schizophrenia, we performed an integrative analysis of intestinal microbiota, serum metabolome, and serum inflammatory cytokines in 63 SCZ patients and 57 healthy controls using a multi-omics strategy. Eighteen differentially abundant metabolite clusters were altered in patients displayed higher cytokine levels, with a significant increase in pro-inflammatory metabolites and a significant decrease in anti-inflammatory metabolites (such as oleic acid and linolenic acid). The bacterial co-abundance groups in the gut displayed more numerous and stronger correlations with circulating metabolites than with cytokines. By integrating these data, we identified that certain bacteria might affect inflammatory cytokines by modulating host metabolites, such as amino acids and fatty acids. A random forest model was constructed based on omics data, and seven serum metabolites significantly associated with cytokines and α-diversity of intestinal microbiota were able to accurately distinguish the cases from the controls with an area under the receiver operating characteristic curve of 0.99. Our results indicated aberrant gut-metabolome-immune network in SCZ and gut microbiota may influence immune responses by regulating host metabolic processes. These findings suggest a mechanism by which microbial-derived metabolites regulated inflammatory cytokines and insights into the diagnosis and treatment of mental disorders from the microbial-immune system in the future.
Collapse
Affiliation(s)
- Yajuan Fan
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Gao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingyan Ma
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zai Yang
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Zhao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan He
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Yan
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fengjie Gao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Qian
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhu
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiancang Ma
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Marfil-Sánchez A, Zhang L, Alonso-Pernas P, Mirhakkak M, Mueller M, Seelbinder B, Ni Y, Santhanam R, Busch A, Beemelmanns C, Ermolaeva M, Bauer M, Panagiotou G. An integrative understanding of the large metabolic shifts induced by antibiotics in critical illness. Gut Microbes 2022; 13:1993598. [PMID: 34793277 PMCID: PMC8604395 DOI: 10.1080/19490976.2021.1993598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in the ICU is less clear than their benefit on course of infection in the absence of organ dysfunction. We characterized here the compositional and metabolic changes of the gut microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in conjunction with 2,180 gut microbiome samples representing 16 different diseases. We revealed an "infection-vulnerable" gut microbiome environment present only in critically ill treated with antibiotics (ICU+). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and Lactobacillus crispatus, species that expanded in ICU+ patients, revealed a significant negative impact of these microbes on host viability and developmental homeostasis. These results suggest that antibiotic administration can dramatically impact essential functional activities in the gut related to immune responses more than critical illness itself, which might explain in part untoward effects of antibiotics in the critically ill.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | | | - Mohammad Mirhakkak
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Melinda Mueller
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Rakesh Santhanam
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Maria Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany,Maria Ermolaeva Stress Tolerance and Homeostasis, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, Jena 07745, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany,Michael Bauer Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China,Lead Contact,CONTACT Gianni Panagiotou Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11A, Jena07745, Germany
| |
Collapse
|
29
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Paschaliori C, Galiatsatos N, Tsioufis K, Tousoulis D. Inflammation in Coronary Microvascular Dysfunction. Int J Mol Sci 2021; 22:ijms222413471. [PMID: 34948272 PMCID: PMC8703507 DOI: 10.3390/ijms222413471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic low-grade inflammation is involved in coronary atherosclerosis, presenting multiple clinical manifestations ranging from asymptomatic to stable angina, acute coronary syndrome, heart failure and sudden cardiac death. Coronary microvasculature consists of vessels with a diameter less than 500 μm, whose potential structural and functional abnormalities can lead to inappropriate dilatation and an inability to meet the required myocardium oxygen demands. This review focuses on the pathogenesis of coronary microvascular dysfunction and the capability of non-invasive screening methods to detect the phenomenon. Anti-inflammatory agents, such as statins and immunomodulators, including anakinra, tocilizumab, and tumor necrosis factor-alpha inhibitors, have been assessed recently and may constitute additional or alternative treatment approaches to reduce cardiovascular events in atherosclerotic heart disease characterized by coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Marios Sagris
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Correspondence: ; Tel.:+30-213-2088099; Fax: +30-213-2088676
| | - Panagiotis Theofilis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece
| | - Christina Paschaliori
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Nikolaos Galiatsatos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Kostas Tsioufis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| |
Collapse
|
30
|
Qiao J, Zhang M, Wang T, Huang S, Zeng P. Evaluating Causal Relationship Between Metabolites and Six Cardiovascular Diseases Based on GWAS Summary Statistics. Front Genet 2021; 12:746677. [PMID: 34721534 PMCID: PMC8554206 DOI: 10.3389/fgene.2021.746677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality worldwide. The pathological mechanism and underlying biological processes of these diseases with metabolites remain unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal effect of metabolites on these diseases by making full use of the latest GWAS summary statistics for 486 metabolites and six major CVDs. Extensive sensitivity analyses were implemented to validate our MR results. We also conducted linkage disequilibrium score regression (LDSC) and colocalization analysis to investigate whether MR findings were driven by genetic similarity or hybridization between LD and disease-associated gene loci. We identified a total of 310 suggestive associations across all metabolites and CVDs, and finally obtained four significant associations, including bradykinin, des-arg(9) (odds ratio [OR] = 1.160, 95% confidence intervals [CIs]: 1.080-1.246, false discovery rate [FDR] = 0.022) on ischemic stroke, N-acetylglycine (OR = 0.946, 95%CIs: 0.920-0.973, FDR = 0.023), X-09026 (OR = 0.845, 95%CIs: 0.779-0.916, FDR = 0.021) and X-14473 (OR = 0.938, 95%CIs = 0.907-0.971, FDR = 0.040) on hypertension. Sensitivity analyses showed that these causal associations were robust, the LDSC and colocalization analyses demonstrated that the identified associations were unlikely confused by LD. Moreover, we identified 15 important metabolic pathways might be involved in the pathogenesis of CVDs. Overall, our work identifies several metabolites that have a causal relationship with CVDs, and improves our understanding of the pathogenesis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet. Foods 2021; 10:foods10102457. [PMID: 34681506 PMCID: PMC8535877 DOI: 10.3390/foods10102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of lipid metabolism diseases, mainly obesity, fatty liver, and hyperlipidemia, is increasing in the world. Tartary buckwheat is a kind of medicinal and edible crop, and clinical experiments have also confirmed that dietary Tartary buckwheat can effectively regulate lipid metabolism disorders. Tartary buckwheat protein (TBP), as the main active ingredient of Tartary buckwheat, has an effect of blood lipid reduction that has been widely reported. In this paper, we investigated the constituents of TBP and then evaluated the hypolipidemic effect of TBP in hyperlipidemia rats. Male Sprague–Dawley rats were fed a high-fat diet for six weeks to induce hyperlipidemia and then given TBP orally for five weeks. The effects of TBP on body weight, serum lipids, liver lipids, liver oxidative stress, pathological organization, gut microbiota, and plasma metabolites were analyzed. At the serum level, TBP supplement significantly decrease the level of LDL-C and increase the level of HDL-C. At the liver level, it can reduce the levels of TC, TG, and LDL-C. The potential mechanism of action is, on the one hand, to increase the abundance of the Lachnospiraceae and the Ruminococcaceae by modulating the gut microbiota, facilitating the productivity of short-chain fatty acids, and increasing fecal bile acid excretion and, on the other hand, may be related to the improvement of bile acid metabolism.
Collapse
|
32
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
33
|
Ma Y, Zhu L, Ma Z, Gao Z, Wei Y, Shen Y, Li L, Liu X, Ren M. Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet. Sci Rep 2021; 11:18486. [PMID: 34531508 PMCID: PMC8445913 DOI: 10.1038/s41598-021-98075-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The prevalence of coronary artery disease (CAD) in Tibetan Highlanders is lower than that in plain-living individuals, but the mechanism still unclear. Gut microbiota (GM) disorder is considered one of the potential factors involved in the pathogenesis of CAD, but the GM characteristics of Tibetan Highlanders suffering from CAD are unknown. We sequenced the V3-V4 region of the 16S ribosomal RNA of gut bacteria from fecal samples from Tibetan and Han CAD patients and healthy individuals inhabiting the Qinghai-Tibet Plateau, as well as from Han CAD patients and healthy individuals living at sea level, and we analyzed the GM characteristics of these subjects by bioinformatics analysis. The results showed that Tibetan Highlanders suffering from CAD had higher GM α-diversity, with differently distributed cluster compared with healthy Tibetan Highlanders and Han CAD patients living at high and low altitudes. Genera Catenibacterium, Clostridium_sensu_stricto, Holdemanella, and Ruminococcus 2 were enriched in Tibetan Highlanders suffering from CAD compared with healthy Tibetan Highlanders and Han CAD patients living at high- and low-altitudes. Prevotella was enriched in Tibetan Highlanders suffering from CAD compared with Han CAD patients living at high- and low-altitudes. Moreover, Catenibacterium was positively correlated with Prevotella. Additionally, Catenibacterium, Holdemanella, and Prevotella were positively correlated with fermented dairy product, carbohydrate and fiber intake by the subjects, while Clostridium_sensu_stricto was negatively correlated with protein intake by the subjects. In conclusion, our study indicated that Tibetan Highlanders suffering from CAD showed distinct GM, which was linked to their unique dietary characteristics and might associated with CAD.
Collapse
Affiliation(s)
- Yulan Ma
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Lulu Zhu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Zhijun Ma
- Department of Surgical Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Zhongshan Gao
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Yumiao Wei
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Youlu Shen
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Lin Li
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xingli Liu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
34
|
Li Y, Tian Y, Cai W, Wang Q, Chang Y, Sun Y, Dong P, Wang J. Novel ι-Carrageenan Tetrasaccharide Alleviates Liver Lipid Accumulation via the Bile Acid-FXR-SHP/PXR Pathway to Regulate Cholesterol Conversion and Fatty Acid Metabolism in Insulin-Resistant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9813-9821. [PMID: 34415766 DOI: 10.1021/acs.jafc.1c04035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ι-Carrageenan tetrasaccharide (ιCTs), a novel oligosaccharide, was hydrolyzed from ι-carrageenan with targeting marine tool-enzyme Cgi82A. Previously, we have found ιCTs exhibited a hypoglycemic effect, whether it could regulate lipid metabolism remains unknown. In this study, the insulin-resistant mice induced by high-fat-high-sucrose diet were orally administrated with ιCTs (30 mg/kg·bw) for 20 weeks. The results showed that the contents of triglyceride and cholesterol in both serum and liver were reduced by ιCTs, and their excretion in feces were promoted, suggesting lipid accumulation was inhibited. Intriguingly, the overall levels of bile acid in serum, liver, and feces were all raised by ιCTs. Given that bile acids are the essential signal factors for regulating lipid metabolism via the farnesoid-X-receptor (FXR), we conducted serum bile acid profile analysis and found that the levels of high-affinity agonists deoxycholic acid and lithocholic acid were decreased in the ιCTs group, showing that ιCTs failed to activate FXR. Western blot analysis showed that ιCTs downregulated hepatic FXR and small heterodimer partner (SHP) expression and increased downstream CYP7A1 expression via regulating the FXR-SHP signal to accelerate liver cholesterol conversion. Meanwhile, ιCTs decreased the expression of PXR and SREBP1c and elevated the expression of PPARα and CPT1α via regulating the FXR-PXR-SREBP1c/PPARα signal to inhibit fatty acid synthesis and promote fatty acid β-oxidation. To the best of our knowledge, this study for the first time reported that ιCTs alleviated liver lipid accumulation via the bile acid-FXR-SHP/PXR signal to regulate cholesterol conversion and fatty acid metabolism, which highlighted a new idea for ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qinghui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuhao Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
35
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
36
|
Tian R, Liu H, Feng S, Wang H, Wang Y, Wang Y, Liang L, Xu H, Xing H, Zhang S. Gut microbiota dysbiosis in stable coronary artery disease combined with type 2 diabetes mellitus influences cardiovascular prognosis. Nutr Metab Cardiovasc Dis 2021; 31:1454-1466. [PMID: 33810955 DOI: 10.1016/j.numecd.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Host-microbiota interactions involving metabolic pathways have been linked to the pathogenesis of atherosclerotic disease and type 2 diabetes. As stable coronary artery disease (SCAD) patients combined with type 2 diabetes have significantly increased risk for cardiac event, we focused on elucidating the role of microbiota affecting cardiometabolic disease development. METHODS AND RESULTS We used multi-omics analyses (metagenomics and metabolomics) of fecal and serum samples from a prospective cohort including stable coronary artery disease combined with diabetes mellitus (SCAD + T2DM, n = 38), SCAD (n = 71), and healthy control (HC, n = 55). We linked microbiome features to disease severity in a three-pronged association analysis and identified prognostic bacterial biomarkers. We identified that bacterial and metabolic signatures varied significantly between SCAD and SCAD + T2DM groups. SCAD + T2DM individuals were characterized by increased levels of aromatic amino acids and carbohydrates, which correlate with a gut microbiome with enriched biosynthetic potential. Our study also addressed how metformin may confound gut dysbiosis and increase the potential for nitrogen metabolism. In addition, we found that specific bacterial taxa Ruminococcus torques [HR: 2.363 (08-4.56), P = 0.03] was predictive of cardiac survival outcomes. CONCLUSION Overall, our study identified relationships between features of the gut microbiota (GM) and circulating metabolites, providing a new direction for future studies aiming to understand the host-GM interplay in atherosclerotic cardiovascular pathogenesis.
Collapse
Affiliation(s)
- Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Honghong Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Hui Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Yifei Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China; Department of Medicine, Tsinghua University, Haidian district, Beijing, China.
| | - Yiyang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China; Department of Medicine, Tsinghua University, Haidian district, Beijing, China.
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Haopeng Xu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Haiping Xing
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Li R, Andreu-Sánchez S, Kuipers F, Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 2021; 35:101493. [PMID: 33707081 DOI: 10.1016/j.beem.2021.101493] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dysbiosis has been implemented in the etiologies of obesity-related chronic diseases such as type 2 diabetes, NAFLD and cardiovascular diseases. Bile acids, a class of amphipathic steroids produced in the liver and extensively modified by the microbiome, are increasingly recognized as actors in onset and progression of these diseases. Indeed, human obesity is associated with altered bile acid metabolism. Bile acids facilitate intestinal fat absorption but also exert hormone-like functions through activation of nuclear and membrane-bound receptors and thereby modulate glucose, lipid and energy metabolism, intestinal integrity and immunity. Bile acid-signaling pathways have thus been identified as potential pharmacological targets for obesity-related diseases. Interfering with microbiome composition may also be considered, as liver- and microbiome-derived bile acid species have different signaling functions. This review summarizes recent developments in this rapidly expanding field of research and addresses potential clinical prospects of interference with bile acid signaling pathways in human diseases.
Collapse
Affiliation(s)
- Rumei Li
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sergio Andreu-Sánchez
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Jiang L, Fei H, Tong J, Zhou J, Zhu J, Jin X, Shi Z, Zhou Y, Ma X, Yu H, Yang J, Zhang S. Hormone Replacement Therapy Reverses Gut Microbiome and Serum Metabolome Alterations in Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2021; 12:794496. [PMID: 35002971 PMCID: PMC8733385 DOI: 10.3389/fendo.2021.794496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We explored the gut microbiome and serum metabolome alterations in patients with premature ovarian insufficiency (POI) and the effects of hormone replacement therapy (HRT) with the aim to unravel the pathological mechanism underlying POI. METHODS Fecal and serum samples obtained from healthy females (HC, n = 10) and patients with POI treated with (n = 10) or without (n = 10) HRT were analyzed using 16S rRNA gene sequencing and untargeted metabolomics analysis, respectively. Peripheral blood samples were collected to detect serum hormone and cytokine levels. Spearman's rank correlation was used to evaluate correlations between sex hormones and cytokines and between the gut microbiota and serum metabolites. To further confirm the correlation between Eggerthella and ovarian fibrosis, the mice were inoculated with Eggerthella lenta (E. lenta) through oral gavage. RESULTS The abundance of genus Eggerthella significantly increased in the fecal samples of patients with POI compared to that observed in the samples of HCs. This increase was reversed in patients with POI treated with HRT. Patients with POI showed significantly altered serum metabolic signatures and increased serum TGF-β1 levels; this increase was reversed by HRT. The abundance of Eggerthella was positively correlated with altered metabolic signatures, which were, in turn, positively correlated with serum TGF-β1 levels in all subjects. Estrogen ameliorated ovarian fibrosis induced by E. lenta in mice. CONCLUSIONS The interactions between the gut microbiota, serum metabolites, and serum TGF-β1 in patients with POI may play a critical role in the development of POI. HRT not only closely mimicked normal ovarian hormone production in patients with POI but also attenuated gut microbiota dysbiosis and imbalance in the levels of serum metabolites and TGF-β1, which are reportedly associated with fibrosis. The findings of this study may pave the way for the development of preventive and curative therapies for patients with POI.
Collapse
Affiliation(s)
- Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jinfei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jiena Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Yaojiang Township Central Hospital, Zhuji City, China
| | - Jiajuan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Yan Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Hailan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| |
Collapse
|