1
|
Franson D, Ahad J, Liu Y, Fyrdahl A, Truesdell W, Hamilton J, Seiberlich N. Self-calibrated through-time spiral GRAPPA for real-time, free-breathing evaluation of left ventricular function. Magn Reson Med 2023; 89:536-549. [PMID: 36198001 PMCID: PMC10092570 DOI: 10.1002/mrm.29462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Through-time spiral GRAPPA is a real-time imaging technique that enables ungated, free-breathing evaluation of the left ventricle. However, it requires a separate fully-sampled calibration scan to calculate GRAPPA weights. A self-calibrated through-time spiral GRAPPA method is proposed that uses a specially designed spiral trajectory with interleaved arm ordering such that consecutive undersampled frames can be merged to form calibration data, eliminating the separate fully-sampled acquisition. THEORY AND METHODS The proposed method considers the time needed to acquire data at all points in a GRAPPA calibration kernel when using interleaved arm ordering. Using this metric, simulations were performed to design a spiral trajectory for self-calibrated GRAPPA. Data were acquired in healthy volunteers using the proposed method and a comparison electrocardiogram-gated and breath-held cine scan. Left ventricular functional values and image quality are compared. RESULTS A 12-arm spiral trajectory was designed with a temporal resolution of 32.72 ms/cardiac phase with an acceleration factor of 3. Functional values calculated using the proposed method and the gold-standard method were not statistically significantly different (paired t-test, p < 0.05). Image quality ratings were lower for the proposed method, with statistically significantly different ratings (Wilcoxon signed rank test, p < 0.05) for two of five image quality aspects rated (level of artifact, blood-myocardium contrast). CONCLUSIONS A self-calibrated through-time spiral GRAPPA reconstruction can enable ungated, free-breathing evaluation of the left ventricle in 71 s. Functional values are equivalent to a gold-standard cine technique, although some aspects of image quality may be inferior due to the real-time nature of the data collection.
Collapse
Affiliation(s)
- Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - James Ahad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuchi Liu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Fyrdahl
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William Truesdell
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jesse Hamilton
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Braunstorfer L, Romanowicz J, Powell AJ, Pattee J, Browne LP, van der Geest RJ, Moghari MH. Non-contrast free-breathing whole-heart 3D cine cardiovascular magnetic resonance with a novel 3D radial leaf trajectory. Magn Reson Imaging 2022; 94:64-72. [PMID: 36122675 DOI: 10.1016/j.mri.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop and validate a non-contrast free-breathing whole-heart 3D cine steady-state free precession (SSFP) sequence with a novel 3D radial leaf trajectory. METHODS We used a respiratory navigator to trigger acquisition of 3D cine data at end-expiration to minimize respiratory motion in our 3D cine SSFP sequence. We developed a novel 3D radial leaf trajectory to reduce gradient jumps and associated eddy-current artifacts. We then reconstructed the 3D cine images with a resolution of 2.0mm3 using an iterative nonlinear optimization algorithm. Prospective validation was performed by comparing ventricular volumetric measurements from a conventional breath-hold 2D cine ventricular short-axis stack against the non-contrast free-breathing whole-heart 3D cine dataset in each patient (n = 13). RESULTS All 3D cine SSFP acquisitions were successful and mean scan time was 07:09 ± 01:31 min. End-diastolic ventricular volumes for left ventricle (LV) and right ventricle (RV) measured from the 3D datasets were smaller than those from 2D (LV: 159.99 ± 42.99 vs. 173.16 ± 47.42; RV: 180.35 ± 46.08 vs. 193.13 ± 49.38; p-value≤0.044; bias<8%), whereas ventricular end-systolic volumes were more comparable (LV: 79.12 ± 26.78 vs. 78.46 ± 25.35; RV: 97.18 ± 32.35 vs. 102.42 ± 32.53; p-value≥0.190, bias<6%). The 3D cine data had a lower subjective image quality score. CONCLUSION Our non-contrast free-breathing whole-heart 3D cine sequence with novel leaf trajectory was robust and yielded smaller ventricular end-diastolic volumes compared to 2D cine imaging. It has the potential to make examinations easier and more comfortable for patients.
Collapse
Affiliation(s)
- Lukas Braunstorfer
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Informatics, Technical University of Munich, Munich, BY, Germany.
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, School of Medicine, The University of Colorado, CO, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jack Pattee
- Department of Biostatistics and Informatics, Colorado School of Public Health, CO, USA
| | - Lorna P Browne
- Department of Radiology, Children's Hospital Colorado, and School of Medicine, The University of Colorado, CO, USA
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mehdi H Moghari
- Department of Radiology, Children's Hospital Colorado, and School of Medicine, The University of Colorado, CO, USA
| |
Collapse
|
3
|
Nita N, Kersten J, Pott A, Weber F, Tesfay T, Benea MT, Metze P, Li H, Rottbauer W, Rasche V, Buckert D. Real-Time Spiral CMR Is Superior to Conventional Segmented Cine-Imaging for Left-Ventricular Functional Assessment in Patients with Arrhythmia. J Clin Med 2022; 11:jcm11082088. [PMID: 35456181 PMCID: PMC9025940 DOI: 10.3390/jcm11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Segmented Cartesian Cardiovascular magnetic resonance (CMR) often fails to deliver robust assessment of cardiac function in patients with arrhythmia. We aimed to assess the performance of a tiny golden-angle spiral real-time CMR sequence at 1.5 T for left-ventricular (LV) volumetry in patients with irregular heart rhythm; (2) Methods: We validated the real-time sequence against the standard breath-hold segmented Cartesian sequence in 32 patients, of whom 11 presented with arrhythmia. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were assessed. In arrhythmic patients, real-time and standard Cartesian acquisitions were compared against a reference echocardiographic modality; (3) Results: In patients with sinus rhythm, good agreements and correlations were found between the segmented and real-time methods, with only minor, non-significant underestimation of EDV for the real-time sequence (135.95 ± 30 mL vs. 137.15 ± 31, p = 0.164). In patients with arrhythmia, spiral real-time CMR yielded superior image quality to the conventional segmented imaging, allowing for excellent agreement with the reference echocardiographic volumetry. In contrast, in this cohort, standard Cartesian CMR showed significant underestimation of LV-ESV (106.72 ± 63.51 mL vs. 125.47 ± 72.41 mL, p = 0.026) and overestimation of LVEF (42.96 ± 10.81% vs. 39.02 ± 11.72%, p = 0.039); (4) Conclusions: Real-time spiral CMR improves image quality in arrhythmic patients, allowing reliable assessment of LV volumetry.
Collapse
Affiliation(s)
- Nicoleta Nita
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
- Correspondence:
| | - Johannes Kersten
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Alexander Pott
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Fabian Weber
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Temsgen Tesfay
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | | | - Patrick Metze
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Hao Li
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Volker Rasche
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Dominik Buckert
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| |
Collapse
|
4
|
Zou Q, Xu HY, Fu C, Zhou XY, Xu R, Yang MX, Yang ZG, Guo YK. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients. Int J Cardiol 2021; 338:258-264. [PMID: 34181995 DOI: 10.1016/j.ijcard.2021.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to explore the feasibility and accuracy of single-shot compressed-sensing (CS) cardiac magnetic resonance cine technology for the assessment of biventricular function and morphology in free-breathing (FB) pediatrics, especially those with arrhythmia. METHODS Seventy consecutive pediatric participants (6.27 ± 3.8 years, range:0.5-14 years) were enrolled between August 2019 and July 2020. Single-shot CS and conventional balanced steady-state free-precession (bSSFP) cine were obtained. The total scanning time, image quality and biventricular function parameters were compared for both sequences. RESULTS Single-shot CS cine had shorter acquisition time compared with the conventional bSSFP cine (all P < 0.001). The single-shot CS cine also had fewer artifacts than conventional bSSFP cine (breath-hold (BH): 4.6 ± 0.6 vs. 4.3 ± 0.6; FB without ongoing arrhythmia: 4.5 ± 0.6 vs. 3.6 ± 0.9; FB with ongoing arrhythmia: 4.7 ± 0.5 vs. 2.6 ± 1.1; all P < 0.05). No statistical difference of left ventricular parameters and right ventricular end-systolic volume/ejection fraction were found between the single-shot CS and conventional bSSFP cine in both BH and FB without ongoing arrhythmia group. There was an excellent correlation (R2 = 0.60-0.98, all P < 0.001) and good intra-(range: R2 = 0.57-0.99, P < 0.001)/inter-observer agreements (range: R2 = 0.76-1, P < 0.001) for single-shot CS cine images in terms of biventricular function parameters. CONCLUSIONS The single-shot CS cine can significantly reduce the image acquisition time, offering reliable quantification of biventricular function in free breathing condition for arrhythmic patients.
Collapse
Affiliation(s)
- Qing Zou
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China; Department of Radiology, Deyang People's Hospital, 173# Section 3 Tai Shan Road, Deyang, Sichuan 618400, China
| | - Hua-Yan Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Meng-Xi Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ying-Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Ghodrati V, Bydder M, Ali F, Gao C, Prosper A, Nguyen KL, Hu P. Retrospective respiratory motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised learning. NMR IN BIOMEDICINE 2021; 34:e4433. [PMID: 33258197 PMCID: PMC10193526 DOI: 10.1002/nbm.4433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
The aim of this study was to develop a deep neural network for respiratory motion compensation in free-breathing cine MRI and evaluate its performance. An adversarial autoencoder network was trained using unpaired training data from healthy volunteers and patients who underwent clinically indicated cardiac MRI examinations. A U-net structure was used for the encoder and decoder parts of the network and the code space was regularized by an adversarial objective. The autoencoder learns the identity map for the free-breathing motion-corrupted images and preserves the structural content of the images, while the discriminator, which interacts with the output of the encoder, forces the encoder to remove motion artifacts. The network was first evaluated based on data that were artificially corrupted with simulated rigid motion with regard to motion-correction accuracy and the presence of any artificially created structures. Subsequently, to demonstrate the feasibility of the proposed approach in vivo, our network was trained on respiratory motion-corrupted images in an unpaired manner and was tested on volunteer and patient data. In the simulation study, mean structural similarity index scores for the synthesized motion-corrupted images and motion-corrected images were 0.76 and 0.93 (out of 1), respectively. The proposed method increased the Tenengrad focus measure of the motion-corrupted images by 12% in the simulation study and by 7% in the in vivo study. The average overall subjective image quality scores for the motion-corrupted images, motion-corrected images and breath-held images were 2.5, 3.5 and 4.1 (out of 5.0), respectively. Nonparametric-paired comparisons showed that there was significant difference between the image quality scores of the motion-corrupted and breath-held images (P < .05); however, after correction there was no significant difference between the image quality scores of the motion-corrected and breath-held images. This feasibility study demonstrates the potential of an adversarial autoencoder network for correcting respiratory motion-related image artifacts without requiring paired data.
Collapse
Affiliation(s)
- Vahid Ghodrati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Mark Bydder
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Fadil Ali
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Chang Gao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Ashley Prosper
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
- Correspondence to: Peng Hu, PhD, Department of Radiological Sciences, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095,
| |
Collapse
|
6
|
Zhao Z, Lim Y, Byrd D, Narayanan S, Nayak KS. Improved 3D real-time MRI of speech production. Magn Reson Med 2021; 85:3182-3195. [PMID: 33452722 DOI: 10.1002/mrm.28651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE To provide 3D real-time MRI of speech production with improved spatio-temporal sharpness using randomized, variable-density, stack-of-spiral sampling combined with a 3D spatio-temporally constrained reconstruction. METHODS We evaluated five candidate (k, t) sampling strategies using a previously proposed gradient-echo stack-of-spiral sequence and a 3D constrained reconstruction with spatial and temporal penalties. Regularization parameters were chosen by expert readers based on qualitative assessment. We experimentally determined the effect of spiral angle increment and kz temporal order. The strategy yielding highest image quality was chosen as the proposed method. We evaluated the proposed and original 3D real-time MRI methods in 2 healthy subjects performing speech production tasks that invoke rapid movements of articulators seen in multiple planes, using interleaved 2D real-time MRI as the reference. We quantitatively evaluated tongue boundary sharpness in three locations at two speech rates. RESULTS The proposed data-sampling scheme uses a golden-angle spiral increment in the kx -ky plane and variable-density, randomized encoding along kz . It provided a statistically significant improvement in tongue boundary sharpness score (P < .001) in the blade, body, and root of the tongue during normal and 1.5-times speeded speech. Qualitative improvements were substantial during natural speech tasks of alternating high, low tongue postures during vowels. The proposed method was also able to capture complex tongue shapes during fast alveolar consonant segments. Furthermore, the proposed scheme allows flexible retrospective selection of temporal resolution. CONCLUSION We have demonstrated improved 3D real-time MRI of speech production using randomized, variable-density, stack-of-spiral sampling with a 3D spatio-temporally constrained reconstruction.
Collapse
Affiliation(s)
- Ziwei Zhao
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yongwan Lim
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Dani Byrd
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shrikanth Narayanan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Küstner T, Bustin A, Jaubert O, Hajhosseiny R, Masci PG, Neji R, Botnar R, Prieto C. Fully self-gated free-running 3D Cartesian cardiac CINE with isotropic whole-heart coverage in less than 2 min. NMR IN BIOMEDICINE 2021; 34:e4409. [PMID: 32974984 DOI: 10.1002/nbm.4409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To develop a novel fast water-selective free-breathing 3D Cartesian cardiac CINE scan with full self-navigation and isotropic whole-heart (WH) coverage. METHODS A free-breathing 3D Cartesian cardiac CINE scan with a water-selective balanced steady-state free precession and a continuous (non-ECG-gated) variable-density Cartesian sampling with spiral profile ordering, out-inward sampling and acquisition-adaptive alternating tiny golden and golden angle increment between spiral arms is proposed. Data is retrospectively binned based on respiratory and cardiac self-navigation signals. A translational respiratory-motion-corrected and cardiac-motion-resolved image is reconstructed with a multi-bin patch-based low-rank reconstruction (MB-PROST) within about 15 min. A respiratory-motion-resolved approach is also investigated. The proposed 3D Cartesian cardiac CINE is acquired in sagittal orientation in 1 min 50 s for 1.9 mm3 isotropic WH coverage. Left ventricular (LV) function parameters and image quality derived from a blinded reading of the proposed 3D CINE framework are compared against conventional multi-slice 2D CINE imaging in 10 healthy subjects and 10 patients with suspected cardiovascular disease. RESULTS The proposed framework provides free-breathing 3D cardiac CINE images with 1.9 mm3 spatial and about 45 ms temporal resolution in a short acquisition time (<2 min). LV function parameters derived from 3D CINE were in good agreement with 2D CINE (10 healthy subjects and 10 patients). Bias and confidence intervals were obtained for end-systolic volume, end-diastolic volume and ejection fraction of 0.1 ± 3.5 mL, -0.6 ± 8.2 mL and -0.1 ± 2.2%, respectively. CONCLUSION The proposed framework enables isotropic 3D Cartesian cardiac CINE under free breathing for fast assessment of cardiac anatomy and function.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, Masci PG, Neji R, Rueckert D, Botnar RM, Prieto C. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 2020; 10:13710. [PMID: 32792507 PMCID: PMC7426830 DOI: 10.1038/s41598-020-70551-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Cardiac CINE magnetic resonance imaging is the gold-standard for the assessment of cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular (LV) coverage in a single breath-hold. However, 3D imaging remains limited to anisotropic resolution and long reconstruction times. Recently deep learning has shown promising results for computationally efficient reconstructions of highly accelerated 2D CINE imaging. In this work, we propose a novel 4D (3D + time) deep learning-based reconstruction network, termed 4D CINENet, for prospectively undersampled 3D Cartesian CINE imaging. CINENet is based on (3 + 1)D complex-valued spatio-temporal convolutions and multi-coil data processing. We trained and evaluated the proposed CINENet on in-house acquired 3D CINE data of 20 healthy subjects and 15 patients with suspected cardiovascular disease. The proposed CINENet network outperforms iterative reconstructions in visual image quality and contrast (+ 67% improvement). We found good agreement in LV function (bias ± 95% confidence) in terms of end-systolic volume (0 ± 3.3 ml), end-diastolic volume (− 0.4 ± 2.0 ml) and ejection fraction (0.1 ± 3.2%) compared to clinical gold-standard 2D CINE, enabling single breath-hold isotropic 3D CINE in less than 10 s scan and ~ 5 s reconstruction time.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.
| | - Niccolo Fuin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | | | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Haikun Qi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, Lambeth Wing, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Steeden JA, Quail M, Gotschy A, Mortensen KH, Hauptmann A, Arridge S, Jones R, Muthurangu V. Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 2020; 22:56. [PMID: 32753047 PMCID: PMC7405461 DOI: 10.1186/s12968-020-00651-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Three-dimensional, whole heart, balanced steady state free precession (WH-bSSFP) sequences provide delineation of intra-cardiac and vascular anatomy. However, they have long acquisition times. Here, we propose significant speed-ups using a deep-learning single volume super-resolution reconstruction, to recover high-resolution features from rapidly acquired low-resolution WH-bSSFP images. METHODS A 3D residual U-Net was trained using synthetic data, created from a library of 500 high-resolution WH-bSSFP images by simulating 50% slice resolution and 50% phase resolution. The trained network was validated with 25 synthetic test data sets. Additionally, prospective low-resolution data and high-resolution data were acquired in 40 patients. In the prospective data, vessel diameters, quantitative and qualitative image quality, and diagnostic scoring was compared between the low-resolution, super-resolution and reference high-resolution WH-bSSFP data. RESULTS The synthetic test data showed a significant increase in image quality of the low-resolution images after super-resolution reconstruction. Prospectively acquired low-resolution data was acquired ~× 3 faster than the prospective high-resolution data (173 s vs 488 s). Super-resolution reconstruction of the low-resolution data took < 1 s per volume. Qualitative image scores showed super-resolved images had better edge sharpness, fewer residual artefacts and less image distortion than low-resolution images, with similar scores to high-resolution data. Quantitative image scores showed super-resolved images had significantly better edge sharpness than low-resolution or high-resolution images, with significantly better signal-to-noise ratio than high-resolution data. Vessel diameters measurements showed over-estimation in the low-resolution measurements, compared to the high-resolution data. No significant differences and no bias was found in the super-resolution measurements in any of the great vessels. However, a small but significant for the underestimation was found in the proximal left coronary artery diameter measurement from super-resolution data. Diagnostic scoring showed that although super-resolution did not improve accuracy of diagnosis, it did improve diagnostic confidence compared to low-resolution imaging. CONCLUSION This paper demonstrates the potential of using a residual U-Net for super-resolution reconstruction of rapidly acquired low-resolution whole heart bSSFP data within a clinical setting. We were able to train the network using synthetic training data from retrospective high-resolution whole heart data. The resulting network can be applied very quickly, making these techniques particularly appealing within busy clinical workflow. Thus, we believe that this technique may help speed up whole heart CMR in clinical practice.
Collapse
Affiliation(s)
- Jennifer A Steeden
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK.
| | - Michael Quail
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
- Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Alexander Gotschy
- Great Ormond Street Hospital, London, WC1N 3JH, UK
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Andreas Hauptmann
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Simon Arridge
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Rodney Jones
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
| | - Vivek Muthurangu
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
| |
Collapse
|
10
|
Küstner T, Bustin A, Jaubert O, Hajhosseiny R, Masci PG, Neji R, Botnar R, Prieto C. Isotropic 3D Cartesian single breath-hold CINE MRI with multi-bin patch-based low-rank reconstruction. Magn Reson Med 2020; 84:2018-2033. [PMID: 32250492 DOI: 10.1002/mrm.28267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a novel acquisition and reconstruction framework for isotropic 3D Cartesian cardiac CINE within a single breath-hold for left ventricle (LV) and whole-heart coverage. METHODS A variable-density Cartesian acquisition with spiral profile ordering, out-inward sampling, and acquisition-adaptive alternating tiny golden/golden angle increment between spiral arms is proposed to provide incoherent and nonredundant sampling within and among cardiac phases. A novel multi-bin patch-based low-rank reconstruction, named MB-PROST, is proposed to exploit redundant information on a local (within a patch), nonlocal (similar patches within a spatial neighborhood), and temporal (among all cardiac phases) scale with an implicit motion alignment among patches. The proposed multi-bin patch-based low-rank reconstruction reconstruction is compared against compressed sensing reconstruction, whereas LV function parameters derived from the proposed 3D CINE framework are compared against those estimated from conventional multislice 2D CINE imaging in 10 healthy subjects and 15 patients. RESULTS The proposed framework provides 3D cardiac CINE images with high spatial (1.9 mm3 ) and temporal resolution (˜50 ms) in a single breath-hold of ˜20 s for LV and ˜26 s for whole-heart coverage in healthy subjects. Shorter breath-hold durations of ˜13 to 15 s are feasible for LV coverage with slightly anisotropic resolution (1.9 × 1.9 × 2.5 mm) in patients. LV function parameters derived from 3D CINE were in good agreement with 2D CINE, with a bias of -0.1 mL/0.1 mL, -0.9 mL/-1.0 mL, -0.1%/-0.8%; and confidence intervals of ±1.7 mL/±3.7 mL, ±1.2 mL/±2.6 mL, and ±1.2%/±3.6% (10 healthy subjects/15 patients) for end-systolic volume, end-diastolic volume, and ejection fraction, respectively. CONCLUSION The proposed framework enables 3D isotropic cardiac CINE in a single breath-hold scan of ˜20 s/˜26 s for LV/whole-heart coverage, showing good agreement with clinical 2D CINE scans in terms of LV functional assessment.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Chieh SW, Kaveh M, Akçakaya M, Moeller S. Self-calibrated interpolation of non-Cartesian data with GRAPPA in parallel imaging. Magn Reson Med 2019; 83:1837-1850. [PMID: 31722128 DOI: 10.1002/mrm.28033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a non-Cartesian k-space reconstruction method using self-calibrated region-specific interpolation kernels for highly accelerated acquisitions. METHODS In conventional non-Cartesian GRAPPA with through-time GRAPPA (TT-GRAPPA), the use of region-specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT-GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self-calibrated Interpolation of Non-Cartesian data with GRAPPA (SING) to self-calibrate region-specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region-specific interpolation kernel geometry, and uses a novel local k-space regularization through an extension of TT-GRAPPA. This calibration approach is used to reconstruct non-Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate-gradient SENSE and TT-GRAPPA in numerical phantoms and in vivo cine data sets. RESULTS In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT-GRAPPA, and provides improved reconstruction quality over conjugate-gradient SENSE. Furthermore, temporal fidelity in SING and TT-GRAPPA is similar for the same acceleration rates. G-factor evaluation over the heart shows that SING and TT-GRAPPA provide similar noise amplification at moderate and high rates. CONCLUSION The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT-GRAPPA.
Collapse
Affiliation(s)
- Seng-Wei Chieh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mostafa Kaveh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Zhou R, Yang Y, Mathew RC, Mugler JP, Weller DS, Kramer CM, Ahmed AH, Jacob M, Salerno M. Free-breathing cine imaging with motion-corrected reconstruction at 3T using SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS). Magn Reson Med 2019; 82:706-720. [PMID: 31006916 DOI: 10.1002/mrm.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a continuous-acquisition cardiac self-gated spiral pulse sequence and a respiratory motion-compensated reconstruction strategy for free-breathing cine imaging. METHODS Cine data were acquired continuously on a 3T scanner for 8 seconds per slice without ECG gating or breath-holding, using a golden-angle gradient echo spiral pulse sequence. Cardiac motion information was extracted by applying principal component analysis on the gridded 8 × 8 k-space center data. Respiratory motion was corrected by rigid registration on each heartbeat. Images were reconstructed using a low-rank and sparse (L+S) technique. This strategy was evaluated in 37 healthy subjects and 8 subjects undergoing clinical cardiac MR studies. Image quality was scored (1-5 scale) in a blinded fashion by 2 experienced cardiologists. In 13 subjects with whole-heart coverage, left ventricular ejection fraction (LVEF) from SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS) was compared to that from a standard ECG-gated breath-hold balanced steady-state free precession (bSSFP) cine sequence. RESULTS The self-gated signal was successfully extracted in all cases and demonstrated close agreement with the acquired ECG signal (mean bias, -0.22 ms). The mean image score across all subjects was 4.0 for reconstruction using the L+S model. There was good agreement between the LVEF derived from SPARCS and the gold-standard bSSFP technique. CONCLUSION SPARCS successfully images cardiac function without the need for ECG gating or breath-holding. With an 8-second data acquisition per slice, whole-heart cine images with clinically acceptable spatial and temporal resolution and image quality can be acquired in <90 seconds of free-breathing acquisition.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Yang Yang
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roshin C Mathew
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - John P Mugler
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel S Weller
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Abdul Haseeb Ahmed
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Michael Salerno
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
13
|
Steeden JA, Kowalik GT, Tann O, Hughes M, Mortensen KH, Muthurangu V. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson 2018; 20:79. [PMID: 30518390 PMCID: PMC6282387 DOI: 10.1186/s12968-018-0500-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/23/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Real-time cardiovascular magnetic resonance (CMR) assessment of ventricular volumes and function enables data acquisition during free-breathing. The requirement for high spatiotemporal resolution in children necessitates the use of highly accelerated imaging techniques. METHODS A novel real-time balanced steady state free precession (bSSFP) spiral sequence reconstructed using Compressed Sensing (CS) was prospectively validated against the breath-hold clinical standard for assessment of ventricular volumes in 60 children with congenital heart disease. Qualitative image scoring, quantitative image quality, as well as evaluation of biventricular volumes was performed. Standard BH and real-time measures were compared using the paired t-test and agreement for volumetric measures were evaluated using Bland Altman analysis. RESULTS Acquisition time for the entire short axis stack (~ 13 slices) using the spiral real-time technique was ~ 20 s, compared to ~ 348 s for the standard breath hold technique. Qualitative scores reflected more residual aliasing artefact (p < 0.001) and lower edge definition (p < 0.001) in spiral real-time images than standard breath hold images, with lower quantitative edge sharpness and estimates of image contrast (p < 0.001). There was a small but statistically significant (p < 0.05) overestimation of left ventricular (LV) end-systolic volume (1.0 ± 3.5 mL), and underestimation of LV end-diastolic volume (- 1.7 ± 4.6 mL), LV stroke volume (- 2.6 ± 4.8 mL) and LV ejection fraction (- 1.5 ± 3.0%) using the real-time technique. We also observed a small underestimation of right ventricular stroke volume (- 1.8 ± 4.9 mL) and ejection fraction (- 1.4 ± 3.7%) using the real-time imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and real-time sequences. CONCLUSIONS Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction showed good agreement for quantification of biventricular metrics in children with heart disease, despite slightly lower image quality. This technique holds the potential for free breathing data acquisition, with significantly shorter scan times in children.
Collapse
Affiliation(s)
- Jennifer A. Steeden
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| | - Grzegorz T. Kowalik
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| | - Oliver Tann
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Marina Hughes
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Kristian H. Mortensen
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Vivek Muthurangu
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| |
Collapse
|
14
|
Chen Y, Lo WC, Hamilton JI, Barkauskas K, Saybasili H, Wright KL, Batesole J, Griswold MA, Gulani V, Seiberlich N. Single breath-hold 3D cardiac T 1 mapping using through-time spiral GRAPPA. NMR IN BIOMEDICINE 2018; 31:e3923. [PMID: 29637637 PMCID: PMC5980781 DOI: 10.1002/nbm.3923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The quantification of cardiac T1 relaxation time holds great potential for the detection of various cardiac diseases. However, as a result of both cardiac and respiratory motion, only one two-dimensional T1 map can be acquired in one breath-hold with most current techniques, which limits its application for whole heart evaluation in routine clinical practice. In this study, an electrocardiogram (ECG)-triggered three-dimensional Look-Locker method was developed for cardiac T1 measurement. Fast three-dimensional data acquisition was achieved with a spoiled gradient-echo sequence in combination with a stack-of-spirals trajectory and through-time non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA) acceleration. The effects of different magnetic resonance parameters on T1 quantification with the proposed technique were first examined by simulating data acquisition and T1 map reconstruction using Bloch equation simulations. Accuracy was evaluated in studies with both phantoms and healthy subjects. These results showed that there was close agreement between the proposed technique and the reference method for a large range of T1 values in phantom experiments. In vivo studies further demonstrated that rapid cardiac T1 mapping for 12 three-dimensional partitions (spatial resolution, 2 × 2 × 8 mm3 ) could be achieved in a single breath-hold of ~12 s. The mean T1 values of myocardial tissue and blood obtained from normal volunteers at 3 T were 1311 ± 66 and 1890 ± 159 ms, respectively. In conclusion, a three-dimensional T1 mapping technique was developed using a non-Cartesian parallel imaging method, which enables fast and accurate T1 mapping of cardiac tissues in a single short breath-hold.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei-Ching Lo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jesse I Hamilton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kestutis Barkauskas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Katherine L Wright
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Joshua Batesole
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Seiberlich
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Moghari MH, Barthur A, Amaral ME, Geva T, Powell AJ. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation. Magn Reson Med 2017; 80:181-189. [PMID: 29222852 DOI: 10.1002/mrm.27021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop and validate a new prospective respiratory motion compensation algorithm for free-breathing whole-heart 3D cine steady-state free precession (SSFP) imaging. METHODS In a 3D cine SSFP sequence, 4 excitations per cardiac cycle are re-purposed to prospectively track heart position. Specifically, their 1D image is reconstructed and routed into the scanner's standard diaphragmatic navigator processing system. If all 4 signals are in end-expiration, cine image data from the entire cardiac cycle is accepted for image reconstruction. Prospective validation was carried out in patients (N = 17) by comparing in each a conventional breath-hold 2D cine ventricular short-axis stack and a free-breathing whole-heart 3D cine data set. RESULTS All 3D cine SSFP acquisitions were successful and the mean scan time was 5.9 ± 2.7 min. Left and right ventricular end-diastolic, end-systolic, and stroke volumes by 3D cine SSFP were all larger than those from 2D cine SSFP. This bias was < 6% except for right ventricular end-systolic volume that was 12%. The 3D cine images had a lower ventricular blood-to-myocardium contrast ratio, contrast-to-noise ratio, mass, and subjective quality score. CONCLUSION The novel prospective respiratory motion compensation method for 3D cine SSFP imaging was robust and efficient and yielded slightly larger ventricular volumes and lower mass compared to breath-hold 2D cine imaging. Magn Reson Med 80:181-189, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashita Barthur
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maria E Amaral
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:19-31. [DOI: 10.1007/s10334-017-0624-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
17
|
Kawaji K, Patel MB, Cantrell CG, Tanaka A, Marino M, Tamura S, Wang H, Wang Y, Carroll TJ, Ota T, Patel AR. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Med Phys 2017; 44:3450-3463. [PMID: 28339110 DOI: 10.1002/mp.12234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). METHODS The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. RESULTS The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P < 0.05 vs Cartesian cine). CONCLUSIONS We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion.
Collapse
Affiliation(s)
- Keigo Kawaji
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Mita B Patel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Akiko Tanaka
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Marco Marino
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Satoshi Tamura
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu City, Japan
| | | | - Yi Wang
- Departments of Biomedical Engineering and Radiology, Cornell University, New York, NY, USA
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Takeyoshi Ota
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Amit R Patel
- Departments of Medicine and Radiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Lingala SG, Zhu Y, Lim Y, Toutios A, Ji Y, Lo WC, Seiberlich N, Narayanan S, Nayak KS. Feasibility of through-time spiral generalized autocalibrating partial parallel acquisition for low latency accelerated real-time MRI of speech. Magn Reson Med 2017; 78:2275-2282. [PMID: 28185301 DOI: 10.1002/mrm.26611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. METHODS Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. RESULTS Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. CONCLUSION Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yinghua Zhu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yongwan Lim
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Asterios Toutios
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yunhua Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Wei-Ching Lo
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shrikanth Narayanan
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Update on the Role of Cardiac Magnetic Resonance Imaging in Congenital Heart Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:2. [PMID: 28144782 DOI: 10.1007/s11936-017-0504-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT Cardiac magnetic resonance imaging (CMR) is an important imaging modality in the evaluation of congenital heart diseases (CHD). CMR has several strengths including good spatial and temporal resolutions, wide field-of-view, and multi-planar imaging capabilities. CMR provides significant advantages for imaging in CHD through its ability to measure function, flow and vessel sizes, create three-dimensional reconstructions, and perform tissue characterization, all in a single imaging study. Thus, CMR is the most comprehensive imaging modality available today for the evaluation of CHD. Newer MRI sequences and post-processing tools will allow further development of quantitative methods of analysis, and opens the door for risk stratification in CHD. CMR also can interface with computer modeling, 3D printing, and other methods of understanding the complex anatomic and physiologic relationships in CHD.
Collapse
|
20
|
Liu J, Feng L, Shen HW, Zhu C, Wang Y, Mukai K, Brooks GC, Ordovas K, Saloner D. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:337-346. [PMID: 28120280 DOI: 10.1007/s10334-017-0607-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. MATERIALS AND METHODS A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. RESULTS Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. CONCLUSION The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Hsin-Wei Shen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Kanae Mukai
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gabriel C Brooks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.,Radiology Service, VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
21
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|
22
|
Pennell DJ, Baksi AJ, Prasad SK, Raphael CE, Kilner PJ, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider J, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2014. J Cardiovasc Magn Reson 2015; 17:99. [PMID: 26589839 PMCID: PMC4654908 DOI: 10.1186/s12968-015-0203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/19/2023] Open
Abstract
There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6% decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - A J Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - C E Raphael
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - P J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - R H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - F Alpendurada
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S V Babu-Narayan
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - J Schneider
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - D N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| |
Collapse
|
23
|
Chen Y, Lee GR, Aandal G, Badve C, Wright KL, Griswold MA, Seiberlich N, Gulani V. Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA. Magn Reson Med 2015; 75:1457-65. [PMID: 25980949 DOI: 10.1002/mrm.25693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/20/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE To develop an ultrafast T1 mapping method for high-resolution, volumetric T1 measurements in the abdomen. METHODS The Look-Locker method was combined with a stack-of-spirals acquisition accelerated using three-dimensional (3D) through-time spiral GRAPPA reconstruction for fast data acquisition. A segmented k-space acquisition scheme was proposed and the time delay between segments for the recovery of longitudinal magnetization was optimized using Bloch equation simulations. The accuracy of this method was validated in a phantom experiment and in vivo T1 measurements were performed with 35 asymptomatic subjects on both 1.5 Tesla (T) and 3T MRI systems. RESULTS Phantom experiments yielded close agreement between the proposed method and gold standard measurements for a large range of T1 values (200 to 1600 ms). The in vivo results further demonstrate that high-resolution T1 maps (2 × 2 × 4 mm(3)) for 32 slices can be achieved in a single clinically feasible breath-hold of approximately 20 s. The T1 values for multiple organs and tissues in the abdomen are in agreement with the published literature. CONCLUSION A high-resolution 3D abdominal T1 mapping technique was developed, which allows fast and accurate T1 mapping of multiple abdominal organs and tissues in a single breath-hold.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory R Lee
- Pediatric Neuroimaging Research Consortium, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Chaitra Badve
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Katherine L Wright
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|