1
|
Deng YC, Liu JW, Ting HC, Kuo TC, Chiang CH, Lin EY, Harn HJ, Lin SZ, Chang CY, Chiou TW. n-Butylidenephthalide recovered calcium homeostasis to ameliorate neurodegeneration of motor neurons derived from amyotrophic lateral sclerosis iPSCs. PLoS One 2024; 19:e0311573. [PMID: 39509425 PMCID: PMC11542850 DOI: 10.1371/journal.pone.0311573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that causes muscle atrophy and primarily targets motor neurons (MNs). Approximately 20% of familial ALS cases are caused by gain-of-function mutations in superoxide dismutase 1 (SOD1), leading to MN degeneration and ion channel dysfunction. Previous studies have shown that n-Butylidenephthalide (BP) delays disease progression and prolongs survival in animal models of ALS. However, no studies have been conducted on models from human sources. Herein, we examined the protective efficacy of BP on MNs derived from induced pluripotent stem cells (iPSCs) of an ALS patient harboring the SOD1G85R mutation as well as on those derived from genetically corrected iPSCs (SOD1G85G). Our results demonstrated that the motor neurons differentiated from iPSC with SOD1G85R mutation exhibited characteristics of neuron degeneration (as indicated by the reduction of neurofilament expression) and ion channel dysfunction (in response to potassium chloride (KCl) and L-glutamate stimulation), in contrast to those derived from the gene corrected iPSC (SOD1G85G). Meanwhile, BP treatment effectively restored calcium ion channel function by reducing the expression of glutamate receptors including glutamate ionotropic receptor AMPA type subunit 3 (GluR3) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1). Additionally, BP treatment activated autophagic pathway to attenuate neuron degeneration. Overall, this study supports the therapeutic effects of BP on ALS patient-derived neuron cells, and suggests that BP may be a promising candidate for future drug development.
Collapse
Affiliation(s)
- Yu-Chen Deng
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc., Taipei, Taiwan
| | | | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzu-Chen Kuo
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| | - Chia-Hung Chiang
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| | - En-Yi Lin
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
2
|
Liguori F, Alberti F, Amadio S, Angelini DF, Pilesi E, Vitale G, Tesoriere G, Borsellino G, Vernì F, Volonté C. Pan-neuronal expression of human mutant SOD1 in Drosophila impairs survival and motor performance, induces early neuroinflammation and chromosome aberrations. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167192. [PMID: 38657911 DOI: 10.1016/j.bbadis.2024.167192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Several mutations in the SOD1 gene encoding for the antioxidant enzyme Superoxide Dismutase 1, are associated with amyotrophic lateral sclerosis, a rare and devastating disease characterized by motor neuron degeneration and patients' death within 2-5 years from diagnosis. Motor neuron loss and related symptomatology manifest mostly in adult life and, to date, there is still a gap of knowledge on the precise cellular and molecular events preceding neurodegeneration. To deepen our awareness of the early phases of the disease, we leveraged two Drosophila melanogaster models pan-neuronally expressing either the mutation A4V or G85R of the human gene SOD1 (hSOD1A4V or hSOD1G85R). We demonstrate that pan-neuronal expression of the hSOD1A4V or hSOD1G85R pathogenic construct impairs survival and motor performance in transgenic flies. Moreover, protein and transcript analysis on fly heads indicates that mutant hSOD1 induction stimulates the glial marker Repo, up-regulates the IMD/Toll immune pathways through antimicrobial peptides and interferes with oxidative metabolism. Finally, cytological analysis of larval brains demonstrates hSOD1-induced chromosome aberrations. Of note, these parameters are found modulated in a timeframe when neurodegeneration is not detected. The novelty of our work is twofold: we have expressed for the first time hSOD1 mutations in all neurons of Drosophila and confirmed some ALS-related pathological phenotypes in these flies, confirming the power of SOD1 mutations in generating ALS-like phenotypes. Moreover, we have related SOD1 pathogenesis to chromosome aberrations and antimicrobial peptides up-regulation. These findings were unexplored in the SOD1-ALS field.
Collapse
Affiliation(s)
- Francesco Liguori
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy.
| | - Francesca Alberti
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Daniela Francesca Angelini
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Vitale
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Giulia Tesoriere
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Borsellino
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Volonté
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
3
|
Bar E, Fischer I, Rokach M, Elad-Sfadia G, Shirenova S, Ophir O, Trangle SS, Okun E, Barak B. Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia 2024; 72:1117-1135. [PMID: 38450767 DOI: 10.1002/glia.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
Collapse
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Milani M, Della Valle I, Rossi S, Fabbrizio P, Margotta C, Nardo G, Cozzolino M, D'Ambrosi N, Apolloni S. Neuroprotective effects of niclosamide on disease progression via inflammatory pathways modulation in SOD1-G93A and FUS-associated amyotrophic lateral sclerosis models. Neurotherapeutics 2024; 21:e00346. [PMID: 38493058 PMCID: PMC11070272 DOI: 10.1016/j.neurot.2024.e00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.
Collapse
Affiliation(s)
- Martina Milani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Program in Cellular and Molecular Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Della Valle
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Program in Cellular and Molecular Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Paola Fabbrizio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Cassandra Margotta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giovanni Nardo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Savina Apolloni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
5
|
Öz-Arslan D, Durer ZA, Kan B. G protein-coupled receptor-mediated autophagy in health and disease. Br J Pharmacol 2024. [PMID: 38501194 DOI: 10.1111/bph.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles and in recycling cellular components. Deficiencies in autophagy are involved in a variety of pathological conditions. Both GPCRs and autophagy are essential in preserving homeostasis and cell survival. There is emerging evidence suggesting that GPCRs are direct regulators of autophagy. Additionally, autophagic machinery is involved in the regulation of GPCR signalling. The interplay between GPCR and autophagic signalling mechanisms significantly impacts on health and disease; however, there is still an incomplete understanding of the underlying mechanisms and therapeutic implications in different tissues and disease contexts. This review aims to discuss the interactions between GPCR and autophagy signalling. Studies on muscarinic receptors, beta-adrenoceptors, taste receptors, purinergic receptors and adhesion GPCRs are summarized, in relation to autophagy.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
- Department of Biochemistry, Acibadem MAA University, School of Pharmacy, Istanbul, Turkey
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Zhu J, Jiang X, Chang Y, Wu Y, Sun S, Wang C, Zheng S, Wang M, Yao Y, Li G, Ma R. Clemastine fumarate attenuates tauopathy and meliorates cognition in hTau mice via autophagy enhancement. Int Immunopharmacol 2023; 123:110649. [PMID: 37494840 DOI: 10.1016/j.intimp.2023.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Clemastine fumarate, which has been identified as a promising agent for remyelination and autophagy enhancement, has been shown to mitigate Aβ deposition and improve cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Based on these findings, we investigated the effect of clemastine fumarate in hTau mice, a different Alzheimer's disease model characterized by overexpression of human Tau protein. Surprisingly, clemastine fumarate was effective in reducing pathological deposition of Tau protein, protecting neurons and synapses from damage, inhibiting neuroinflammation, and improving cognitive impairment in hTau mice. Interestingly, chloroquine, an autophagy inhibitor, had a significant impact on total and Sarkosyl fractions of autophagy, demonstrating that it can interrupt autophagy. Notably, after administration of chloroquine, levels of Tau protein were significantly increased. When clemastine fumarate was co-administered with chloroquine, the protective effects were reversed, indicating that clemastine fumarate indeed triggered autophagy and promoted the degradation of Tau protein, while also inhibiting further Tauopathy-related neuroinflammation and synapse loss to improve cognitive function in hTau mice.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Xingjun Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Yi Yao
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Jiang S, Wang X, Cao T, Kang R, Huang L. Insights on therapeutic potential of clemastine in neurological disorders. Front Mol Neurosci 2023; 16:1279985. [PMID: 37840769 PMCID: PMC10568021 DOI: 10.3389/fnmol.2023.1279985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Palma A, Chara JC, Montilla A, Otxoa-de-Amezaga A, Ruíz-Jaén F, Planas AM, Matute C, Pérez-Samartín A, Domercq M. Clemastine Induces an Impairment in Developmental Myelination. Front Cell Dev Biol 2022; 10:841548. [PMID: 35372341 PMCID: PMC8970281 DOI: 10.3389/fcell.2022.841548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties. Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer’s disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increased oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells that also express muscarinic M1 receptors. Importantly, the population of CD11c+ microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.
Collapse
Affiliation(s)
- Ana Palma
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Juan Carlos Chara
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Amaia Otxoa-de-Amezaga
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Francisca Ruíz-Jaén
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
- *Correspondence: María Domercq,
| |
Collapse
|
10
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
11
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
12
|
Wang M, Kang L, Wang Y, Yang B, Zhang C, Lu Y, Kang L. Microglia in motor neuron disease: Signaling evidence from last 10 years. Dev Neurobiol 2022; 82:625-638. [PMID: 36309345 PMCID: PMC9828749 DOI: 10.1002/dneu.22905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2023]
Abstract
Motor neuron disease (MND), including amyotrophic lateral sclerosis, spinal muscular atrophy and others, involved the upper or lower motor neurons selective loss, is characterized by neurodegeneration and neuroinflammation, in conjunction with microglia. We summarized that pathways and key mediators are associated with microglia, such as fractalkine signaling, purinergic signaling, NF-κB signaling, p38 MAPK signaling, TREM2-APOE signaling, ROCK signaling, C1q signaling, and Ion channel, which are involved in the activation, proliferation, and inflammation of microglia. This review aims to identify the microglia-related molecular target and explore potential treatment strategies for MND based on that target.
Collapse
Affiliation(s)
- Min‐Jia Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Lu Kang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yao‐Zheng Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Bi‐Ru Yang
- Department of Postpartum RehabilitationSichuan Jinxin Women & Children HospitalChengduChina
| | - Chun Zhang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yu‐Feng Lu
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Liang Kang
- Institute of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| |
Collapse
|
13
|
Abstract
Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
14
|
Xie YY, Pan TT, Xu DE, Huang X, Tang Y, Huang W, Chen R, Lu L, Chi H, Ma QH. Clemastine Ameliorates Myelin Deficits via Preventing Senescence of Oligodendrocytes Precursor Cells in Alzheimer's Disease Model Mouse. Front Cell Dev Biol 2021; 9:733945. [PMID: 34746130 PMCID: PMC8567029 DOI: 10.3389/fcell.2021.733945] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Disrupted myelin and impaired myelin repair have been observed in the brains of patients and various mouse models of Alzheimer's disease (AD). Clemastine, an H1-antihistamine, shows the capability to induce oligodendrocyte precursor cell (OPC) differentiation and myelin formation under different neuropathological conditions featuring demyelination via the antagonism of M1 muscarinic receptor. In this study, we investigated if aged APPSwe/PS1dE9 mice, a model of AD, can benefit from chronic clemastine treatment. We found the treatment reduced brain amyloid-beta deposition and rescued the short-term memory deficit of the mice. The densities of OPCs, oligodendrocytes, and myelin were enhanced upon the treatment, whereas the levels of degraded MBP were reduced, a marker for degenerated myelin. In addition, we also suggest the role of clemastine in preventing OPCs from entering the state of cellular senescence, which was shown recently as an essential causal factor in AD pathogenesis. Thus, clemastine exhibits therapeutic potential in AD via preventing senescence of OPCs.
Collapse
Affiliation(s)
- Yuan-Yuan Xie
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Ting-Ting Pan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - De-En Xu
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Xin Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Hao Chi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021; 22:ijms221910649. [PMID: 34638992 PMCID: PMC8508678 DOI: 10.3390/ijms221910649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.
Collapse
|
16
|
The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and Functional Validation. Curr Top Behav Neurosci 2021; 59:217-239. [PMID: 34432258 DOI: 10.1007/7854_2021_240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is a disease with a resilient inflammatory component caused by accumulation into the CNS of inflammatory infiltrates and macrophage/microglia contributing to severe demyelination and neurodegeneration. While the causes are still in part unclear, key pathogenic mechanisms are the direct loss of myelin-producing cells and/or their impairment caused by the immune system. Proposed etiology includes genetic and environmental factors triggered by viral infections. Although several diagnostic methods and new treatments are under development, there is no curative but only palliative care against the relapsing-remitting or progressive forms of MS. In recent times, there has been a boost of awareness on the role of histamine signaling in physiological and pathological functions of the nervous system. Particularly in MS, evidence is raising that histamine might be directly implicated in the disease by acting at different cellular and molecular levels. For instance, constitutively active histamine regulates the differentiation of oligodendrocyte precursors, thus playing a central role in the remyelination process; histamine reduces the ability of myelin-autoreactive T cells to adhere to inflamed brain vessels, a crucial step in the development of MS; histamine levels are found increased in the cerebrospinal fluid of MS patients. The aim of the present work is to present further proofs about the alliance of histamine with MS and to introduce the most recent and innovative histamine paradigms for therapy. We will report on how a long-standing molecule with previously recognized immunomodulatory and neuroprotective functions, histamine, might still provide a renewed and far-reaching role in MS.
Collapse
|
17
|
Fiscon G, Conte F, Amadio S, Volonté C, Paci P. Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis. Neurotherapeutics 2021; 18:1678-1691. [PMID: 33987813 PMCID: PMC8609089 DOI: 10.1007/s13311-021-01064-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The continuous adherence to the conventional "one target, one drug" paradigm has failed so far to provide effective therapeutic solutions for heterogeneous and multifactorial diseases as amyotrophic lateral sclerosis (ALS), a rare progressive and chronic, debilitating neurological disease for which no cure is available. The present study is aimed at finding innovative solutions and paradigms for therapy in ALS pathogenesis, by exploiting new insights from Network Medicine and drug repurposing strategies. To identify new drug-ALS disease associations, we exploited SAveRUNNER, a recently developed network-based algorithm for drug repurposing, which quantifies the proximity of disease-associated genes to drug targets in the human interactome. We prioritized 403 SAveRUNNER-predicted drugs according to decreasing values of network similarity with ALS. Among catecholamine, dopamine, serotonin, histamine, and GABA receptor modulators, as well as angiotensin-converting enzymes, cyclooxygenase isozymes, and serotonin transporter inhibitors, we found some interesting no customary ALS drugs, including amoxapine, clomipramine, mianserin, and modafinil. Furthermore, we strengthened the SAveRUNNER predictions by a gene set enrichment analysis that confirmed modafinil as a drug with the highest score among the 121 identified drugs with a score > 0. Our results contribute to gathering further proofs of innovative solutions for therapy in ALS pathogenesis.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI–CNR), Via Dei Taurini 19, 00185 Rome, Italy
- Fondazione per la Medicina Personalizzata, Via Goffredo Mameli, Genova, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI–CNR), Via Dei Taurini 19, 00185 Rome, Italy
| | - Susanna Amadio
- IRCCS Santa Lucia Foundation, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI–CNR), Via Dei Taurini 19, 00185 Rome, Italy
- IRCCS Santa Lucia Foundation, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI–CNR), Via Dei Taurini 19, 00185 Rome, Italy
- Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG), Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Post J, Schaffrath A, Gering I, Hartwig S, Lehr S, Shah NJ, Langen KJ, Willbold D, Kutzsche J, Willuweit A. Oral Treatment with RD2RD2 Impedes Development of Motoric Phenotype and Delays Symptom Onset in SOD1 G93A Transgenic Mice. Int J Mol Sci 2021; 22:ijms22137066. [PMID: 34209129 PMCID: PMC8269060 DOI: 10.3390/ijms22137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and plays a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been implicated as driver of disease progression and is observed in ALS patients, as well as in the transgenic SOD1G93A mouse model. Here, we explore and validate the therapeutic potential of the d-enantiomeric peptide RD2RD2 upon oral administration in SOD1G93A mice. Transgenic mice were treated daily with RD2RD2 or placebo for 10 weeks and phenotype progression was followed with several behavioural tests. At the end of the study, plasma cytokine levels and glia cell markers in brain and spinal cord were analysed. Treatment resulted in a significantly increased performance in behavioural and motor coordination tests and a decelerated neurodegenerative phenotype in RD2RD2-treated SOD1G93A mice. Additionally, we observed retardation of the average disease onset. Treatment of SOD1G93A mice led to significant reduction in glial cell activation and a rescue of neurons. Analysis of plasma revealed normalisation of several cytokines in samples of RD2RD2-treated SOD1G93A mice towards the levels of non-transgenic mice. In conclusion, these findings qualify RD2RD2 to be considered for further development and testing towards a disease modifying ALS treatment.
Collapse
Affiliation(s)
- Julia Post
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Anja Schaffrath
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Ian Gering
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (S.H.); (S.L.)
- German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (S.H.); (S.L.)
- German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-Brain-Translational Medicine, 52062 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| |
Collapse
|
19
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
20
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
21
|
Cihankaya H, Theiss C, Matschke V. Little Helpers or Mean Rogue-Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22030993. [PMID: 33498186 PMCID: PMC7863915 DOI: 10.3390/ijms22030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1–5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.
Collapse
Affiliation(s)
- Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| |
Collapse
|
22
|
Madruga E, Maestro I, Martínez A. Mitophagy Modulation, a New Player in the Race against ALS. Int J Mol Sci 2021; 22:ijms22020740. [PMID: 33450997 PMCID: PMC7828440 DOI: 10.3390/ijms22020740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.
Collapse
Affiliation(s)
- Enrique Madruga
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Inés Maestro
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
23
|
Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BYK, Qin DL, Wu JM. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 2021; 65:101202. [PMID: 33161129 DOI: 10.1016/j.arr.2020.101202] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.
Collapse
|
24
|
Angelini DF, De Angelis F, Vacca V, Piras E, Parisi C, Nutini M, Spalloni A, Pagano F, Longone P, Battistini L, Pavone F, Marinelli S. Very Early Involvement of Innate Immunity in Peripheral Nerve Degeneration in SOD1-G93A Mice. Front Immunol 2020; 11:575792. [PMID: 33329541 PMCID: PMC7714949 DOI: 10.3389/fimmu.2020.575792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Recent preclinical and clinical evidence suggest that immune system has a role in the progression and prognosis of Amyotrophic Lateral Sclerosis (ALS), but the identification of a clear mechanism and immune players remains to be elucidated. Here, we have investigated, in 30 and 60 days (presymptomatic) and 120 days (symptomatic) old SOD1-G93A mice, systemic, peripheral, and central innate and adaptive immune and inflammatory response, correlating it with the progression of the neurodegeneration in neuromuscular junction, sciatic nerves, and spinal cord. Surprisingly, we found a very initial (45-60 days) presence of IgG in sciatic nerves together with a gradual enhancement of A20/TNFAIP3 (protein controlling NF-κB signalling) and a concomitantly significant increase and activation of circulating mast cells (MCs) as well as MCs and macrophages in sciatic nerve and an enhancement of IL-6 and IL-10. This immunological frame coincided with a myelin aggregation. The 30-60 days old SOD1-G93A mice didn't show real elements of neuroinflammation and neurodegeneration in spinal cord. In 120 days old mice macrophages and monocytes are widely diffused in sciatic nerves, peripheral neurodegeneration reaches the tip, high circulating levels of TNFα and IL-2 were found and spinal cord exhibits clear signs of neural damage and infiltrating immune cells. Our results underpin a clear immunological disorder at the origin of ALS axonopathy, in which MCs are involved in the initiation and sustaining of inflammatory events. These data cannot be considered a mere epiphenomenon of motor neuron degeneration and reveal new potential selective immune targets in ALS therapy.
Collapse
Affiliation(s)
| | - Federica De Angelis
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Valentina Vacca
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Chiara Parisi
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Michele Nutini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alida Spalloni
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Pagano
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Sara Marinelli
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| |
Collapse
|
25
|
Amin A, Perera ND, Beart PM, Turner BJ, Shabanpoor F. Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells 2020; 9:E2413. [PMID: 33158177 PMCID: PMC7694295 DOI: 10.3390/cells9112413] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, there has been a drastically increased understanding of the genetic basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved intracellular "clearance" system delivering misfolded proteins, aggregates, and damaged organelles to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been examined or are being developed as potential treatments for ALS to date, and discuss potential therapeutic strategies for targeting autophagy in ALS.
Collapse
Affiliation(s)
| | | | | | | | - Fazel Shabanpoor
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia; (A.A.); (N.D.P.); (P.M.B.); (B.J.T.)
| |
Collapse
|
26
|
Khalil H, Abd ElHady A, Elawdan KA, Mohamed D, Mohamed DD, Abd El Maksoud AI, El-Chennawi FA, El-Fikiy B, El-Sayed IH. The Mechanical Autophagy as a Part of Cellular Immunity; Facts and Features in Treating the Medical Disorders. Immunol Invest 2020; 51:266-289. [PMID: 32993405 DOI: 10.1080/08820139.2020.1828453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a cellular housekeeping process that incorporates lysosomal-degradation to maintain cell survival and energy sources. In recent decades, the role of autophagy has implicated in the initiation and development of many diseases that affect humanity. Among these diseases are autoimmune diseases and neurodegenerative diseases, which connected with the lacking autophagy. Other diseases are connected with the increasing levels of autophagy such as cancers and infectious diseases. Therefore, controlling autophagy with sufficient regulators could represent an effective strategy to overcome such diseases. Interestingly, targeting autophagy can also provide a sufficient method to combat the current epidemic caused by the ongoing coronavirus. In this review, we aim to highlight the physiological function of the autophagic process to understand the circumstances surrounding its role in the cellular immunity associated with the development of human diseases.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amira Abd ElHady
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Doaa D Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed I Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Farha A El-Chennawi
- Clinical Pathology Department, Faculty of Medicine, Mansora University, Mansora, Egypt
| | - Bhgat El-Fikiy
- Department of Animal Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ibrahim H El-Sayed
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
27
|
Volonté C, Morello G, Spampinato AG, Amadio S, Apolloni S, D’Agata V, Cavallaro S. Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Res Rev 2020; 62:101121. [PMID: 32653439 DOI: 10.1016/j.arr.2020.101121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
A plethora of genetic and molecular mechanisms have been implicated in the pathophysiology of the heterogeneous and multifactorial amyotrophic lateral sclerosis (ALS) disease, and hence the conventional "one target-one drug" paradigm has failed so far to provide effective therapeutic solutions, precisely because of the complex nature of ALS. This review intends to highlight how the integration of emerging "omics" approaches may provide a rational foundation for the comprehensive exploration of molecular pathways and dynamic interactions involved in ALS, for the identification of candidate targets and biomarkers that will assist in the rapid diagnosis and prognosis, lastly for the stratification of patients into different subgroups with the aim of personalized therapeutic strategies. To this purpose, particular emphasis will be placed on some potential therapeutic targets, including neurotrophic factors and histamine signaling that both have emerged as dysregulated at different omics levels in specific subgroups of ALS patients, and have already shown promising results in in vitro and in vivo models of ALS. To conclude, we will discuss about the utility of using integrated omics coupled with network-based approaches to provide additional guidance for personalization of medicine applications in ALS.
Collapse
|
28
|
Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M, Kroemer G. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis 2020; 11:656. [PMID: 32814759 PMCID: PMC7434849 DOI: 10.1038/s41419-020-02842-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their ‘official’ pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.
Collapse
Affiliation(s)
- Allan Sauvat
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), 1428, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.,Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy. .,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
29
|
Kataura T, Tashiro E, Nishikawa S, Shibahara K, Muraoka Y, Miura M, Sakai S, Katoh N, Totsuka M, Onodera M, Shin-Ya K, Miyamoto K, Sasazawa Y, Hattori N, Saiki S, Imoto M. A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers. Autophagy 2020; 17:1856-1872. [PMID: 32762399 PMCID: PMC8386610 DOI: 10.1080/15548627.2020.1794590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy plays a critical role in the pathogenesis of various human diseases including neurodegenerative disorders such as Parkinson disease (PD) and Huntington disease (HD). Chemical autophagy inducers are expected to serve as disease-modifying agents by eliminating cytotoxic/damaged proteins. Although many autophagy inducers have been identified, their precise molecular mechanisms are not fully understood because of the complicated crosstalk among signaling pathways. To address this issue, we performed several chemical genomic analyses enabling us to comprehend the dominancy among the autophagy-associated pathways followed by an aggresome-clearance assay. In a first step, more than 400 target-established small molecules were assessed for their ability to activate autophagic flux in neuronal PC12D cells, and we identified 39 compounds as autophagy inducers. We then profiled the autophagy inducers by testing their effect on the induction of autophagy by 200 well-established signal transduction modulators. Our principal component analysis (PCA) and clustering analysis using a dataset of "autophagy profiles" revealed that two Food and Drug Administration (FDA)-approved drugs, memantine and clemastine, activate endoplasmic reticulum (ER) stress responses, which could lead to autophagy induction. We also confirmed that SMK-17, a recently identified autophagy inducer, induced autophagy via the PRKC/PKC-TFEB pathway, as had been predicted from PCA. Finally, we showed that almost all of the autophagy inducers tested in this present work significantly enhanced the clearance of the protein aggregates observed in cellular models of PD and HD. These results, with the combined approach, suggested that autophagy-activating small molecules may improve proteinopathies by eliminating nonfunctional protein aggregates.Abbreviations: ADK: adenosine kinase; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; BECN1: beclin-1; DDIT3/CHOP: DNA damage inducible transcript 3; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FDA: Food and Drug Administration; GSH: glutathione; HD: Huntington disease; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HTT: huntingtin; JAK: Janus kinase, MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAP3K8/Tpl2: mitogen-activated protein kinase kinase kinase 8; MAPK: mitogen-activated protein kinase; MPP+: 1-methyl-4-phenylpyridinium; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; NAC: N-acetylcysteine; NGF: nerve growth factor 2; NMDA: N-methyl-D-aspartate; PCA: principal component analysis; PD: Parkinson disease; PDA: pancreatic ductal adenocarcinoma; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PMA: phorbol 12-myristate 13-acetate; PRKC/PKC: protein kinase C; ROCK: Rho-associated coiled-coil protein kinase; RR: ribonucleotide reductase; SIGMAR1: sigma non-opioid intracellular receptor 1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFEB: Transcription factor EB; TGFB/TGF-β: Transforming growth factor beta; ULK1: unc-51 like autophagy activating kinase 1; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan.,Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Shota Nishikawa
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Kensuke Shibahara
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yoshihito Muraoka
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Masahiro Miura
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Shun Sakai
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Naohiro Katoh
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Misato Totsuka
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Biotechnology Research Centre, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kengo Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| |
Collapse
|
30
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
31
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
32
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
33
|
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154:354-371. [PMID: 32149395 DOI: 10.1111/jnc.15002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
In autophagy long-lived proteins, protein aggregates or damaged organelles are engulfed by vesicles called autophagosomes prior to lysosomal degradation. Autophagy dysfunction is a hallmark of several neurodegenerative diseases in which misfolded proteins or dysfunctional mitochondria accumulate. Excessive autophagy can also exacerbate brain injury under certain conditions. In this review, we provide specific examples to illustrate the critical role played by autophagy in pathological conditions affecting the brain and discuss potential therapeutic implications. We show how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain. We provide evidence that autophagy inhibition may be protective against radiotherapy-induced damage to the young brain. We describe a specialized form of macroautophagy of therapeutic relevance for motoneuron and neuromuscular diseases, known as chaperone-assisted selective autophagy, in which heat shock protein B8 is used to deliver aberrant proteins to autophagosomes. We summarize studies pinpointing mitophagy mediated by the serine/threonine kinase PINK1 and the ubiquitin-protein ligase Parkin as a mechanism potentially relevant to Parkinson's disease, despite debate over the physiological conditions in which it is activated in organisms. Finally, with the example of the autophagy-inducing agent rilmenidine and its discrepant effects in cell culture and mouse models of motor neuron disorders, we illustrate the importance of considering aspects such a disease stage and aggressiveness, type of insult and load of damaged or toxic cellular components, when choosing the appropriate drug, timepoint and duration of treatment.
Collapse
Affiliation(s)
- Olga Corti
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
34
|
Zhang X, Chen S, Lu K, Wang F, Deng J, Xu Z, Wang X, Zhou Q, Le W, Zhao Y. Verapamil Ameliorates Motor Neuron Degeneration and Improves Lifespan in the SOD1 G93A Mouse Model of ALS by Enhancing Autophagic Flux. Aging Dis 2019; 10:1159-1173. [PMID: 31788329 PMCID: PMC6844595 DOI: 10.14336/ad.2019.0228] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, paralytic disorder caused by selective degeneration of motor neurons in the brain and spinal cord. Our previous studies indicated that abnormal protein aggregation and dysfunctional autophagic flux might contribute to the disease pathogenesis. In this study, we have detected the role of the Ca2+ dependent autophagic pathway in ALS by using the L-type channel Ca2+ blocker, verapamil. We have found that verapamil significantly delayed disease onset, prolonged the lifespan and extended disease duration in SOD1G93A mice. Furthermore, verapamil administration rescued motor neuron survival and ameliorated skeletal muscle denervation in SOD1G93A mice. More interestingly, verapamil significantly reduced SOD1 aggregation and improved autophagic flux, which might be mediated the inhibition of calpain 1 activation in the spinal cord of SOD1G93A mice. Furthermore, we have demonstrated that verapamil reduced endoplasmic reticulum stress and suppressed glia activation in SOD1G93A mice. Collectively, our study indicated that verapamil is neuroprotective in the ALS mouse model and the Ca2+-dependent autophagic pathway is a possible therapeutic target for the treatment of ALS.
Collapse
Affiliation(s)
- Xiaojie Zhang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sheng Chen
- 2Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Lu
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiangshan Deng
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhouwei Xu
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinming Zhou
- 2Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weidong Le
- 3Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,4Liaoning Provincial Kay Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,5Collaborative Innovation Center for Brain Science, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuwu Zhao
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
Histamine Is an Inducer of the Heat Shock Response in SOD1-G93A Models of ALS. Int J Mol Sci 2019; 20:ijms20153793. [PMID: 31382568 PMCID: PMC6696457 DOI: 10.3390/ijms20153793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial non-cell autonomous disease where activation of microglia and astrocytes largely contributes to motor neurons death. Heat shock proteins have been demonstrated to promote neuronal survival and exert a strong anti-inflammatory action in glia. Having previously shown that the pharmacological increase of the histamine content in the central nervous system (CNS) of SOD1-G93A mice decreases neuroinflammation, reduces motor neuron death, and increases mice life span, here we examined whether this effect could be mediated by an enhancement of the heat shock response. (2) Methods: Heat shock protein expression was analyzed in vitro and in vivo. Histamine was provided to primary microglia and NSC-34 motor neurons expressing the SOD1-G93A mutation. The brain permeable histamine precursor histidine was chronically administered to symptomatic SOD1-G93A mice. Spine density was measured by Golgi-staining in motor cortex of histidine-treated SOD1-G93A mice. (3) Results: We demonstrate that histamine activates the heat shock response in cultured SOD1-G93A microglia and motor neurons. In SOD1-G93A mice, histidine augments the protein content of GRP78 and Hsp70 in spinal cord and cortex, where the treatment also rescues type I motor neuron dendritic spine loss. (4) Conclusion: Besides the established histaminergic neuroprotective and anti-inflammatory effects, the induction of the heat shock response in the SOD1-G93A model by histamine confirms the importance of this pathway in the search for successful therapeutic solutions to treat ALS.
Collapse
|
36
|
Apolloni S, Amadio S, Fabbrizio P, Morello G, Spampinato AG, Latagliata EC, Salvatori I, Proietti D, Ferri A, Madaro L, Puglisi-Allegra S, Cavallaro S, Volonté C. Histaminergic transmission slows progression of amyotrophic lateral sclerosis. J Cachexia Sarcopenia Muscle 2019; 10:872-893. [PMID: 31020811 PMCID: PMC6711424 DOI: 10.1002/jcsm.12422] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Histamine is an immune modulator, neuroprotective, and remyelinating agent, beneficially acting on skeletal muscles and promoting anti-inflammatory features in amyotrophic lateral sclerosis (ALS) microglia. Drugs potentiating the endogenous release of histamine are in trial for neurological diseases, with a role not systematically investigated in ALS. Here, we examine histamine pathway associations in ALS patients and the efficacy of a histamine-mediated therapeutic strategy in ALS mice. METHODS We adopted an integrative multi-omics approach combining gene expression profiles, copy number variants, and single nucleotide polymorphisms of ALS patients. We treated superoxide dismutase 1 (SOD1)-G93A mice that recapitulate key ALS features, with the brain-permeable histamine precursor histidine in the symptomatic phase of the disease and analysed the rescue from disease pathological signs. We examined the action of histamine in cultured SOD1-G93A motor neuron-like cells. RESULTS We identified 13 histamine-related genes deregulated in the spinal cord of two ALS patient subgroups, among which genes involved in histamine metabolism, receptors, transport, and secretion. Some histamine-related genes overlapped with genomic regions disrupted by DNA copy number and with ALS-linked pathogenic variants. Histidine treatment in SOD1-G93A mice proved broad efficacy in ameliorating ALS features, among which most importantly lifespan, motor performance, microgliosis, muscle atrophy, and motor neurons survival in vivo and in vitro. CONCLUSIONS Our gene set/pathway enrichment analyses and preclinical studies started at the onset of symptoms establish that histamine-related genes are modifiers in ALS, supporting their role as candidate biomarkers and therapeutic targets. We disclose a novel important role for histamine in the characterization of the multi-gene network responsible for ALS and, furthermore, in the drug development process.
Collapse
Affiliation(s)
| | | | - Paola Fabbrizio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - Giovanna Morello
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | | | | | | | | | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | | | | | | | - Cinzia Volonté
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
37
|
Volonté C, Apolloni S, Sabatelli M. Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of Amyotrophic Lateral Sclerosis (ALS). Pharmacol Ther 2019; 202:120-131. [PMID: 31233766 DOI: 10.1016/j.pharmthera.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
ALS currently remains a challenge despite many efforts in performing successful clinical trials and formulating therapeutic solutions. By learning from current failures and striving for success, scientists and clinicians are checking every possibility to search for missing hints and efficacious treatments. Because the disease is very complex and heterogeneous and, moreover, targeting not only motor neurons but also several different cell types including muscle, glial, and immune cells, the right answer to ALS is conceivably a multidrug strategy or the use of broad-spectrum molecules. The aim of the present work is to gather evidence about novel perspectives on ALS pathogenesis and to present recent and innovative paradigms for therapy. In particular, we describe how an old molecule possessing immunomodulatory and neuroprotective functions beyond its recognized effects on allergy, histamine, might have a renewed and far-reaching momentum in ALS.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute of Cell Biology and Neurobiology/UCSC, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Mario Sabatelli
- Institute of Neurology-Catholic University of Sacro Cuore, Clinic Center NEMO- Fondazione Pol. A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
38
|
Functional microglia neurotransmitters in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2019; 94:121-128. [PMID: 31009755 DOI: 10.1016/j.semcdb.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Today neuroscience is dominated by the perspective that microglia are essential elements in any integrated view of the nervous system. A number of different neuroinflammatory conditions affect the CNS where microglia involvement, and particularly microgliosis, is not only a prominent feature, but also a pathogenic key mechanism of disease. On the other side, microglia can also constitute an important trigger of neuronal protection during neurodegenerative disorders. For instance in ALS and other motor neuron diseases, available evidence suggests the coexistence of quite different roles for microglia, characterized by neuroprotective functions at early stages, and neurotoxic actions during disease progression. The scope of this review is a brief discussion about microglia being activated and functioning during ALS, and particularly about neurotransmitters participating to the pathological signature of ALS microglia. We will discuss that ALS microglia can express a variety of classical neurotransmitter receptors comprising those for extracellular ATP, glutamate and histamine. We will review data indicating that the modulation of these transmitter receptors may induce beneficial effects in ALS models, so that the protective properties of microglia can be emphasized at the expenses of their toxicity.
Collapse
|
39
|
Su WJ, Zhang T, Jiang CL, Wang W. Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus. Front Cell Neurosci 2018; 12:412. [PMID: 30483062 PMCID: PMC6243034 DOI: 10.3389/fncel.2018.00412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Backgrounds: Abundant reports indicate that neuroinflammatory signaling contributes to behavioral complications associated with depression and may be related to treatment response. The glial cells, especially microglia and astrocytes in brain regions of hippocampus and medial prefrontal cortex (mPFC), are major components of CNS innate immunity. Moreover, purinergic receptor P2X, ligand-gated ion channel 7 (P2X7R) was recently reckoned as a pivotal regulator in central immune system. Besides, it was pointed out that clemastine, a first-generation histamine receptor H1 (HRH1) antagonist with considerable safety profile and pharmacological effect, may suppress immune activation through modulating P2X7R. Herein, we investigated the potential anti-neuroinflammatory effects of clemastine on chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in a mouse model. Methods: Male BALB/c mice were subjected to CUMS for 4 weeks, some of them were injected with clemastine fumarate solution. After the stress procedure, behavioral tests including Sucrose Preference Tests (SPTs), Tail Suspension Tests (TSTs) and locomotor activities were performed to evaluate depressive-like phenotype. Subsequently, expression of cytokines and microglia-related inflammatory biomarkers were assessed. Results: In the present research, we found that clemastine significantly reversed both the declination of SPT percentage and the extension of TST immobility durations in depression mouse model without affecting locomotor activity. Also, we observed that clemastine regulated the imbalance of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the hippocampus and serum of depressive-like mice. Additionally, clemastine significantly suppressed microglial M1-like activation specifically in the hippocampus, and also improved hippocampal astrocytic loss. Furthermore, clemastine downregulated hippocampal P2X7R without interfering with the expression of HRH1. Conclusion: As a safe and efficient anti-allergic agent, clemastine could impressively alleviate stress-related depressive-like phenotype in mice. Further evidence supported that it was because of the potential function of clemastine in modulating the expression of P2X7 receptor possibly independent of HRH1, therefore suppressing the microglial M1-like activation and pro-inflammatory cytokines release in brain regions of hippocampus rather than mPFC.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Ting Zhang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China.,Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| |
Collapse
|
40
|
Le G, Novotny SA, Mader TL, Greising SM, Chan SSK, Kyba M, Lowe DA, Warren GL. A moderate oestradiol level enhances neutrophil number and activity in muscle after traumatic injury but strength recovery is accelerated. J Physiol 2018; 596:4665-4680. [PMID: 30035314 PMCID: PMC6166067 DOI: 10.1113/jp276432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The female hormone oestrogen may protect muscle from injury by reducing inflammation but this is debatable. In this study, the inflammatory response of injured muscle from oestrogen-replete mice was comprehensively compared to that from oestrogen-deficient mice. We show that oestrogen markedly promotes movement of neutrophils, an inflammatory white blood cell type, into muscle over the first few days after injury but has only a minor effect on the movement of macrophages, another inflammatory cell type. Despite the enhancement of inflammation by oestrogen in injured muscle, we found strength in oestrogen-replete mice to recover faster and to a greater extent than it does in oestrogen-deficient mice. Our study and others indicate that lower doses of oestrogen, such as that used in our study, may affect muscle inflammation and injury differently from higher doses. ABSTRACT Oestrogen has been shown to protect against skeletal muscle injury and a reduced inflammatory response has been suggested as a possible protective mechanism. There are, however, dissenting reports. Our objective was to conduct an unbiased, comprehensive study of the effect of oestradiol on the inflammatory response following muscle injury. Female C57BL6/J mice were ovariectomized and supplemented with and without oestradiol. Tibialis anterior muscles were freeze injured and studied primarily at 1-4 days post-injury. Oestradiol supplementation increased injured muscle gene expression of neutrophil chemoattractants (Cxcl1 and Cxcl5) and to a lesser extent that of monocyte/macrophage chemoattractants (Ccl2 and Spp1). Oestradiol markedly increased gene expression of the neutrophil cell surface marker (Ly6g) but had less consistent effects on the monocyte/macrophage cell surface markers (Cd68, Cd163 and Cd206). These results were confirmed at the protein level by immunoblot with oestradiol increasing LY6G/C content and having no significant effect on CD163 content. These findings were confirmed with fluorescence-activated cell sorting counts of neutrophils and macrophages in injured muscles; oestradiol increased the proportion of CD45+ cells that were neutrophils (LY6G+ ) but not the proportion that were macrophages (CD68+ or CD206+ ). Physiological impact of the oestradiol-enhanced neutrophil response was assessed by strength measurements. There was no significant difference in strength between oestradiol-supplemented and -unsupplemented mice until 2 weeks post-injury; strength was 13-24% greater in supplemented mice at 2-6 weeks post-injury. In conclusion, a moderate level of oestradiol supplementation enhances neutrophil infiltration in injured muscle and this is associated with a beneficial effect on strength recovery.
Collapse
Affiliation(s)
- Gengyun Le
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Susan A. Novotny
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Tara L. Mader
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Sarah M. Greising
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Sunny S. K. Chan
- Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMNUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Michael Kyba
- Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMNUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Dawn A. Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGAUSA
| |
Collapse
|
41
|
Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na +/Ca 2+ exchanger 3 downregulation. Cell Death Dis 2018; 9:206. [PMID: 29434186 PMCID: PMC5833681 DOI: 10.1038/s41419-017-0227-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Preconditioning (PC) is a phenomenon wherein a mild insult induces resistance to a later, severe injury. Although PC has been extensively studied in several neurological disorders, no studies have been performed in amyotrophic lateral sclerosis (ALS). Here we hypothesize that a sub-toxic acute exposure to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA) is able to delay ALS progression in SOD1 G93A mice and that NCX3, a membrane transporter able to handle the deregulation of ionic homeostasis occurring during ALS, takes part to this neuroprotective effect. Preconditioning effect was examined on disease onset and duration, motor functions, and motor neurons in terms of functional declines and severity of histological damage in male and female mice. Our findings demonstrate that a sub-toxic dose of L-BMAA works as preconditioning stimulus and is able to delay ALS onset and to prolong ALS mice survival. Interestingly, preconditioning prevented NCX3 downregulation in SOD1 G93A mice spinal cord, leading to an increased number of motor neurons associated to a reduced astrogliosis, and reduced the denervation of neuromuscular junctions observed in SOD1 G93A mice. These protective effects were mitigated in ncx3+/− mice. This study established for the first time an animal model of preconditioning in ALS and candidates NCX3 as a new therapeutic target.
Collapse
|
42
|
Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, Turner BJ. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2017; 14:534-551. [PMID: 28980850 PMCID: PMC5915012 DOI: 10.1080/15548627.2017.1385674] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.
Collapse
Affiliation(s)
- Nirma D. Perera
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca K. Sheean
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Chew L. Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yea Seul Shin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip M. Beart
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm K. Horne
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J. Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonté C. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Front Immunol 2017; 8:1689. [PMID: 29250069 PMCID: PMC5714870 DOI: 10.3389/fimmu.2017.01689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Giulia Napoli
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | | | - Giovanna Morello
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Rosario Iemmolo
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Cinzia Volonté
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
44
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
45
|
Lagos-Cabré R, Alvarez A, Kong M, Burgos-Bravo F, Cárdenas A, Rojas-Mancilla E, Pérez-Nuñez R, Herrera-Molina R, Rojas F, Schneider P, Herrera-Marschitz M, Quest AFG, van Zundert B, Leyton L. α Vβ 3 Integrin regulates astrocyte reactivity. J Neuroinflammation 2017; 14:194. [PMID: 28962574 PMCID: PMC5622429 DOI: 10.1186/s12974-017-0968-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Neuroinflammation involves cytokine release, astrocyte reactivity and migration. Neuronal Thy-1 promotes DITNC1 astrocyte migration by engaging αVβ3 Integrin and Syndecan-4. Primary astrocytes express low levels of these receptors and are unresponsive to Thy-1; thus, inflammation and astrocyte reactivity might be necessary for Thy-1-induced responses. Methods Wild-type rat astrocytes (TNF-activated) or from human SOD1G93A transgenic mice (a neurodegenerative disease model) were used to evaluate cell migration, Thy-1 receptor levels, signaling molecules, and reactivity markers. Results Thy-1 induced astrocyte migration only after TNF priming. Increased expression of αVβ3 Integrin, Syndecan-4, P2X7R, Pannexin-1, Connexin-43, GFAP, and iNOS were observed in TNF-treated astrocytes. Silencing of β3 Integrin prior to TNF treatment prevented Thy-1-induced migration, while β3 Integrin over-expression was sufficient to induce astrocyte reactivity and allow Thy-1-induced migration. Finally, hSOD1G93A astrocytes behave as TNF-treated astrocytes since they were reactive and responsive to Thy-1. Conclusions Therefore, inflammation induces expression of αVβ3 Integrin and other proteins, astrocyte reactivity, and Thy-1 responsiveness. Importantly, ectopic control of β3 Integrin levels modulates these responses regardless of inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0968-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Alvaro Alvarez
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Facultad de Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Milene Kong
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Department of Biomedicine, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Areli Cárdenas
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, 837-0854, Santiago, Chile
| | - Edgardo Rojas-Mancilla
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, 837-0854, Santiago, Chile
| | - Ramón Pérez-Nuñez
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | | | - Fabiola Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programme of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile. .,Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.
| |
Collapse
|
46
|
Fabbrizio P, Amadio S, Apolloni S, Volonté C. P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia. Front Cell Neurosci 2017; 11:249. [PMID: 28871219 PMCID: PMC5566572 DOI: 10.3389/fncel.2017.00249] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy and inflammation play determinant roles in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS), an adult-onset neurodegenerative disease characterized by deterioration and final loss of upper and lower motor neurons (MN) priming microglia to sustain neuroinflammation and a vicious cycle of neurodegeneration. Given that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS, and that P2X7 affects autophagy in immune cells, we have investigated if autophagy can be directly triggered by P2X7 activation in primary microglia from superoxide dismutase 1 (SOD1)-G93A mice. We report that P2X7 enhances the expression of the autophagic marker microtubule-associated protein 1 light chain 3 (LC3)-II, via mTOR pathway and concomitantly with modulation of anti-inflammatory M2 microglia markers. We also demonstrate that the autophagic target SQSTM1/p62 is decreased in SOD1-G93A microglia after a short stimulation of P2X7, but increased after a sustained challenge. These effects are prevented by the P2X7 antagonist A-804598, and the autophagy/phosphoinositide-3-kinase inhibitor wortmannin (WM). Finally, a chronic in vivo treatment with A-804598 in SOD1-G93A mice decreases the expression of SQSTM1/p62 in lumbar spinal cord at end stage of disease. These data identify the modulation of the autophagic flux as a novel mechanism by which P2X7 activates ALS-microglia, to be considered for further investigations in ALS.
Collapse
Affiliation(s)
- Paola Fabbrizio
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy.,Department of Systems Medicine, Tor Vergata UniversityRome, Italy
| | - Susanna Amadio
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy
| | - Savina Apolloni
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy
| | - Cinzia Volonté
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy.,CNR, Institute of Cell Biology and NeurobiologyRome, Italy
| |
Collapse
|
47
|
Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D'Ambrosi N. The Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Front Aging Neurosci 2017; 9:242. [PMID: 28790913 PMCID: PMC5524666 DOI: 10.3389/fnagi.2017.00242] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a non-cell autonomous motor neuron loss. While it is generally believed that the disease onset takes place inside motor neurons, different cell types mediating neuroinflammatory processes are considered deeply involved in the progression of the disease. On these grounds, many treatments have been tested on ALS animals with the aim of inhibiting or reducing the pro-inflammatory action of microglia and astrocytes and counteract the progression of the disease. Unfortunately, these anti-inflammatory therapies have been only modestly successful. The non-univocal role played by microglia during stress and injuries might explain this failure. Indeed, it is now well recognized that, during ALS, microglia displays different phenotypes, from surveillant in early stages, to activated states, M1 and M2, characterized by the expression of respectively harmful and protective genes in later phases of the disease. Consistently, the inhibition of microglial function seems to be a valid strategy only if the different stages of microglia polarization are taken into account, interfering with the reactivity of microglia specifically targeting only the harmful pathways and/or potentiating the trophic ones. In this review article, we will analyze the features and timing of microglia activation in the light of M1/M2 phenotypes in the main mice models of ALS. Moreover, we will also revise the results obtained by different anti-inflammatory therapies aimed to unbalance the M1/M2 ratio, shifting it towards a protective outcome.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Alessia Serrano
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy.,IRCCS San Raffaele Scientific Institute, Università Vita-Salute San RaffaeleMilan, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
48
|
Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM, Vaz AR, Brites D. Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at an Early Stage. Mol Neurobiol 2017; 55:4207-4224. [PMID: 28612258 DOI: 10.1007/s12035-017-0631-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.
Collapse
Affiliation(s)
- Carolina Cunha
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Santos
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cátia Gomes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Vaz
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
49
|
M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators Inflamm 2016; 2016:2989548. [PMID: 28090150 PMCID: PMC5206439 DOI: 10.1155/2016/2989548] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a most frequently occurring and severe form of motor neuron disease, causing death within 3-5 years from diagnosis and with a worldwide incidence of about 2 per 100,000 person-years. Mutations in over twenty genes associated with familial forms of ALS have provided insights into the mechanisms leading to motor neuron death. Moreover, mutations in two RNA binding proteins, TAR DNA binding protein 43 and fused in sarcoma, have raised the intriguing possibility that perturbations of RNA metabolism, including that of the small endogenous RNA molecules that repress target genes at the posttranscriptional level, that is, microRNAs, may contribute to disease pathogenesis. At present, the mechanisms by which microglia actively participate to both toxic and neuroprotective actions in ALS constitute an important matter of research. Among the pathways involved in ALS-altered microglia responses, in previous works we have uncovered the hyperactivation of P2X7 receptor by extracellular ATP and the overexpression of miR-125b, both leading to uncontrolled toxic M1 reactions. In order to shed further light on the complexity of these processes, in this short review we will describe the M1/M2 functional imprinting of primary microglia and a role played by P2X7 and miR-125b in ALS microglia activation.
Collapse
|
50
|
Heitzer M, Kaiser S, Kanagaratnam M, Zendedel A, Hartmann P, Beyer C, Johann S. Administration of 17β-Estradiol Improves Motoneuron Survival and Down-regulates Inflammasome Activation in Male SOD1(G93A) ALS Mice. Mol Neurobiol 2016; 54:8429-8443. [PMID: 27957680 DOI: 10.1007/s12035-016-0322-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease manifested by the progressive loss of upper and lower motoneurons. The pathomechanism of ALS is complex and not yet fully understood. Neuroinflammation is believed to significantly contribute to disease progression. Inflammasome activation was recently shown in the spinal cord of human sporadic ALS patients and in the SOD1(G93A) mouse model for ALS. In the present study, we investigated the neuroprotective and anti-inflammatory effects of 17β-estradiol (E2) treatment in pre-symptomatic and symptomatic male SOD1(G93A) mice. Symptomatic mice with E2 substitution exhibited improved motor performance correlating with an increased survival of motoneurons in the lumbar spinal cord. Expression of NLRP3 inflammasome proteins and levels of activated caspase 1 and mature interleukin 1 beta were significantly reduced in SOD1(G93A) mice supplemented with E2.
Collapse
Affiliation(s)
- Marius Heitzer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Kaiser
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mithila Kanagaratnam
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Philipp Hartmann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-BRAIN, 52074, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|