1
|
Chen W, Yan X, Song X, Yang Y, Wang X, Xu G, Wang T, Liu Y, Fan Z, Song G. Effects of Fzd6 on intestinal flora and neuroinflammation in lipopolysaccharide-induced depression-like mice. J Affect Disord 2025; 372:160-172. [PMID: 39643213 DOI: 10.1016/j.jad.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The gut microbiome is critical for the pathophysiology of depression, and inflammation is one of the factors contributing to depression. Fzd6 has been implicated in depression. This study aimed to elucidate the effects of the Fzd6 mutation on gut microbiota structure and the possible regulatory mechanisms involved in depression-associated neuroinflammation. METHODS Wild-type (Fzd6WT) and Fzd6 mutant (Fzd6Q152E) male mice were treated with lipopolysaccharide (LPS) for 7 days. Behavioral experiments were used to detect the behavioral changes of mice in each group, and the composition of intestinal flora and systemic inflammation levels of mice were further detected. RESULTS In LPS mice, the Fzd6 mutation enhanced depression-like behavior symptoms, increased the release of pro-inflammatory cytokines, decreased the release of anti-inflammatory cytokines, and caused intestinal flora disturbance. Subsequently, 16SrRNA sequencing revealed significant changes in the relative abundance of the inflammation-associated bacterial groups Ruminococcaceae and Lachnospiraceae in Fzd6Q152E mice. In mice with depression, the levels of G protein-coupled receptors, GPR41 and GPR43, and glucagon-like peptide-1 (GLP-1) in the small intestine were down-regulated, and the expression of GLP-1 receptor (GLP-1R), peroxisome proliferators activated receptors gamma (PPAR-γ), and nuclear factor kappa-B inhibitor alpha (IκBα) in the hippocampus was also down-regulated, while the expression of nuclear factor kappa-B p65 (NF-κB p65) was up-regulated. LIMITATIONS The size of the spleen was not studied in this model, and the Fzd6 mutation itself does not cause systemic inflammation such as IL-6. CONCLUSION These results demonstrate that mutations in Fzd6 regulate the composition of the gut flora, which contributes to depression-associated inflammation.
Collapse
Affiliation(s)
- Wenlu Chen
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaoru Yan
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yiyan Yang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaotang Wang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guoqiang Xu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Tian Wang
- School and Hospital of Stomatology, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yaqi Liu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Zhao Fan
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guohua Song
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China.
| |
Collapse
|
2
|
Madeshiya AK, Quintanilla B, Whitehead C, Tomlinson S, Pillai A. Systemic Administration of a Site-Targeted Complement Inhibitor Attenuates Chronic Stress-Induced Social Behavior Deficits and Neuroinflammation in Mice. Cells 2024; 13:1988. [PMID: 39682736 DOI: 10.3390/cells13231988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic stress, a risk factor for many neuropsychiatric conditions, causes dysregulation in the immune system in both humans and animal models. Additionally, inflammation and synapse loss have been associated with deficits in social behavior. The complement system, a key player of innate immunity, has been linked to social behavior impairments caused by chronic stress. However, it is not known whether complement inhibition can help prevent neuroinflammation and behavioral deficits caused by chronic stress. In this study, we investigated the potential of a site-targeted complement inhibitor to ameliorate chronic stress-induced changes in social behavior and inflammatory markers in the prefrontal cortex (PFC) and hippocampus. Specifically, we investigated the use of C2-Crry, which comprises a natural antibody-derived single-chain antibody (ScFv) targeting domain-designated C2, linked to Crry, a C3 activation inhibitor. The C2 targeting domain recognizes danger-associated molecular patterns consisting of a subset of phospholipids that become exposed following cell stress or injury. We found that systemic administration of C2-Crry attenuated chronic stress-induced social behavioral impairments in mice. Furthermore, C2-Crry administration significantly decreased microglia/macrophage and astrocyte activation markers in the PFC and hippocampus. These findings suggest that site-targeted complement inhibition could offer a promising, safe, and effective strategy for treating chronic stress induced behavioral and immune function disorders.
Collapse
Affiliation(s)
- Amit Kumar Madeshiya
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Brandi Quintanilla
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Carl Whitehead
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Stephen Tomlinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
3
|
Yao C, Jiang N, Sun X, Zhang Y, Pan R, He Q, Chang Q, Liu X. Effects of inulin-type oligosaccharides (JSO) from Cichorium intybus L. on behavioral deficits induced by chronic restraint stress in mice and associated molecular alterations. Front Pharmacol 2024; 15:1484337. [PMID: 39555096 PMCID: PMC11563967 DOI: 10.3389/fphar.2024.1484337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Depression and anxiety are serious psychiatric disorders with significant physical and mental health impacts, necessitating the development of safe and effective treatments. This study aimed to evaluate the efficacy of Jiangshi oligosaccharide (JSO), a type of inulin-based oligosaccharide, in alleviating anxiety and depression and to investigate the underlying molecular mechanisms. Using a mouse model of chronic restraint stress (CRS), JSO was administered orally at doses of 50, 100, and 200 mg/kg for 21 days. Behavioral tests, including the novelty-suppressed feeding test (NSFT), open field test (OFT), elevated plus maze test (EPMT), tail suspension test (TST), and forced swimming test (FST), demonstrated that JSO significantly improved anxiety- and depressive-like behaviors (P< 0.05). Notably, JSO reduced feeding latency in the NSFT, increased time spent in the center in the OFT, enhanced time and entries into open arms in the EPMT, and decreased immobility time in the TST and FST (P< 0.01). Histological and molecular analyses revealed that JSO treatment attenuated neuronal loss in the hippocampus (Hip) and medial prefrontal cortex (mPFC) and reduced the expression of inflammatory markers such as Iba-1 and GFAP in these regions. JSO significantly downregulated the mRNA and protein expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6) while increasing anti-inflammatory markers (IL-10, TGF-β) (P< 0.05). Furthermore, JSO inhibited the c-GAS-STING-NLRP3 axis and apoptosis-related proteins (Bax/Bcl-2, Caspase-3/8/9) while promoting the expression of brain-derived neurotrophic factor (BDNF), PSD-95, and synaptophysin (SYP), indicating improved neuronal survival and synaptic plasticity (P< 0.01). These findings suggest that JSO exerts potent anti-anxiety and antidepressant effects by modulating neuroinflammation, synaptic function, and neuronal apoptosis in the Hip and mPFC of CRS mice. This study highlighted JSO as a potential therapeutic agent for stress-induced anxiety and depression.
Collapse
Affiliation(s)
- Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruile Pan
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Wang R, Ji L, Yuan S, Liu X, Liang Z, Chen W, Wang B, Hu S, Liu Z, Zeng Z, Song Y, Wu T, Chen B. Microglial forkhead box O3a deficiency attenuates LPS-induced neuro-inflammation and depressive-like behaviour through regulating the expression of peroxisome proliferator-activated receptor-γ. Br J Pharmacol 2024; 181:3908-3925. [PMID: 38881194 DOI: 10.1111/bph.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Depression is closely linked with microglial activation and neuro-inflammation. Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays an important role in M2 activation of microglia. Forkhead box (FOX) O3a has been implicated in the regulation of mood-relevant behaviour. However, little is known about the inflammatory mechanisms of in the microglia of the brain. Here, we have investigated the role of microglial FOXO3a/PPAR-γ in the development of depression. EXPERIMENTAL APPROACH The effect of FOXO3a on microglia inflammation was analysed in vitro and in lipopolysaccharide (LPS)-induced depression-like behaviours in vivo. ChIP-seq and Dual-luciferase reporter assays were used to confirm the interaction between FOXO3a and PPAR-γ. Behavioural changes were measured, while inflammatory cytokines, microglial phenotype and morphological properties were determined by ELISA, qRT-PCR, western blotting and immunostaining. KEY RESULTS Overexpression of FOXO3a significantly attenuated expression of PPAR-γ and enhanced the microglial polarization towards the M1 phenotype, while knockdown of FOXO3a had the opposite effect. FOXO3a binds to the promoters of PPAR-γ and decreases its transcription activity. Importantly, deacetylation and activation of FOXO3a regulate LPS-induced neuro-inflammation by inhibiting the expression of PPAR-γ in microglia cells, supporting the antidepressant potential of histone deacetylase inhibitors. Microglial FOXO3a deficiency in mice alleviated LPS-induced neuro-inflammation and depression-like behaviours but failed to reduce anxiety behaviour, whereas pharmacological inhibition of PPAR-γ by GW9662 restored LPS-induced microglial activation and depressive-like behaviours in microglial FOXO3a-deficient mice. CONCLUSION AND IMPLICATIONS FOXO3a/PPAR-γ axis plays an important role in microglial activation and depression, identifying a new therapeutic avenue for the treatment of major depression.
Collapse
Affiliation(s)
- Rikang Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lianru Ji
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shun Yuan
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiamin Liu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi Liang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjing Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bocheng Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Suifa Hu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiwen Zeng
- Department for Bipolar Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Wu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Zubareva OE, Kharisova AR, Roginskaya AI, Kovalenko AA, Zakharova MV, Schwarz AP, Sinyak DS, Zaitsev AV. PPARβ/δ Agonist GW0742 Modulates Microglial and Astroglial Gene Expression in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:10015. [PMID: 39337503 PMCID: PMC11432388 DOI: 10.3390/ijms251810015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR β/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223 Saint Petersburg, Russia; (O.E.Z.); (A.R.K.); (A.I.R.); (A.A.K.); (M.V.Z.); (A.P.S.); (D.S.S.)
| |
Collapse
|
6
|
Farinha-Ferreira M, Magalhães DM, Neuparth-Sottomayor M, Rafael H, Miranda-Lourenço C, Sebastião AM. Unmoving and uninflamed: Characterizing neuroinflammatory dysfunction in the Wistar-Kyoto rat model of depression. J Neurochem 2024; 168:2443-2460. [PMID: 38430009 DOI: 10.1111/jnc.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Reductionistic research on depressive disorders has been hampered by the limitations of animal models. Recently, it has been hypothesized that neuroinflammation is a key player in depressive disorders. The Wistar-Kyoto (WKY) rat is an often-used animal model of depression, but no information so far exists on its neuroinflammatory profile. As such, we compared male young adult WKY rats to Wistar (WS) controls, with regard to both behavioral performance and brain levels of key neuroinflammatory markers. We first assessed anxiety- and depression-like behaviors in a battery consisting of the Elevated Plus Maze (EPM), the Novelty Suppressed Feeding (NSFT), Open Field (OFT), Social Interaction (SIT), Forced Swim (FST), Sucrose Preference (SPT), and Splash tests (ST). We found that WKY rats displayed increased NSFT feeding latency, decreased OFT center zone permanence, decreased EPM open arm permanence, decreased SIT interaction time, and increased immobility in the FST. However, WKY rats also evidenced marked hypolocomotion, which is likely to confound performance in such tests. Interestingly, WKY rats performed similarly, or even above, to WS levels in the SPT and ST, in which altered locomotion is not a significant confound. In a separate cohort, we assessed prefrontal cortex (PFC), hippocampus and amygdala levels of markers of astrocytic (GFAP, S100A10) and microglial (Iba1, CD86, Ym1) activation status, as well as of three key proinflammatory cytokines (IL-1β, IL-6, TNF-α). There were no significant differences between strains in any of these markers, in any of the regions assessed. Overall, results highlight that behavioral data obtained with WKY rats as a model of depression must be carefully interpreted, considering the marked locomotor activity deficits displayed. Furthermore, our data suggest that, despite WKY rats replicating many depression-associated neurobiological alterations, as shown by others, this is not the case for neuroinflammation-related alterations, thus representing a novel limitation of this model.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Neuparth-Sottomayor
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Rafael
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
8
|
Estrada-Camerena E, López-Rubalcava C, Vega-Rivera NM, González-Trujano ME. Antidepressant- and Anxiolytic-like Effects of Pomegranate: Is It Acting by Common or Well-Known Mechanisms of Action? PLANTS (BASEL, SWITZERLAND) 2024; 13:2205. [PMID: 39204642 PMCID: PMC11358894 DOI: 10.3390/plants13162205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The pharmacological effects of pomegranates have been described considering metabolic aspects such as hypoglycemic and hypolipidemic activities. The pomegranate extract has activity on the central nervous system (CNS) as a natural antidepressant and anxiolytic. The chemical composition of pomegranates is complex since the bioactive compounds are multiple secondary metabolites that have been identified in the extracts derived from the peel, seed, flowers, leaves, or in their combination; so, it has not been easy to identify an individual compound as responsible for its observed pharmacological properties. From this point of view, the present review analyzes the effects of crude extracts or fractions of pomegranates and their possible mechanisms of action concerning antidepressant- and anxiolytic-like effects in animal models. Serotonin receptors, estrogen receptors, the peroxisome proliferator-activated receptor gamma (PPARγ), or monoamine oxidase enzymes, as well as potent antioxidant and neuroplasticity properties, have been described as possible mediators involved in the antidepressant- and anxiolytic-like behaviors after pomegranate treatment. The pharmacological effects observed on the CNS in experimental models associated with a specific stress level suggest that pomegranates could simultaneously modulate the stress response by activating several targets. For the present review, scientific evidence was gathered to integrate it and suggest a possible pathway for mediators to be involved in the mechanisms of action of the pomegranate's antidepressant- and anxiolytic-like effects. Furthermore, the potential benefits are discussed on comorbid conditions with anxiety and depression, such as perimenopause transition and pain.
Collapse
Affiliation(s)
- Erika Estrada-Camerena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| | - Carolina López-Rubalcava
- Laboratorio 17, Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados, Sede Sur, Mexico City 14330, Mexico;
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| |
Collapse
|
9
|
Zhu Q, Han Y, He Y, Meng P, Fu Y, Yang H, He G, Long M, Shi Y. Quercetin inhibits neuronal Ferroptosis and promotes immune response by targeting lipid metabolism-related gene PTGS2 to alleviate breast cancer-related depression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155560. [PMID: 38815404 DOI: 10.1016/j.phymed.2024.155560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Quercetin, the key ingredient in Xiaoyao Kangai Jieyu Formula, has been previously found to relieve breast cancer-related depression (BCRD). PURPOSE We want to explore the potential mechanisms and therapeutic targets of quercetin alleviating BCRD. METHODS BALB/c mice were injected subcutaneously with 4T1 cells and corticosterone (CORT) to create a BCRD mice model. The primary hippocampal neurons were co-induced with 10 μg/ml lipopolysaccharide (LPS) and 200 μM CORT for 6 h to establish an in vitro model of BCRD. Quercetin was applied to explore its effect on disease symptoms, gut microbiota, and lipid metabolism of BCRD mice. Lipid metabolism-related genes were screened based on network pharmacology. Molecular docking was employed to prove whether quercetin bound to prostaglandin-endoperoxide synthase 2 (PTGS2). PTGS2 overexpression was carried out to explore the underlying mechanism of quercetin treatment on BCRD. RESULTS Quercetin treatment not only altered the composition and abundance of gut microbiota but also alleviated abnormal lipid metabolism in BCRD mice. In particular, quercetin down-regulated BCRD and lipid metabolism-related genes screened by network pharmacology, especially PTGS2. Further, molecular docking verified the stable binding between quercetin and PTGS2. In hippocampal neurons, quercetin promoted proliferation but reduced ferroptosis-related markers (total Fe, Fe2+, MDA, and ROS) levels by targeting PTGS2. In BCRD mice, quercetin reduced the high immobility time and increased the sucrose preference rate and serotonin (5-HT), dopamine (DA), and noradrenaline (NE) levels. Meanwhile, quercetin increased CD4+/CD8+ T cells ratio and IL-2 and IFN-γ levels but reduced CA153 and IL-10 levels to alleviate BCRD development. However, PTGS2 overexpression reversed these effects of quercetin on BCRD. CONCLUSION Quercetin inhibited neuronal ferroptosis and promoted immune responses in BCRD mice by targeting the lipid metabolism-related gene PTGS2. This provided a reference for quercetin in the treatment of BCRD.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yuanshan Han
- Research Office of the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Pan Meng
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Hui Yang
- Animal Experiment Center, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Gefei He
- Department of Pharmacy, the First Hospital of Changsha, Changsha 410005, PR China
| | - Minghui Long
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| | - Yingrui Shi
- Hunan Province Maternal and Child Care Hospital, The Maternal and Child Care Hospital of South University of China, Changsha 410028, PR China.
| |
Collapse
|
10
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
11
|
Hsu C, Pan Y, Zheng Y, Lo RY, Yang F. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways. CNS Neurosci Ther 2023; 29:4113-4123. [PMID: 37401041 PMCID: PMC10651950 DOI: 10.1111/cns.14333] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Activated microglia can be polarized to the pro-inflammatory M1 phenotype and the anti-inflammatory M2 phenotype. Low-intensity pulsed ultrasound (LIPUS) can attenuate pro-inflammatory responses in activated microglia. OBJECTIVE This study aimed to investigate the effects of LIPUS on M1/M2 polarization of microglial cells and the regulatory mechanisms associated with signaling pathways. METHODS BV-2 microglial cells were stimulated by lipopolysaccharide (LPS) to an M1 phenotype or by interleukin-4 (IL-4) to an M2 phenotype. Some microglial cells were exposed to LIPUS, while others were not. M1/M2 marker mRNA and protein expression were measured using real-time polymerase chain reaction and western blot, respectively. Immunofluorescence staining was performed to determine inducible nitric oxide synthase (iNOS)-/arginase-1 (Arg-1)- and CD68-/CD206-positive cells. RESULTS LIPUS treatment significantly attenuated LPS-induced increases in inflammatory markers (iNOS, tumor necrosis factor-α, interleukin-1β, and interleukin-6) as well as the expression of cell surface markers (CD86 and CD68) of M1-polarized microglia. In contrast, LIPUS treatment significantly enhanced the expression of M2-related markers (Arg-1, IL-10, and Ym1) and membrane protein (CD206). LIPUS treatment prevented M1 polarization of microglia and enhanced or sustained M2 polarization by regulating M1/M2 polarization through the signal transducer and activator of transcription 1/STAT6/peroxisome proliferator-activated receptor gamma pathways. CONCLUSIONS Our findings suggest that LIPUS inhibits microglial polarization and switches microglia from the M1 to the M2 phenotype.
Collapse
Affiliation(s)
- Chin‐Hung Hsu
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Ju Pan
- Department of PsychiatryFar Eastern Memorial HospitalNew TaipeiTaiwan
- Department of Chemical Engineering and Materials ScienceYuan Ze UniversityTaoyuanTaiwan
| | - Yin‐Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Raymond Y. Lo
- Department of NeurologyBuddhist Tzu Chi General Hospital and Tzu Chi UniversityHualienTaiwan
| | - Feng‐Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
12
|
Hong Y, Jiang L, Tang F, Zhang M, Cui L, Zhong H, Xu F, Li M, Chen C, Chen L. PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia. Mol Biol Rep 2023; 50:10277-10285. [PMID: 37971567 DOI: 10.1007/s11033-023-08815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Recent reports suggest that peroxisome proliferator-activated receptor-γ (PPAR-γ) could promote microglial M2 polarization to inhibit inflammation. However, the specific molecular mechanisms that trigger PPAR-γ's anti-inflammatory ability in microglia are yet to be expounded. Thus, in this study, we aimed to explore the molecular mechanisms behind the anti-inflammatory effects of PPAR-γ in hypoxia-stimulated rat retinal microglial cells. METHODS AND RESULTS We used shRNA expressing lentivirus to knock down PPAR-γ and CD200 genes, and we assessed hypoxia-induced polarization markers release - M1 (iNOS, IL-1β, IL-6, and TNF-α) and M2 (Arg-1, YM1, IL-4, and IL-10) by RT-PCR. We also monitored PPAR-γ-related signals (PPAR-γ, PPAR-γ in cytoplasm or nucleus, CD200, and CD200Rs) by Western blot and RT-PCR. Our results showed that hypoxia enhanced PPAR-γ and CD200 expressions in microglial cells. Moreover, PPAR-γ agonist 15d-PGJ2 elevated CD200 and CD200R1 expressions, whereas sh-PPAR-γ had the opposite effect. Following hypoxia, expressions of M1 markers increased significantly, while those of M2 markers decreased, and the above effects were attenuated by 15d-PGJ2. Conversely, knocking down PPAR-γ or CD200 inhibited the polarization of microglial cells to M2 phenotype. CONCLUSION Our findings demonstrated that PPAR-γ performed an anti-inflammatory function in hypoxia-stimulated microglial cells by promoting their polarization to M2 phenotype via the CD200-CD200R1 pathway.
Collapse
Affiliation(s)
- Yiyi Hong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Jiang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fen Tang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ling Cui
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Haibin Zhong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fan Xu
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lifei Chen
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
13
|
Xu A, Yang Y, Shao Y, Jiang M, Sun Y, Feng B. FHL2 regulates microglia M1/M2 polarization after spinal cord injury via PARP14-depended STAT1/6 pathway. Int Immunopharmacol 2023; 124:110853. [PMID: 37708708 DOI: 10.1016/j.intimp.2023.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Manyu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Hong H, Su J, Zhang Y, Xu G, Huang C, Bao G, Cui Z. A novel role of lactate: Promotion of Akt-dependent elongation of microglial process. Int Immunopharmacol 2023; 119:110136. [PMID: 37075668 DOI: 10.1016/j.intimp.2023.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
As a key component of the innate immune system, over-activation of microglia that occurs in nervous system diseases is usually accompanied by retraction of their branched processes. Reversal of microglial process retraction is a potential strategy to prevent neuroinflammation. In our previous studies, we reported some molecules that can promote the elongation of microglial processes under in vitro and in vivo conditions, such as butyrate, β-hydroxybutyrate, sulforaphane, diallyl disulfide, compound C, and KRIBB11. Here, we found that lactate, a molecule that mimics endogenous lactic acid and has been shown to suppress neuroinflammation, reversibly triggered significant elongations of processes in microglia under cultured and in vivo conditions. Pretreatment with lactate also prevented lipopolysaccharide (LPS)-induced shortening of microglial processes under cultured and in vivo conditions, pro-inflammatory responses in primary cultured microglia and prefrontal cortex, and depression-like behaviors in mice. Mechanistic studies revealed that incubation with lactate increased phospho-Akt levels in primary cultured microglia and inhibition of Akt blocked the pro-elongation effect of lactate on the microglial process under cultured and in vivo conditions, suggesting that the regulatory effect of lactate on the microglial process is dependent on activation of Akt. Inhibition of Akt also abolished the preventive effect of lactate on LPS-induced inflammatory responses in primary cultured microglia and prefrontal cortex and on LPS-induced depression-like behaviors in mice. Overall, these results demonstrate that lactate can induce Akt-mediated elongation of the microglial process, which appropriately contributes to the inhibition of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Yi Zhang
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated of Nanjing University Medical School, #66 Renmin South Road, Yancheng 224006, Jiangsu Province, China; Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
15
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Liu F, Cao L, Hu S, Ye H, Wu Q, Wu L. Muscone promotes functional recovery by facilitating microglia polarization into M2 phenotype through PPAR-γ pathway after ischemic stroke. Cell Immunol 2023; 386:104704. [PMID: 36921554 DOI: 10.1016/j.cellimm.2023.104704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Exploring regimens to facilitate microglia transformation from M1 to M2 phenotype is a feasible strategy to suppress neuroinflammation, therefore reinforcing functional recovery after ischemic stroke. Muscone easily crosses the blood brain barrier (BBB) and distributes throughout the brain. Here, the results illustrated the administration of 8 mg/kg muscone promoted functional recovery through reducing the infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) staining after ischemic stroke in mice. Then, the expression of pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), was significantly decreased, whereas the level of anti-inflammatory agents including C-X-C Motif Chemokine Ligand 1 (CXCL1), transforming growth factor-β (TGF-β) and interleukin-10 (IL-10) was obviously elevated in penumbra with the treatment of 8 mg/kg muscone using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), western blot and enzyme-linked immunosorbent assay (ELISA) tests. Subsequently, the results showed the application of muscone upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) to facilitate microglia transformation into M2 phenotype using RT-qPCR, western blot and immunofluorescence analysis. Collectively, the present study provides evidence for our hypothesis that muscone intensifies microglia transformation into M2 phenotype via activating PPAR-γ signaling pathway in penumbra after ischemic stroke. These findings demonstrate muscone is a promising candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Liwei Cao
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Shejing Hu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Hongxiang Ye
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Qiang Wu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China
| | - Le Wu
- Department of Neurology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei 430050, PR China.
| |
Collapse
|
17
|
Tang C, Wang Q, Shen J, Wang C, Ding H, Wen S, Yang F, Jiao R, Wu X, Li J, Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm Sin B 2023; 13:2017-2038. [DOI: 10.1016/j.apsb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
|
18
|
Targeting Underlying Inflammation in Carcinoma Is Essential for the Resolution of Depressiveness. Cells 2023; 12:cells12050710. [PMID: 36899845 PMCID: PMC10000718 DOI: 10.3390/cells12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
In modern clinical practice and research on behavioral changes in patients with oncological problems, there are several one-sided approaches to these problems. Strategies for early detection of behavioral changes are considered, but they must take into account the specifics of the localization and phase in the course and treatment of somatic oncological disease. Behavioral changes, in particular, may correlate with systemic proinflammatory changes. In the up-to-date literature, there are a lot of useful pointers on the relationship between carcinoma and inflammation and between depression and inflammation. This review is intended to provide an overview of these similar underlying inflammatory disturbances in both oncological disease and depression. The specificities of acute and chronic inflammation are considered as a basis for causal current and future therapies. Modern therapeutic oncology protocols may also cause transient behavioral changes, so assessment of the quality, quantity, and duration of behavioral symptoms is necessary to prescribe adequate therapy. Conversely, antidepressant properties could be used to ameliorate inflammation. We will attempt to provide some impetus and present some unconventional potential treatment targets related to inflammation. It is certain that only an integrative oncology approach is justifiable in modern patient treatment.
Collapse
|
19
|
Yang J, Shi X, Wang Y, Ma M, Liu H, Wang J, Xu Z. Multi-Target Neuroprotection of Thiazolidinediones on Alzheimer's Disease via Neuroinflammation and Ferroptosis. J Alzheimers Dis 2023; 96:927-945. [PMID: 37927258 PMCID: PMC10741341 DOI: 10.3233/jad-230593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Zhao L, Xu DG, Hu YH. The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma-A Review. Cell Mol Neurobiol 2023; 43:193-204. [PMID: 35137327 DOI: 10.1007/s10571-022-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system and normally should be treated by synthetic therapy, mainly with surgical operation assisted by radiotherapy and chemotherapy; however, the therapeutic effect has not been satisfactory, and the 5-year survival rates of anaplastic glioma and glioblastoma are 29.7% and 5.5%, respectively. To identify a more efficient strategy to treat glioma, in recent years, the influence of the inflammatory microenvironment on the progression of glioma has been studied. Various immunophenotypes exist in microglial cells, each of which has a different functional property. In this review, references about the phenotypic conversion of microglial cell polarity in the microenvironment were briefly summarized, and the differences in polarized state and function, their influences on glioma progression under different physiological and pathological conditions, and the interactive effects between the two were mainly discussed. Certain signaling molecules and regulatory pathways involved in the microglial cell polarization process were investigated, and the feasibility of targeted regulation of microglial cell conversion to an antitumor phenotype was analyzed to provide new clues for the efficient auxiliary treatment of neural glioma.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dong-Gang Xu
- Institute of Military Cognition and Brain Science, Research Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Yu-Hua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Gao S, Jiang Y, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Sun H, Wang J, Chen W. Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Curr Neuropharmacol 2023; 21:1992-2005. [PMID: 36529923 PMCID: PMC10514522 DOI: 10.2174/1570159x21666221216162606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Hao Sun
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
22
|
Wang W, Lin W, Chen G, You Z. History and main research of psychoneuroimmunology in China. Brain Behav Immun Health 2022; 26:100562. [DOI: 10.1016/j.bbih.2022.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
|
23
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
25
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
26
|
Jiang X, Yi S, Liu Q, Su D, Li L, Xiao C, Zhang J. Asperosaponin VI ameliorates the CMS-induced depressive-like behaviors by inducing a neuroprotective microglial phenotype in hippocampus via PPAR-γ pathway. J Neuroinflammation 2022; 19:115. [PMID: 35610721 PMCID: PMC9131532 DOI: 10.1186/s12974-022-02478-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background The natural compound asperosaponin VI has shown potential as an antidepressant, but how it works is unclear. Here, we explored its effects on mice exposed to chronic mild stress (CMS) and the underlying molecular pathways. Methods Mice were exposed to CMS for 3 weeks followed by asperosaponin VI (40 mg/kg) or imipramine (20 mg/kg) for another 3 weeks. Depression-like behaviors were assessed in the forced swimming test (FST), sucrose preference test (SPT), tail suspension test (TST). Microglial phenotypes were evaluated using immunofluorescence staining, real-time quantitative PCR and enzyme-linked immunosorbent assays in hippocampus of mice. In some experiments, stressed animals were treated with the PPAR-γ antagonist GW9662 to examine its involvement in the effects of asperosaponin VI. Blockade of PPAR-γ in asperosaponin VI-treated primary microglia in the presence of lipopolysaccharide (LPS) was executed synchronously. The nuclear transfer of PPAR-γ in microglia was detected by immunofluorescence staining in vitro and in vivo. A co-cultured model of neuron and microglia was used for evaluating the regulation of ASA VI on the microglia–neuron crosstalk molecules. Results Asperosaponin VI ameliorated depression-like behaviors of CMS mice based on SPT, TST and FST, and this was associated with a switch of hippocampal microglia from a pro-inflammatory (iNOS+-Iba1+) to neuroprotective (Arg-1+-Iba1+) phenotype. CMS reduced the expression levels of PPAR-γ and phosphorylated PPAR-γ in hippocampus, which asperosaponin VI partially reversed. GW9662 treatment prevented the nuclear transfer of PPAR-γ in asperosaponin VI-treated microglia and inhibited the induction of Arg-1+ microglia. Blockade of PPAR-γ signaling also abolished the ability of asperosaponin VI to suppress pro-inflammatory cytokines while elevating anti-inflammatory cytokines in the hippocampus of CMS mice. The asperosaponin VI also promoted interactions between hippocampal microglia and neurons by enhancing CX3CL1/CX3CR1 and CD200/CD200R, and preserved synaptic function based on PSD95, CamKII β and GluA levels, but not in the presence of GW9662. Blockade of PPAR-γ signaling also abolished the antidepressant effects of asperosaponin VI in the SPT, TST and FST. Conclusion CMS in mice induces a pro-inflammatory microglial phenotype that causes reduced crosstalk between microglia and neuron, inflammation and synaptic dysfunction in the hippocampus, ultimately leading to depression-like behaviors. Asperosaponin VI may ameliorate the effects of CMS by inducing microglia to adopt a PPAR-γ-dependent neuroprotective phenotype. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02478-y.
Collapse
Affiliation(s)
- Xue Jiang
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Saini Yi
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qin Liu
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Dapeng Su
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Liangyuan Li
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinqiang Zhang
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
27
|
Coffee Polyphenol, Chlorogenic Acid, Suppresses Brain Aging and Its Effects Are Enhanced by Milk Fat Globule Membrane Components. Int J Mol Sci 2022; 23:ijms23105832. [PMID: 35628642 PMCID: PMC9145055 DOI: 10.3390/ijms23105832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor β1 (TGF-β1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.
Collapse
|
28
|
Tang T, Wang X, Qi E, Li S, Sun H. Ginkgetin Promotes M2 Polarization of Microglia and Exert Neuroprotection in Ischemic Stroke via Modulation of PPARγ Pathway. Neurochem Res 2022; 47:2963-2974. [PMID: 35593977 DOI: 10.1007/s11064-022-03583-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Neuroinflammation plays an important role in the pathophysiological process of acute cerebral infarction, which may aggravate brain injury and hinder neuro-repair. Microglia are innate immune cells in the brain. Ginkgetin has anti-inflammatory and neuroprotective effects, but the mechanism remains unclear. This study aims to explore the regulatory effects of ginkgetin on microglia polarization in brain ischemia. Oxygen glucose deprivation (OGD) cellular model and middle cerebral artery occlusion (MCAO) animal model was used in this study. We first observed the dynamic process of microglia polarization in ischemic stroke, and then investigated the effect of ginkgetin treatment on microglia polarization. Finally, we studied the role of PPARγ signaling pathway and the blocking effect of PPARγ antagonist GW9662 in this process. OGD and cerebral ischemia polarized microglia mainly to M1 type. However, ginkgetin treatment converted microglia from M1 type to M2 type, inhibited neuroinflammation, and exerted neuronal protective effects. PPARγ signaling pathway was activated during this process. The above effects could be blocked by GW9662. Ginkgetin can promote M2 polarization of microglia through PPARγ signaling pathway, thereby inhibiting neuroinflammation and promoting recovery of neurological functions in ischemic stroke.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiongwei Wang
- Department of Neurosurgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Enbo Qi
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing Peroxisome Proliferator-Activated Receptor-gamma in 3-Nitropropionic Acid-Induced Striatal Neurotoxicity in Rats. Mol Neurobiol 2022; 59:4368-4383. [PMID: 35553009 PMCID: PMC9167199 DOI: 10.1007/s12035-022-02856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Telmisartan (TEL) is an angiotensin II type 1 receptor blocker and a partial activator of peroxisome proliferator-activated receptor-gamma (PPARγ), which regulates inflammatory and apoptotic pathways. Increasing evidence has demonstrated the PPARγ agonistic property of TEL in several brain disorders. This study aims to explore the neuroprotective impact of TEL in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. The PPARγ effect of TEL was affirmed by using the PPARγ agonist pioglitazone (PIO), and the antagonist GW9662. 3-NP led to a significant reduction in body weight alongside motor and cognitive functioning. The striata of the 3-NP-treated rats showed energy-deficit, microglia-mediated inflammatory reactions, apoptotic damage as well as histopathological lesions. PIO and TEL improved motor and cognitive perturbations induced by 3-NP, as confirmed by striatal histopathological examination, energy restoration, and neuronal preservation. Both drugs improved mitochondrial biogenesis evidenced by elevated mRNA expression of PPARγ, PGC-1α, and TFAM, alongside increased striatal ATP and SDH. The mitochondrial effect of TEL was beyond PPARγ activation. As well, their anti-inflammatory effect was attributed to suppression of microglial activation, and protein expression of pS536 p65 NF-κB with marked attenuation of striatal inflammatory mediator's release. Anti-inflammatory cytokine IL-10 expression was concurrently increased. TEL effectively participated in neuronal survival as it promoted phosphorylation of Akt/GSK-3β, further increased Bcl-2 expression, and inhibited cleavage of caspase-3. Interestingly, co-treatment with GW9662 partially revoked the beneficial effects of TEL. These findings recommend that TEL improves motor and cognitive performance, while reducing neuronal inflammation and apoptosis in 3-NP-induced neurotoxicity via a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Riham M Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
30
|
Tang CF, Wang CY, Wang JH, Wang QN, Li SJ, Wang HO, Zhou F, Li JM. Short-Chain Fatty Acids Ameliorate Depressive-Like Behaviors of High Fructose-Fed Mice by Rescuing Hippocampal Neurogenesis Decline and Blood–Brain Barrier Damage. Nutrients 2022; 14:nu14091882. [PMID: 35565849 PMCID: PMC9105414 DOI: 10.3390/nu14091882] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Excessive fructose intake is associated with the increased risk of mental illness, such as depression, but the underlying mechanisms are poorly understood. Our previous study found that high fructose diet (FruD)-fed mice exhibited neuroinflammation, hippocampal neurogenesis decline and blood–brain barrier (BBB) damage, accompanied by the reduction of gut microbiome-derived short-chain fatty acids (SCFAs). Here, we found that chronic stress aggravated these pathological changes and promoted the development of depressive-like behaviors in FruD mice. In detail, the decreased number of newborn neurons, mature neurons and neural stem cells (NSCs) in the hippocampus of FruD mice was worsened by chronic stress. Furthermore, chronic stress exacerbated the damage of BBB integrity with the decreased expression of zonula occludens-1 (ZO-1), claudin-5 and occludin in brain vasculature, overactivated microglia and increased neuroinflammation in FruD mice. These results suggest that high fructose intake combined with chronic stress leads to cumulative negative effects that promote the development of depressive-like behaviors in mice. Of note, SCFAs could rescue hippocampal neurogenesis decline, improve BBB damage and suppress microglia activation and neuroinflammation, thereby ameliorate depressive-like behaviors of FruD mice exposed to chronic stress. These results could be used to develop dietary interventions to prevent depression.
Collapse
Affiliation(s)
- Chuan-Feng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Cong-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Jun-Han Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Qiao-Na Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Shen-Jie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
| | - Hai-Ou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
- Correspondence: (F.Z.); (J.-M.L.)
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
- Correspondence: (F.Z.); (J.-M.L.)
| |
Collapse
|
31
|
PPARγ Dysfunction in the Medial Prefrontal Cortex Mediates High-Fat Diet-Induced Depression. Mol Neurobiol 2022; 59:4030-4043. [DOI: 10.1007/s12035-022-02806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
|
32
|
Pan S, Ma Y, Yang R, Lu X, You Q, Ye T, Huang C. Indole-3-Carbinol Selectively Prevents Chronic Stress-Induced Depression-but not Anxiety-Like Behaviors via Suppressing Pro-Inflammatory Cytokine Production and Oxido-Nitrosative Stress in the Brain. Front Pharmacol 2022; 13:829966. [PMID: 35242039 PMCID: PMC8886242 DOI: 10.3389/fphar.2022.829966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
Indole-3-carbinol (I3C), a phytochemical enriched in most cruciferous vegetables, has been shown to display various biological activities such as anti-oxidative stress, anti-inflammation, and anti-carcinogenesis. In this study, we investigated the regulatory effect of I3C on chronic stress-induced behavioral abnormalities in mice. Results showed that repeated I3C treatment at the dose of 10, 30, and 60 mg/kg prevented chronic social defeat stress (CSDS)-induced behavioral abnormalities in the tail suspension test, forced swimming test, sucrose preference test, and social interaction test in mice, and did not affect CSDS-induced behavioral abnormalities in the elevated plus maze, light-dark test, and open-field test, suggesting that the I3C treatment selectively prevents the onset of depression- but not anxiety-like behaviors in chronically stressed mice. Further analysis demonstrated that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) mRNA and protein, but did not affect CSDS-induced decreases in levels of IL-4, IL-10, and Ym-1 mRNA and/or protein in the hippocampus and prefrontal cortex, suggesting that I3C can selectively prevent chronic stress-induced pro-inflammatory but not anti-inflammatory responses in the brain. Further analysis showed that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of nitrite and malondialdehyde (MDA), decreases in contents of glutathione (GSH), and decreases in levels of brain derived neurotrophic factor (BDNF) protein in the hippocampus and prefrontal cortex. These results demonstrated that I3C selectively prevents chronic stress-induced depression-like behaviors in mice likely through suppressing neuroinflammation and oxido-nitrosative stress in the brain.
Collapse
Affiliation(s)
- Shengying Pan
- Department of Neurology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
33
|
Cheiran Pereira G, Piton E, Moreira Dos Santos B, Ramanzini LG, Muniz Camargo LF, Menezes da Silva R, Bochi GV. Microglia and HPA axis in depression: An overview of participation and relationship. World J Biol Psychiatry 2022; 23:165-182. [PMID: 34100334 DOI: 10.1080/15622975.2021.1939154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: This narrative review article provides an overview on the involvement of microglia and the hypothalamic-pituitary-adrenal (HPA) axis in the pathophysiology of depression, as well investigates the mutual relationship between these two entities: how microglial activation can contribute to the dysregulation of the HPA axis, and vice versa.Methods: Relevant studies and reviews already published in the Pubmed electronic database involving the themes microglia, HPA axis and depression were used to meet the objectives.Results: Exposition to stressful events is considered a common factor in the mechanisms proposed to explain the depressive disorder. Stress can activate microglial cells, important immune components of the central nervous system (CNS). Moreover, another system involved in the physiological response to stressors is the hypothalamic-pituitary-adrenal (HPA) axis, the main stress response system responsible for the production of the glucocorticoid hormone (GC). Also, mediators released after microglial activation can stimulate the HPA axis, inducing production of GC. Likewise, high levels of GCs are also capable of activating microglia, generating a vicious cycle.Conclusion: Immune and neuroendocrine systems seems to work in a coordinated manner and that their dysregulation may be involved in the pathophysiology of depression since neuroinflammation and hypercortisolism are often observed in this disorder.
Collapse
Affiliation(s)
- Gabriele Cheiran Pereira
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Elisa Piton
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Brenda Moreira Dos Santos
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Guilherme Ramanzini
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Fernando Muniz Camargo
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Rossano Menezes da Silva
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
34
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
35
|
Huang X, Yang Q, Xie L, Lei S. Histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit exacerbates inflammation in depression rats by modulating microglia polarization. Bioengineered 2022; 13:5509-5524. [PMID: 35172677 PMCID: PMC8973615 DOI: 10.1080/21655979.2022.2036892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Depression is a major cause of emotional agony and degraded living quality. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) is involved in histone methylation in human diseases. This experiment was designed to investigate the mechanism of EZH2 on depression. Depression rat model was established via the treatment of chronic unpredictable mild stress (CUMS) to identify rat depression-like behaviors. EZH2 expression was determined and then silenced to assess its effect on depression-like behaviors and neuroinflammation. Microglia were isolated, cultured, identified and activated to assess EZH2 expression. Effect of EZH2 on microglia polarization was evaluated. Next, the binding relation between microRNA (miR)-29b-3p and EZH2 or matrix metallopeptidase 2 (MMP2) was analyzed. Levels of miR-29b-3p expression and MMP2 transcription were examined. Additionally, the role of miR-29b-3p in microglia polarization was tested. Depression-like behaviors were exhibited after CUMS induction. EZH2 was overexpressed in CUMS-treated rats and lipopolysaccharide (LPS)-induced microglia. EZH2 silencing reversed depression-like behaviors. EZH2 silencing mitigated inflammation in depression by manipulating microglia M2-type polarization. EZH2 targeted miR-29b-3p expression to promote MMP2 transcription. Inhibition of miR-29b-3p reversed the role of EZH2 silencing in microglia M2-type polarization and promoted inflammation. EZH2 inhibited miR-29b-3p expression by combining with miR-29b-3p promoter and trimethylation of histone H3-lysine 27-trimethylated upregulation, and then elevated MMP2 transcription and triggered microglia M1-type polarization, thus exacerbating depression-like behaviors and neuroinflammation of depression.
Collapse
Affiliation(s)
- Xuezhu Huang
- Mental Medicine, College of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Psychosomatic Medicine, Nanchong Central Hospital Affiliated with North Sichuan Medical College, Nanchong, Sichuan, China.,Department of Geriatrics, Kangning Hospital Affiliated with Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qin Yang
- Department of Psychosomatic Medicine, Nanchong Central Hospital Affiliated with North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lingling Xie
- Department of Geriatrics, Kangning Hospital Affiliated with Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihong Lei
- Department of Psychosomatic Medicine, Nanchong Central Hospital Affiliated with North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
36
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Jiang X, He H, Mo L, Liu Q, Yang F, Zhou Y, Li L, Su D, Yi S, Zhang J. Mapping the Plasticity of Morphology, Molecular Properties and Function in Mouse Primary Microglia. Front Cell Neurosci 2022; 15:811061. [PMID: 35153675 PMCID: PMC8825496 DOI: 10.3389/fncel.2021.811061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microglia exert diverse functions by responding in diverse ways to different stimuli, yet little is known about the plasticity of various phenotypes that microglia display. We used interferon (IFN)-γ, interleukin (IL)-4 and IL-10 to induce different phenotypes in mouse primary microglia. RNA sequencing was used to identify genes differentially expressed in response to stimulation, and the different stimulated populations were compared in terms of morphology, proliferative capacity, phagocytic ability and neurotoxicity. IFN-γ induced an “immunodefensive” phenotype characterizing both induction of filopodia and upregulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor α. Microglia with this phenotype mediated an acute inflammatory response accompanied by excellent proliferative capacity and neurotoxicity, and remained susceptible to remodeling for up to 48 h after initial stimulation. IL-4 induced an enduring “neuroimmunoregulatory” phenotype involving induction of lamellipodium and persistent upregulation of arginase (Arg)-1 and YM-1 expression. Microglia with this phenotype remained susceptible to remodeling for up to 24 h after initial stimulation. IL-10 induced an “immunosuppressive” phenotype involving induction of ameba-like morphology and upregulation of transforming growth factor β and IL-10 as well as inhibition of inflammation. This phenotype was accompanied by inhibition of self-proliferation, while its morphology, molecular properties and function were the least susceptible to remodeling. IFN-γ, IL-4, or IL-10 appear to induce substantially different phenotypes in microglia. The immunodefensive microglia induced by IFN-γ showed remarkable plasticity, which may help repair CNS inflammation damage under pathological condition. Chronic activation with IL-10 decreases microglial plasticity, which may help protect the brain form the immune response. Our research justifies and guides further studies into the molecular pathways that operate in each phenotype to help multitasking microglia regulate homeostasis in the brain.
Collapse
Affiliation(s)
- Xue Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hui He
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Mo
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fan Yang
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Zhou
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liangyuan Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dapeng Su
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Saini Yi
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Jinqiang Zhang,
| |
Collapse
|
38
|
Gao S, Zhang X, Xu H, Miao D, Qian J, Wu Z, Shi W. Promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine, a selective norepinephrine reuptake inhibitor. Behav Brain Res 2022; 416:113535. [PMID: 34416301 DOI: 10.1016/j.bbr.2021.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Reboxetine, the first selective norepinephrine (NA) reuptake inhibitor used in the treatment of depression, mainly acts by binding to the NA transporter and blocking reuptake of extracellular NA. Recently, some other pharmacological targets beyond the NA transporter are being demonstrated for reboxetine. Peroxisome proliferator activated receptor α (PPARα) is a member of the nuclear hormone receptor family of ligand-dependent transcription factors. Previous reports have demonstrated the role of hippocampal PPARα in the pathophysiology of depression. Here we assume that hippocampal PPARα may participate in the antidepressant mechanism of reboxetine. Therefore, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, the western blotting and adenovirus associated virus (AAV)-mediated genetic knockdown methods were used together in the present study. Our results showed that repeated reboxetine treatment markedly restored the decreasing effects of CSDS on the expression of hippocampal PPARα, brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (pCREB). Pharmacological blockade of PPARα notably prevented the antidepressant-like effects of reboxetine in the CSDS model. Furthermore, genetic knockdown of hippocampal PPARα also fully abolished the antidepressant-like effects of reboxetine in the CSDS model. Taken together, promoting the hippocampal PPARα expression participates in the antidepressant mechanism of reboxetine.
Collapse
Affiliation(s)
- Shangyan Gao
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Xueling Zhang
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China
| | - Hui Xu
- Department of Neurosurgery, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Dongjin Miao
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Jiaoni Qian
- Department of Neurology, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China
| | - Zhonghua Wu
- Department of Neurosurgery, The Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226011, Jiangsu, China.
| | - Weihua Shi
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
39
|
Cherix A, Poitry-Yamate C, Lanz B, Zanoletti O, Grosse J, Sandi C, Gruetter R, Cardinaux JR. Deletion of Crtc1 leads to hippocampal neuroenergetic impairments associated with depressive-like behavior. Mol Psychiatry 2022; 27:4485-4501. [PMID: 36224260 PMCID: PMC9734042 DOI: 10.1038/s41380-022-01791-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
Mood disorders (MD) are a major burden on society as their biology remains poorly understood, challenging both diagnosis and therapy. Among many observed biological dysfunctions, homeostatic dysregulation, such as metabolic syndrome (MeS), shows considerable comorbidity with MD. Recently, CREB-regulated transcription coactivator 1 (CRTC1), a regulator of brain metabolism, was proposed as a promising factor to understand this relationship. Searching for imaging biomarkers and associating them with pathophysiological mechanisms using preclinical models can provide significant insight into these complex psychiatric diseases and help the development of personalized healthcare. Here, we used neuroimaging technologies to show that deletion of Crtc1 in mice leads to an imaging fingerprint of hippocampal metabolic impairment related to depressive-like behavior. By identifying a deficiency in hippocampal glucose metabolism as the underlying molecular/physiological origin of the markers, we could assign an energy-boosting mood-stabilizing treatment, ebselen, which rescued behavior and neuroimaging markers. Finally, our results point toward the GABAergic system as a potential therapeutic target for behavioral dysfunctions related to metabolic disorders. This study provides new insights on Crtc1's and MeS's relationship to MD and establishes depression-related markers with clinical potential.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,Center for Psychiatric Neuroscience and Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly-Lausanne, Switzerland.
| | - Carole Poitry-Yamate
- grid.5333.60000000121839049Animal Imaging and Technology (AIT), Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard Lanz
- grid.5333.60000000121839049Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olivia Zanoletti
- grid.5333.60000000121839049Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jocelyn Grosse
- grid.5333.60000000121839049Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- grid.5333.60000000121839049Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- grid.5333.60000000121839049Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience and Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly-Lausanne, Switzerland.
| |
Collapse
|
40
|
Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother Res 2021; 35:6974-6989. [PMID: 34709695 DOI: 10.1002/ptr.7318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB1 and CB2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB1 , CB2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.
Collapse
Affiliation(s)
- Alexandre Augusto Barros Lataliza
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pollyana Mendonça de Assis
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Larissa da Rocha Laurindo
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
41
|
Beneficial effects of running exercise on hippocampal microglia and neuroinflammation in chronic unpredictable stress-induced depression model rats. Transl Psychiatry 2021; 11:461. [PMID: 34489395 PMCID: PMC8421357 DOI: 10.1038/s41398-021-01571-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Running exercise has been shown to relieve symptoms of depression, but the mechanisms underlying the antidepressant effects are unclear. Microglia and concomitant dysregulated neuroinflammation play a pivotal role in the pathogenesis of depression. However, the effects of running exercise on hippocampal neuroinflammation and the number and activation of microglia in depression have not been studied. In this study, rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The depressive-like symptoms of the rats were assessed with a sucrose preference test (SPT). Immunohistochemistry and stereology were performed to quantify the total number of ionized calcium-binding adapter molecule 1 (Iba1)+ microglia, and immunofluorescence was used to quantify the density of Iba1+/cluster of differentiation 68 (CD68)+ in subregions of the hippocampus. The levels of proinflammatory cytokines in the hippocampus were measured by qRT-PCR and ELISA. The results showed that running exercise reversed the decreased sucrose preference of rats with CUS-induced depression. In addition, CUS increased the number of hippocampal microglia and microglial activation in rats, but running exercise attenuated the CUS-induced increases in the number of microglia in the hippocampus and microglial activation in the dentate gyrus (DG) of the hippocampus. Furthermore, CUS significantly increased the hippocampal levels of inflammatory factors, and the increases in inflammatory factors in the hippocampus were suppressed by running exercise. These results suggest that the antidepressant effects of exercise may be mediated by reducing the number of microglia and inhibiting microglial activation and neuroinflammation in the hippocampus.
Collapse
|
42
|
Zhang L, Tang M, Xie X, Zhao Q, Hu N, He H, Liu G, Huang S, Peng C, Xiao Y, You Z. Ginsenoside Rb1 induces a pro-neurogenic microglial phenotype via PPARγ activation in male mice exposed to chronic mild stress. J Neuroinflammation 2021; 18:171. [PMID: 34372875 PMCID: PMC8353817 DOI: 10.1186/s12974-021-02185-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background Anti-inflammatory approaches are emerging as a new strategy for the treatment of depressive disorders. Ginsenoside Rb1 (GRb1), a major component of Panax ginseng, can inhibit inflammatory cascade and alleviate depressive-like behaviors. Microglia can promote or inhibit adult hippocampal neurogenesis according to their functional phenotypes. Here, we examine whether GRb1 may exert antidepressant effects by promoting a pro-neurogenic phenotype of microglia and thereby increasing neurogenesis. Methods The antidepressant effects of GRb1 or the licensed antidepressant imipramine (IMI) were assessed in chronic mild stress (CMS)-exposed male mice. The depressive-like behaviors of mice were evaluated by sucrose preference test, forced swimming test (FST), and tail suspension test (TST). The microglial phenotypes were identified by pro- and anti-inflammatory cytokine expression and morphological properties, analyzed by RT-qPCR, western blotting, and immunofluorescence staining. The effect of GRb1-treated microglia on adult hippocampal neurogenesis in vivo and in vitro was detected using immunofluorescence staining. Results Behavioral assessment indicated that GRb1 or IMI treatment alleviated depressive-like behaviors in CMS-exposed mice. Immunofluorescence examination demonstrated that GRb1 induced a pro-neurogenic phenotype of microglia via activating PPARγ in vivo and in vitro, which were effectively reversed by the PPARγ inhibitor GW9662. In addition, GRb1-treated microglia increased the proliferation and differentiation of neural precursor cells. Conclusions These findings demonstrated that GRb1 alleviated depressive-like behaviors of CMS-exposed male mice mainly through PPARγ-mediated microglial activation and improvement of adult hippocampus neurogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02185-0.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minmin Tang
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuying Zhao
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Nan Hu
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hui He
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gangcai Liu
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shiqi Huang
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Zili You
- School of Life Science and Technology, Mental Health Center of Chengdu, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
43
|
Atanasova D, Lazarov N, Stoyanov DS, Spassov RH, Tonchev AB, Tchekalarova J. Reduced neuroinflammation and enhanced neurogenesis following chronic agomelatine treatment in rats undergoing chronic constant light. Neuropharmacology 2021; 197:108706. [PMID: 34274352 DOI: 10.1016/j.neuropharm.2021.108706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Experimental studies have revealed the involvement of neuroinflammation mediated by activated microglia in the pathophysiology of depression, suggesting a novel target for treatment. The atypical antidepressant Agomelatine (Ago) has an advantage compared to the classical antidepressants due to its chronobiotic activity and unique pharmacological profile as a selective agonist at the melatonin receptors and an antagonist at the 5HT2C receptors. We have recently revealed that Ago can exert a potent antidepressant effect in rats exposed to a chronic constant light (CCL). In the present study, we hypothesized that the anti-inflammatory activity of this melatonin analog on activated neuroglia in specific brain structures might contribute to its antidepressant effect in this model. Chronic Ago treatment (40 mg/kg, i.p. for 21 days) was executed during the last 3 weeks of a 6-week period of CCL exposure in rats. The CCL-vehicle-treated rats showed a profound neuroinflammation characterized by microgliosis and astrogliosis in the hippocampus, basolateral amygdala (BL) and partly in the piriform cortex (Pir) confirmed by immunohistochemistry. With the exception of the Pir, the CCL regime was accompanied by neuronal damage, identified by Nissl staining, in the hippocampus and basolateral amygdala and impaired neurogenesis with reduced dendritic complexity of hippocampal neuroprogenitor cells detected by doublecortin-positive cells in the dentate gyrus (DG) subgranular zone compared to the control group. Ago reversed the gliosis in a region-specific manner and partially restored the suppressed DG neurogenesis. Ago failed to produce neuroprotection in CCL exposed rats. The present results suggest that the beneficial effects of Ago represent an important mechanism underlying its antidepressant effect in models characterized by impaired circadian rhythms.
Collapse
Affiliation(s)
- Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, 6003, Stara Zagora, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Dimo S Stoyanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Radoslav H Spassov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University - Varna "Prof. Dr. Paraskev Stoyanov", 9002, Varna, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| |
Collapse
|
44
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
45
|
Ye Z, Hu J, Xu H, Sun B, Jin Y, Zhang Y, Zhang J. Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ. Inflammation 2021; 44:1035-1048. [PMID: 33394189 DOI: 10.1007/s10753-020-01399-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Acute cerebral infarction (ACI) possesses high mortality. Exosomes present in serum have potential application value in ACI diagnosis. This study investigated the mechanism of serum exosomes in ACI. Serum exosomes isolated from ACI patients and normal people were identified and then injected into the established middle cerebral artery occlusion (MCAO) rat model to evaluate cerebral injury and inflammation. Exosomal microRNA (miR)-27-3p expression was detected and interfered to analyze rat cerebral inflammation. The binding relationship between miR-27-3p and PPARγ was predicted and verified. The lipopolysaccharide (LPS)-treated microglia model was established and intervened with miR-27-3p to detect PPARγ, Iba-1, and inflammation-related factor expressions. After overexpressing PPARγ, rat cerebral inflammation was evaluated. The clinical significance of serum exosomal miR-27-3p in ACI was evaluated. Serum exosomes from ACI patients caused exacerbated MCAO rat cerebral injury and poor behavior recovery, as well as promoted cerebral inflammation. Serum exosomal miR-27-3p deepened rat brain inflammation. miR-27-3p targeted PPARγ to promote microglia activation and inflammation-related factor expressions in MCAO rats, and overexpressing PPARγ attenuated MCAO rat cerebral inflammation. Serum exosomal miR-27-3p promised to be a biomarker for ACI. We proved that serum exosomes from ACI patients aggravated ACI patient cerebral inflammation via the miR-27-3p/PPARγ axis.
Collapse
Affiliation(s)
- Zhinan Ye
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jingchun Hu
- Department of Anesthesiology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Wenzhou, 323000, Zhejiang Province, China
| | - Hao Xu
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Bin Sun
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yong Jin
- Department of Neurosurgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yaping Zhang
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jianli Zhang
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, No.289 Kuocang Road, Liandu District of Lishui City, Wenzhou, 323000, Zhejiang Province, China.
| |
Collapse
|
46
|
Xing JW, Chen MM, Tian XY, Pan DQ, Peng XH, Gao PF. 919 syrup inhibits ROS-mediated leptin-induced anorexia by activating PPARγ and improves gut flora abnormalities. Biomed Pharmacother 2021; 138:111455. [PMID: 33711553 DOI: 10.1016/j.biopha.2021.111455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Women with postpartum psychiatric disorders are prone to severe anorexia. Clinical studies have revealed the efficacy of 919 syrup, a traditional Chinese medicine mixture against postpartum illnesses, such as in regulating maternal mood and improving postpartum anorexia. AIM This study investigated the mechanisms through which 919 syrup improved anorexia induced by postpartum stress, focussing on the combined peroxisome proliferator-activated receptor gamma (PPARγ) and leptin signalling pathway, and its effects on the structure of the gut flora. METHODS Mice were randomly divided into five groups-control group, immobilisation stressed (IS) group (normal saline), pioglitazone (Piog; western medicine control) group, 919 syrup low-dose (TJD; 13.5 g/kg) group, and 919 syrup high-dose (TJG; 27.0 g/kg) group. The control group was housed normally. The other groups received IS for 3 h daily for 21 days. The treatments were initiated following the first postnatal day and were administered by gastric gavage. All mice were sacrificed under anaesthesia on postnatal day 22. Blood, hypothalamus, stomach, and faecal specimens were collected. Gene and protein expression levels of components of the PPARγ-leptin signalling pathway in the serum, hypothalamus, and stomach were determined. Immunofluorescence staining for proopiomelanocortin (POMC), phosphorylated signal transducer and activator of transcription 3 (pSTAT3), and leptin was performed to observe their spatial distributions in the hypothalamus and stomach. 16s rRNA gene sequencing and bioinformatics analysis of fecal specimens were performed. RESULTS After IS, postpartum mice showed significantly reduced appetite and body weight, accompanied by abnormalities in the structure of the gut flora. Treatment with 919 syrup (27.0 g/kg) downregulated malondialdehyde and upregulated catalase, glutathione peroxidase, and superoxide dismutase by activating PPARγ, thereby affecting the expression of leptin signalling pathway components (leptin, leptin receptor, pSTAT3, POMC, and cocaine and amphetamine-related transcript and neuropeptide Y), and modulated the gut flora in stressed mice. CONCLUSION 919 syrup improved appetite in mice with postnatal stress by activating PPARγ to induce crosstalk with the leptin signalling pathway, this mechanism was similar to that of PPARγ agonists. 919 syrup also improved gut flora structure, and the changes in the relative abundances of the gut flora strongly correlated with the expression levels of PPARγ and leptin pathway components.
Collapse
Affiliation(s)
- Jing-Wei Xing
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Man-Man Chen
- Department of Traditional Chinese Medicine, Huashan Hospital of Fudan University, Shanghai, China
| | - Xin-Yun Tian
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Dan-Qing Pan
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiu-Hua Peng
- Department of Animal Experiments, Shanghai Public Health Clinical Center, Shanghai, China
| | - Peng-Fei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Li X, Tong J, Liu J, Wang Y. Down-regulation of ROCK2 alleviates ethanol-induced cerebral nerve injury partly by the suppression of the NF-κB signaling pathway. Bioengineered 2021; 11:779-790. [PMID: 32684089 PMCID: PMC8291877 DOI: 10.1080/21655979.2020.1795404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol consumption leads to hippocampal neuronal impairment, which related to neuronal death, oxidative stress, and inflammatory response. Rho-associated protein kinase 2 (ROCK2) is a major regulator in the central nervous system injury. However, the effects of ROCK2 in ethanol-induced brain injury have not been explored. In this work, we investigated the neuroprotective effects and the mechanism of ROCK2 inhibition in vivo. Wistar rats were exposed to 37% ethanol for 8 weeks to establish brain injury models. Morris water maze test was performed to evaluate cognitive function, and we found that the down-regulation of ROCK2 reduced the escape latency and increased the passing times and percentage of time spent in the target quadrant of rats. The results of H&E staining and Nissl staining showed that ROCK2 inhibition alleviated the pathological injury induced by ethanol. PI staining and Western blot confirmed that inhibiting ROCK2 attenuated the neuronal death and apoptosis as reflected by the reduced PI-positive neurons and the decreased expression of cleaved-caspase-3 and cleaved-caspase-9. Furthermore, the down-regulation of ROCK2 ameliorated the oxidative stress and inflammatory response induced by ethanol in rats as reflected by the up-regulation of IL-10, SOD, and GSH and reduction of TNF-α, IL-6, and MDA respectively. Additionally, Western blot and EMSA analysis revealed that the down-regulation of ROCK2 suppressed the nuclear transfer of NF-κB p65. In conclusion, our data suggested that ROCK2 inhibition ameliorated ethanol-mediated hippocampal neuronal impairment by anti-apoptotic, anti-inflammatory, anti-oxidative effects at least partially through the suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Xinguo Li
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Jing Tong
- Department of Gastroenterology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Jihui Liu
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yibao Wang
- Department of Neurosurgery, The First Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
48
|
Ji J, Xiang H, Lu X, Tan P, Yang R, Ye T, Chen Z, Chen D, He H, Chen J, Ma Y, Huang C. A prophylactic effect of macrophage-colony stimulating factor on chronic stress-induced depression-like behaviors in mice. Neuropharmacology 2021; 193:108621. [PMID: 34062163 DOI: 10.1016/j.neuropharm.2021.108621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Innate immune activation has been shown to reduce the severity of nervous system disorders such as brain ischemia and traumatic brain damage. Macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, is an enhancer of the innate immune response. In the present study, we evaluated the effect of M-CSF preconditioning on chronic social defeat stress (CSDS)-induced depression-like behaviors in mice. Results showed that a single M-CSF injection 1 day before stress exposure at the dose of 100 and 500 μg/kg, or a single M-CSF injection (100 μg/kg) 1 or 5 days but not 10 days before stress exposure prevented CSDS-induced depression-like behaviors in mice. Further analysis showed that a second M-CSF injection 10 days after the first M-CSF injection and a 2 × or 4 × M-CSF injections 10 days before stress exposure also prevented CSDS-induced depression-like behaviors. Molecular studies revealed that a single M-CSF injection prior to stress exposure skewed the neuroinflammatory responses in the brain in CSDS-exposed mice towards an anti-inflammatory phenotype. These behavioral and molecular actions of M-CSF were correlated with innate immune stimulation, as pre-inhibiting the innate immune activation by minocycline pretreatment (40 mg/kg) abrogated the preventive effect of M-CSF on CSDS-induced depression-like behaviors and neuroinflammatory responses. These results provide evidence to show that innate immune activation by M-CSF pretreatment may prevent chronic stress-induced depression-like behaviors via preventing the development of neuroinflammatory response in the brain, which may help to develop novel strategies for the prevention of depression.
Collapse
Affiliation(s)
- Jianlin Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215028, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Pingping Tan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong, Jiangsu, 226001, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Haiyan He
- Department of Respiratory Medicine, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
49
|
Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY) 2021; 13:15240-15254. [PMID: 34035184 PMCID: PMC8221356 DOI: 10.18632/aging.203084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Intermittent hypoxia (IH)-associated cognition decline is related to the neuroinflammation of microglia. SUMOylation is a post-translational modification related to multiple human diseases, which can be reversed by SENP1. Studies showed that SENP1 and PPARγ play essential roles in restricting inflammation by blocking NF-κB activation. However, the mechanism remains unclear. Herein, we investigated the precise mechanism underlying SENP1 and PPARγ in cognitive decline after IH insult. Biochemical analysis results revealed that IH triggered the inflammatory response and neuronal apoptosis, increased the SUMOylation of PPARγ, and decreased the level of PPARγ compared to that in the normoxia group. After SENP1 downregulation, the inflammatory response, neuronal apoptosis and the SUMOylation of PPARγ were enhanced, and the level of PPARγ was further decreased in vitro and in vivo. However, the application of PPARγ agonist, GW1929, abolished the enhancement of inflammation and neuronal apoptosis in vitro. The Morris Water Maze results showed that both IH groups mice exhibited longer latency and shorter dwell-time in the goal quadrant than normoxia groups. Notably, SENP1 downregulation aggravated these alterations. Overall, these results showed that SENP1 played an essential role in IH-associated cognitive dysfunction. SENP1 depletion aggravated neuroinflammation and neuronal apoptosis via promoting the SUMOylation of PPARγ, reducing the level of PPARγ, thus exaggerating IH-induced cognitive decline.
Collapse
Affiliation(s)
- Hongwei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wei Xiong
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sitong Hang
- China Medical University, Shenyang 110122, Liaoning, China
| | - Yanmin Wang
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sisen Zhang
- Affiliated Zhengzhou People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Zhengzhou 450003, Henan, China
| | - Song Liu
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
50
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|