1
|
Adla SK, Virtanen H, Thongsodsaeng T, Huttunen KM. Amino acid transporters in neurological disorders and neuroprotective effects of cysteine derivatives. Neurochem Int 2024; 177:105771. [PMID: 38761853 DOI: 10.1016/j.neuint.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
For most diseases and disorders occurring in the brain, the full causes behind them are yet unknown, but many show signs of dysfunction of amino acid transporters or abnormalities in amino acid metabolism. The blood-brain barrier (BBB) plays a key role in supporting the function of the central nervous system (CNS). Because of its unique structure, the BBB can maintain the optimal environment for CNS by controlling the passage of hydrophilic molecules from blood to the brain. Nutrients, such as amino acids, can cross the BBB via specific transporters. Many amino acids are essential for CNS function, and dysfunction of these amino acid transporters can lead to abnormalities in amino acid levels. This has been linked to causes behind certain genetic brain diseases, such as schizophrenia, autism spectrum disorder, and Huntington's disease (HD). One example of crucial amino acids is L-Cys, the rate-limiting factor in the biosynthesis of an important antioxidant, glutathione (GSH). Deficiency of L-Cys and GSH has been linked to oxidative stress and has been shown as a plausible cause behind certain CNS diseases, like schizophrenia and HD. This review presents the current status of potential L-Cys therapies and gives future directions that can be taken to improve amino acid transportation related to distinct CNS diseases.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Heinileena Virtanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Thanavit Thongsodsaeng
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
2
|
Beckers P, Belo Do Nascimento I, Charlier M, Desmet N, Massie A, Hermans E. Implication of system x c- in neuroinflammation during the onset and maintenance of neuropathic pain. J Neuroinflammation 2024; 21:117. [PMID: 38715127 PMCID: PMC11077843 DOI: 10.1186/s12974-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Inês Belo Do Nascimento
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium.
| |
Collapse
|
3
|
Stojkovic L, Jovanovic I, Dincic E, Djordjevic A, Kuveljic J, Djuric T, Stankovic A, Vojinovic S, Zivkovic M. Targeted RNAseq Revealed the Gene Expression Signature of Ferroptosis-Related Processes Associated with Disease Severity in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:3016. [PMID: 38474262 DOI: 10.3390/ijms25053016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Detrimental molecular processes in multiple sclerosis (MS) lead to the cellular accumulation of lipid peroxidation products and iron in the CNS, which represents the main driving force for ferroptosis. Ferroptosis is an iron-dependent form of regulated cell death, with proposed roles in neurodegeneration, oligodendrocyte loss and neuroinflammation in the pathogenesis of MS. Ferroptosis-related gene expression signature and molecular markers, which could reflect MS severity and progression, are currently understudied in humans. To tackle these challenges, we have applied a curated approach to create and experimentally analyze a comprehensive panel of ferroptosis-related genes covering a wide range of biological processes associated with ferroptosis. We performed the first ferroptosis-related targeted RNAseq on PBMCs from highly distinctive MS phenotype groups: mild relapsing-remitting (RR) (n = 24) and severe secondary progressive (SP) (n = 24), along with protein detection of GPX4 and products of lipid peroxidation (MDA and 4-HNE). Out of 138 genes, 26 were differentially expressed genes (DEGs), indicating changes in both pro- and anti-ferroptotic genes, representing a molecular signature associated with MS severity. The top three DEGs, as non-core ferroptosis genes, CDKN1A, MAP1B and EGLN2, were replicated by qPCR to validate findings in independent patient groups (16 RR and 16 SP MS). Co-expression and interactions of DEGs were presented as additional valuable assets for deeper understanding of molecular mechanisms and key targets related to MS severity. Our study integrates a wide genetic signature and biochemical markers related to ferroptosis in easily obtainable PBMCs of MS patients with clinical data and disease severity, thus providing novel molecular markers which can complement disease-related changes in the brain and undergo further research as potential therapeutic targets.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty, University of Defense in Belgrade, 11042 Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Slobodan Vojinovic
- Department of Neurology, Medical Faculty, University of Nis, 18000 Nis, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Zhang P, Zhou C, Ren X, Jing Q, Gao Y, Yang C, Shen Y, Zhou Y, Hu W, Jin F, Xu H, Yu L, Liu Y, Tong X, Li Y, Wang Y, Du J. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol 2024; 69:103007. [PMID: 38150993 PMCID: PMC10788306 DOI: 10.1016/j.redox.2023.103007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feifan Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Cao C, Lu T, Cheng Q, Cui G, Wang Z, Li X, Li H, Gao H, Shen H, Sun Q. Restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and improved neurological deficits after experimental subarachnoid hemorrhage. Brain Res 2023; 1820:148556. [PMID: 37648093 DOI: 10.1016/j.brainres.2023.148556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Ferroptosis is an important therapeutic target to alleviate early brain injury (EBI) after subarachnoid hemorrhage (SAH), yet the mechanism of neuronal ferroptosis after SAH remains unclear. System xc- dysfunction is one of the key pathways to induce ferroptosis. System xc- activity is mainly regulated by the expression of xCT. This study was designed to investigate the effect of xCT expression and System xc- activity on ferroptosis and EBI in an experimental SAH model both in vitro and in vivo. METHODS SAH was induced in adult male Sprague-Dawley rats by injecting autologous blood into the prechiasmatic cistern. Primary neurons treated with oxyhemoglobin (10 µM) were used to mimic SAH in vitro. Plasmid transfection was used to induce xCT overexpression. Western blotting, immunofluorescence staining, measurement of cystine uptake, enzyme-linked immunosorbent assay, transmission electron microscopy, Nissl staining, and a series of neurobehavioral tests were conducted to explore the role of xCT and System xc- activity in ferroptosis and EBI after SAH. RESULTS We found that System xc- dysfunction induced ferroptosis and exacerbated EBI after SAH in rats. xCT deficiency after SAH resulted in System xc- dysfunction, weakened neuronal antioxidant capacity and activated neuronal ferroptosis. xCT overexpression improved neuronal antioxidant capacity and inhibited neuronal ferroptosis by restoring System xc- activity. Rats with xCT overexpression after SAH presented with attenuated brain edema and inflammation, increased neuronal survival, and ameliorated neurological deficits. CONCLUSIONS Our study revealed that restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and EBI and improved neurological deficits after SAH.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Intensive Care Unit, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China; Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qian Cheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Heng Gao
- Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
6
|
de Baat A, Meier DT, Rachid L, Fontana A, Böni-Schnetzler M, Donath MY. Cystine/glutamate antiporter System x c- deficiency impairs insulin secretion in mice. Diabetologia 2023; 66:2062-2074. [PMID: 37650924 PMCID: PMC10541846 DOI: 10.1007/s00125-023-05993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 09/01/2023]
Abstract
AIMS/HYPOTHESIS Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adriano Fontana
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Hang TD, Hung HM, Beckers P, Desmet N, Lamrani M, Massie A, Hermans E, Vanommeslaeghe K. Structural investigation of human cystine/glutamate antiporter system xc− (Sxc−) using homology modeling and molecular dynamics. Front Mol Biosci 2022; 9:1064199. [DOI: 10.3389/fmolb.2022.1064199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
The cystine/glutamate antiporter system xc− (Sxc−) belongs to the SLC7 family of plasma membrane transporters. It exports intracellular glutamate along the latter’s concentration gradient as a driving force for cellular uptake of cystine. Once imported, cystine is mainly used for the production of glutathione, a tripeptide thiol crucial in maintenance of redox homeostasis and protection of cells against oxidative stress. Overexpression of Sxc− has been found in several cancer cells, where it is thought to counteract the increased oxidative stress. In addition, Sxc− is important in the central nervous system, playing a complex role in regulating glutamatergic neurotransmission and glutamate toxicity. Accordingly, this transporter is considered a potential target for the treatment of cancer as well as neurodegenerative diseases. Till now, no specific inhibitors are available. We herein present four conformations of Sxc− along its transport pathway, obtained using multi-template homology modeling and refined by means of Molecular Dynamics. Comparison with a very recently released cryo-EM structure revealed an excellent agreement with our inward-open conformation. Intriguingly, our models contain a structured N-terminal domain that is unresolved in the experimental structures and is thought to play a gating role in the transport mechanism of other SLC7 family members. In contrast to the inward-open model, there is no direct experimental counterpart for the other three conformations we obtained, although they are in fair agreement with the other stages of the transport mechanism seen in other SLC7 transporters. Therefore, our models open the prospect for targeting alternative Sxc− conformations in structure-based drug design efforts.
Collapse
|
8
|
Luoqian J, Yang W, Ding X, Tuo QZ, Xiang Z, Zheng Z, Guo YJ, Li L, Guan P, Ayton S, Dong B, Zhang H, Hu H, Lei P. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 2022; 19:913-924. [PMID: 35676325 PMCID: PMC9338013 DOI: 10.1038/s41423-022-00883-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
While many drugs are effective at reducing the relapse frequency of multiple sclerosis (MS), there is an unmet need for treatments that slow neurodegeneration resulting from secondary disease progression. The mechanism of neurodegeneration in MS has not yet been established. Here, we discovered a potential pathogenetic role of ferroptosis, an iron-dependent regulated cell death mechanism, in MS. We found that critical ferroptosis proteins (acyl-CoA synthetase long-chain family member 4, ACSL4) were altered in an existing genomic database of MS patients, and biochemical features of ferroptosis, including lipid reactive oxygen species (ROS) accumulation and mitochondrial shrinkage, were observed in the experimental autoimmune encephalitis (EAE) mouse model. Targeting ferroptosis with ferroptosis inhibitors or reducing ACSL4 expression improved the behavioral phenotypes of EAE mice, reduced neuroinflammation, and prevented neuronal death. We found that ferroptosis was an early event in EAE, which may promote T-cell activation through T-cell receptor (TCR) signaling in vitro and in vivo. These data indicate that ferroptosis may be a potential target for treating MS.
Collapse
Affiliation(s)
- Jinyuan Luoqian
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Wenyong Yang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Xulong Ding
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Qing-Zhang Tuo
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Zheng Xiang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Zhaoyue Zheng
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yu-Jie Guo
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Li Li
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Pengbo Guan
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Biao Dong
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Huiyuan Zhang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Hongbo Hu
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| | - Peng Lei
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxid Redox Signal 2022; 37:150-170. [PMID: 34569265 DOI: 10.1089/ars.2021.0218] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, Massie A, Hoste E, Ravichandran KS. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022; 606:776-784. [PMID: 35614212 DOI: 10.1038/s41586-022-04754-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFβ family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Sophia Maschalidi
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Burcu N Keçeli
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah K L De Cleene
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Pinney
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Esther Hoste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
11
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
12
|
Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity 2021; 54:2514-2530.e7. [PMID: 34717796 DOI: 10.1016/j.immuni.2021.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.
Collapse
|
13
|
Ni G, Yang X, Li J, Wu X, Liu Y, Li H, Chen S, Fogarty CE, Frazer IH, Chen G, Liu X, Wang T. Intratumoral injection of caerin 1.1 and 1.9 peptides increases the efficacy of vaccinated TC-1 tumor-bearing mice with PD-1 blockade by modulating macrophage heterogeneity and the activation of CD8 + T cells in the tumor microenvironment. Clin Transl Immunology 2021; 10:e1335. [PMID: 34429969 PMCID: PMC8369845 DOI: 10.1002/cti2.1335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Developing a vaccine formula that alters the tumor-infiltrating lymphocytes to be more immune active against a tumor is key to the improvement of clinical responses to immunotherapy. Here, we demonstrate that, in conjunction with E7 antigen-specific immunotherapy, and IL-10 and PD-1 blockade, intratumoral administration of caerin 1.1/1.9 peptides improves TC-1 tumor microenvironment (TME) to be more immune active than injection of a control peptide. METHODS We compared the survival time of vaccinated TC-1 tumor-bearing mice with PD-1 and IL-10 blockade, in combination with a further injection of caerin 1.1/1.9 or control peptides. The tumor-infiltrating haematopoietic cells were examined by flow cytometry. Single-cell transcriptomics and proteomics were used to quantify changes in cellular activity across different cell types within the TME. RESULTS The injection of caerin 1.1/1.9 increased the efficacy of vaccinated TC-1 tumor-bearing mice with anti-PD-1 treatment and largely expanded the populations of macrophages and NK cells with higher immune activation level, while reducing immunosuppressive macrophages. More activated CD8+ T cells were induced with higher populations of memory and effector-memory CD8+ T subsets. Computational integration of the proteome with the single-cell transcriptome supported activation of Stat1-modulated apoptosis and significant reduction in immune-suppressive B-cell function following caerin 1.1 and 1.9 treatment. CONCLUSIONS Caerin 1.1/1.9-containing treatment results in improved antitumor responses. Harnessing the novel candidate genes preferentially enriched in the immune active cell populations may allow further exploration of distinct macrophages, T cells and their functions in TC-1 tumors.
Collapse
Affiliation(s)
- Guoying Ni
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
- Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- The First Affiliated Hospital/Clinical Medical SchoolGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiaodan Yang
- The First Affiliated Hospital/Clinical Medical SchoolGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical SchoolGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiaolian Wu
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
| | - Ying Liu
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
| | - Hejie Li
- Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
| | - Shu Chen
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
| | - Conor E Fogarty
- Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
| | - Ian H Frazer
- Faculty of MedicineUniversity of Queensland Diamantina InstituteTranslational Research InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Guoqiang Chen
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
| | - Xiaosong Liu
- Cancer Research InstituteFirst People’s Hospital of FoshanFoshanGuangdongChina
- Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- The First Affiliated Hospital/Clinical Medical SchoolGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Tianfang Wang
- Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
| |
Collapse
|
14
|
Cystine-glutamate antiporter deletion accelerates motor recovery and improves histological outcomes following spinal cord injury in mice. Sci Rep 2021; 11:12227. [PMID: 34108554 PMCID: PMC8190126 DOI: 10.1038/s41598-021-91698-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
xCT is the specific subunit of System xc-, an antiporter importing cystine while releasing glutamate. Although xCT expression has been found in the spinal cord, its expression and role after spinal cord injury (SCI) remain unknown. The aim of this study was to characterize the role of xCT on functional and histological outcomes following SCI induced in wild-type (xCT+/+) and in xCT-deficient mice (xCT−/−). In the normal mouse spinal cord, slc7a11/xCT mRNA was detected in meningeal fibroblasts, vascular mural cells, astrocytes, motor neurons and to a lesser extent in microglia. slc7a11/xCT gene and protein were upregulated within two weeks post-SCI. xCT−/− mice recovered muscular grip strength as well as pre-SCI weight faster than xCT+/+ mice. Histology of xCT−/− spinal cords revealed significantly more spared motor neurons and a higher number of quiescent microglia. In xCT−/− mice, inflammatory polarization shifted towards higher mRNA expression of ym1 and igf1 (anti-inflammatory) while lower levels of nox2 and tnf-a (pro-inflammatory). Although astrocyte polarization did not differ, we quantified an increased expression of lcn2 mRNA. Our results show that slc7a11/xCT is overexpressed early following SCI and is detrimental to motor neuron survival. xCT deletion modulates intraspinal glial activation by shifting towards an anti-inflammatory profile.
Collapse
|
15
|
Errasti-Murugarren E, Palacín M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 2021; 47:23-36. [PMID: 33606172 DOI: 10.1007/s11064-021-03261-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Signal alterations of glutamate-weighted chemical exchange saturation transfer MRI in lysophosphatidylcholine-induced demyelination in the rat brain. Brain Res Bull 2020; 164:334-338. [PMID: 32926951 DOI: 10.1016/j.brainresbull.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare in vivo glutamate-weighted chemical exchange saturation transfer (GluCEST-weighted) signal changes between in a rat model of demyelinated multiple sclerosis and control groups. PROCEDURES Using a pre-clinical 7 T magnetic resonance imaging (MRI) system, CEST imaging was applied to a toxin (lysophosphatidylcholine; LPC) induced rat (MSLPC) and control (CTRL) groups to compare in vivo glutamate signal changes. The GluCEST-weighted signals were analyzed based on the magnetization transfer ratio asymmetry approach at 3.0 ppm on the region-of-interests (ROIs) in the corpus callosum and hippocampus at each hemispheric region. RESULTS GluCEST-weighted signals were significantly changed between the CTRL and MSLPC groups, while higher glutamate signals were indicated in the MSLPC than the CTRL group ([MSLPC / CTRL]; hippocampus: [6.159 ± 0.790 / 4.336 ± 0.446] and corpus callosum: [-3.545 ± 0.945 / -6.038 ± 0.620], all p = 0.001). CONCLUSIONS Our results show increased GluCEST-weighted signals in the LPC-induced demyelination rat brain compared with control. GluCEST-weighted imaging could be a useful tool for defining a biomarker to estimate the glutamate-related metabolism in MS.
Collapse
|
17
|
Martis RM, Donaldson PJ, Li B, Middleditch M, Kallingappa PK, Lim JC. Mapping of the cystine-glutamate exchanger in the mouse eye: a role for xCT in controlling extracellular redox balance. Histochem Cell Biol 2019; 152:293-310. [PMID: 31396687 DOI: 10.1007/s00418-019-01805-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The cystine-glutamate exchanger (system xc-) is responsible for the exchange of extracellular cystine for intracellular glutamate. In this study, we mapped the expression of xCT, the light chain subunit of system xc- in the different tissues of 3-6-week-old mouse (C57BL/6J) eye and have used an xCT knockout mouse to verify labelling specificity. Moreover, using the xCT knockout mouse, we investigated whether xCT was involved in maintaining extracellular redox balance in the eye. xCT transcript and protein were present in the cornea, lens and retina of wild-type mice, but not knockout mice. xCT was localised to the corneal epithelium, and the lens epithelium and cortical fibre cells but was absent in the iris. xCT localisation could not be determined in the ciliary body or retina, since xCT labelling was also detected in the knockout indicating a lack of specificity of the xCT antibody in tissues of a neural origin. Intracellular cysteine and cystine concentrations were similar in the wild-type and xCT knockout mouse for the cornea, lens, and retina. While extracellular cysteine levels were similar between the plasma, aqueous humour, and vitreous humour of the wild-type and xCT knockout mouse, extracellular cystine levels in the plasma and aqueous were significantly elevated in the xCT knockout mouse relative to the wild type. This suggests that loss of xCT results in an increased oxidative environment, particularly within the anterior chamber of the eye in which the aqueous humour resides. How this oxidative shift impacts ocular tissues that interface with the aqueous humour over time will be the focus of future work.
Collapse
Affiliation(s)
- Renita M Martis
- Department of Physiology, School of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand.,NZ National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand.,NZ National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Bo Li
- Department of Physiology, School of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand.,NZ National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Prasanna K Kallingappa
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Julie C Lim
- Department of Physiology, School of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand. .,School of Medical Sciences, University of Auckland, Auckland, New Zealand. .,NZ National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Beinat C, Gowrishankar G, Shen B, Alam IS, Robinson E, Haywood T, Patel CB, Azevedo EC, Castillo JB, Ilovich O, Koglin N, Schmitt-Willich H, Berndt M, Mueller A, Zerna M, Srinivasan A, Gambhir SS. The Characterization of 18F-hGTS13 for Molecular Imaging of xC− Transporter Activity with PET. J Nucl Med 2019; 60:1812-1817. [DOI: 10.2967/jnumed.119.225870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
|
19
|
Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc Natl Acad Sci U S A 2019; 116:9533-9542. [PMID: 31019077 PMCID: PMC6511047 DOI: 10.1073/pnas.1814932116] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
xCT, the cystine–glutamate antiporter, has been implicated in supporting both tumor growth and T cell proliferation; thus, antitumor effects of systemic xCT inhibition may be blunted by compromised antitumor immunity. This report details the unexpected finding that xCT is dispensable for T cell proliferation in vivo and for antitumor immune responses. Consequently, tumor cell xCT loss acts synergistically with the immunotherapeutic agent anti–CTLA-4, laying the foundation for utilizing specific xCT inhibitors clinically to expand the efficacy of existing anticancer immunotherapeutics. T cell-invigorating cancer immunotherapies have near-curative potential. However, their clinical benefit is currently limited, as only a fraction of patients respond, suggesting that these regimens may benefit from combination with tumor-targeting treatments. As oncogenic progression is accompanied by alterations in metabolic pathways, tumors often become heavily reliant on antioxidant machinery and may be susceptible to increases in oxidative stress. The cystine–glutamate antiporter xCT is frequently overexpressed in cancer and fuels the production of the antioxidant glutathione; thus, tumors prone to redox stress may be selectively vulnerable to xCT disruption. However, systemic inhibition of xCT may compromise antitumor immunity, as xCT is implicated in supporting antigen-induced T cell proliferation. Therefore, we utilized immune-competent murine tumor models to investigate whether cancer cell expression of xCT was required for tumor growth in vivo and if deletion of host xCT impacted antitumor immune responses. Deletion of xCT in tumor cells led to defective cystine uptake, accumulation of reactive oxygen species, and impaired tumor growth, supporting a cancer cell-autonomous role for xCT. In contrast, we observed that, although T cell proliferation in culture was exquisitely dependent on xCT expression, xCT was dispensable for T cell proliferation in vivo and for the generation of primary and memory immune responses to tumors. These findings prompted the combination of tumor cell xCT deletion with the immunotherapeutic agent anti–CTLA-4, which dramatically increased the frequency and durability of antitumor responses. Together, these results identify a metabolic vulnerability specific to tumors and demonstrate that xCT disruption can expand the efficacy of anticancer immunotherapies.
Collapse
|
20
|
Hoehne A, James ML, Alam IS, Ronald JA, Schneider B, D'Souza A, Witney TH, Andrews LE, Cropper HC, Behera D, Gowrishankar G, Ding Z, Wyss-Coray T, Chin FT, Biswal S, Gambhir SS. [ 18F]FSPG-PET reveals increased cystine/glutamate antiporter (xc-) activity in a mouse model of multiple sclerosis. J Neuroinflammation 2018; 15:55. [PMID: 29471880 PMCID: PMC5822551 DOI: 10.1186/s12974-018-1080-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cystine/glutamate antiporter (xc-) has been implicated in several neurological disorders and, specifically, in multiple sclerosis (MS) as a mediator of glutamate excitotoxicity and proinflammatory immune responses. We aimed to evaluate an xc-specific positron emission tomography (PET) radiotracer, (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG), for its ability to allow non-invasive monitoring of xc- activity in a mouse model of MS. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant (CFA) followed by pertussis toxin. Control mice received CFA emulsion and pertussis toxin without MOG peptide, while a separate cohort of naïve mice received no treatment. PET studies were performed to investigate the kinetics and distribution of [18F]FSPG in naïve, control, pre-symptomatic, and symptomatic EAE mice, compared to 18F-fluorodeoxyglucose ([18F]FDG). After final PET scans, each mouse was perfused and radioactivity in dissected tissues was measured using a gamma counter. Central nervous system (CNS) tissues were further analyzed using ex vivo autoradiography or western blot. [18F]FSPG uptake in human monocytes, and T cells pre- and post-activation was investigated in vitro. RESULTS [18F]FSPG was found to be more sensitive than [18F]FDG at detecting pathological changes in the spinal cord and brain of EAE mice. Even before clinical signs of disease, a small but significant increase in [18F]FSPG signal was observed in the spinal cord of EAE mice compared to controls. This increase in PET signal became more pronounced in symptomatic EAE mice and was confirmed by ex vivo biodistribution and autoradiography. Likewise, in the brain of symptomatic EAE mice, [18F]FSPG uptake was significantly higher than controls, with the largest changes observed in the cerebellum. Western blot analyses of CNS tissues revealed a significant correlation between light chain of xc- (xCT) protein levels, the subunit of xc- credited with its transporter activity, and [18F]FSPG-PET signal. In vitro [18F]FSPG uptake studies suggest that both activated monocytes and T cells contribute to the observed in vivo PET signal. CONCLUSION These data highlight the promise of [18F]FSPG-PET as a technique to provide insights into neuroimmune interactions in MS and the in vivo role of xc- in the development and progression of this disease, thus warranting further investigation.
Collapse
Affiliation(s)
- Aileen Hoehne
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle L James
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Israt S Alam
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - John A Ronald
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Schneider
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Aloma D'Souza
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Timothy H Witney
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Lauren E Andrews
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Haley C Cropper
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Deepak Behera
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Zhaoqing Ding
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sandip Biswal
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA. .,Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca 2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2017; 70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Partha Narayan Dey
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Birgit Honrath
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Axel Methner
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| |
Collapse
|
22
|
Kasanmoentalib ES, Seron MV, Ferwerda B, Tanck MW, Zwinderman AH, Baas F, van der Ende A, Schwaeble WJ, Brouwer MC, van de Beek D. Erratum to: Mannose-binding lectin-associated serine protease 2 (MASP-2) contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Neuroinflammation 2017; 14:77. [PMID: 28385159 PMCID: PMC5383983 DOI: 10.1186/s12974-017-0857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Mercedes Valls Seron
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - William J Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| | - Matthijs C Brouwer
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam Neuroscience, PO Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|