1
|
Langlois J, Lange S, Ebeling M, Macnair W, Schmucki R, Li C, DeGeer J, Sudharshan TJJ, Yong VW, Shen YA, Harp C, Collin L, Keaney J. Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways. J Neuroinflammation 2024; 21:276. [PMID: 39465429 PMCID: PMC11514909 DOI: 10.1186/s12974-024-03267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia. METHODS Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids. RESULTS We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis. CONCLUSIONS Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.
Collapse
Affiliation(s)
- Julie Langlois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simona Lange
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Will Macnair
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cenxiao Li
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Jonathan DeGeer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tania J J Sudharshan
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Yun-An Shen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | | | - Ludovic Collin
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - James Keaney
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
2
|
Okutan B, Frederiksen JL, Houen G, Sellebjerg F, Kyllesbech C, Magyari M, Paunovic M, Sørensen PS, Jacobsen C, Lassmann H, Bramow S. Subcortical plaques and inflammation reflect cortical and meningeal pathologies in progressive multiple sclerosis. Brain Pathol 2024:e13314. [PMID: 39460678 DOI: 10.1111/bpa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
It remains elusive whether lesions and inflammation in the sub/juxtacortical white matter reflect cortical and/or meningeal pathologies. Elucidating this could have implications for MRI monitoring as sub/juxtacortical lesions are detectable by routine MRI, while cortical lesions and meningeal inflammation are not. By large-area microscopy, we quantified total and mixed active plaque loads along with densities and sizes of perivascular mononuclear infiltrates (infiltrates) in the sub/juxtacortical white matter ≤2 mm from the cortex, intra-cortically and in the meninges. Data were related to ante-mortem clinical parameters in a false discovery rate-corrected analysis. We compared 12 patients with primary progressive multiple sclerosis (PPMS) and 15 with secondary progressive MS to 22 controls. Fifteen patients and 11 controls contributed with hemispheric sections. Sections were stained with haematoxylin-eosin, for myelin and for microglia/macrophages. B cells and T cells were confirmed in a subset. Immunoglobulin G depositions in selected cortical plaques resembled depositions described before in "slowly expanding" plaques in the white matter. We quantified plaque activity by measuring microglia-dominated and macrophage-dominated areas. Sub/juxtacortical plaques (load and activity) reflected plaque activity in the cerebral cortex. Plaque activity and infiltrates were more pronounced in the sub/juxtacortical white matter than in the cerebral cortex while conversely, the total plaque load was highest in the cortex. Infiltrates correlated trans-cortically and sub/juxtacortical plaque activity reflected cortical and meningeal infiltrates. Sub/juxtacortical infiltrate sizes correlated with shorter survival after progression onset. Two patients with PPMS and putatively fatal brain stem lesions argue against incidental findings. Trans-cortical inflammatory flares and plaque activity may be pathogenic in progressive MS. We suggest emphasis on sub/juxtacortical MRI lesions as plausible surrogates for cortical and meningeal pathologies and, when present, as indicators for cognitive testing.
Collapse
Affiliation(s)
- Betül Okutan
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Houen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Kyllesbech
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Danish Multiple Sclerosis Registry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Manuela Paunovic
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Per S Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stephan Bramow
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Rodriguez-Mogeda C, van Gool MM, van der Mast R, Nijland R, Keasberry Z, van de Bovekamp L, van Delft MA, Picon C, Reynolds R, Killestein J, Teunissen CE, de Vries HE, van Egmond M, Witte ME. Intrathecal IgG and IgM synthesis correlates with neurodegeneration markers and corresponds to meningeal B cell presence in MS. Sci Rep 2024; 14:25540. [PMID: 39462090 PMCID: PMC11513002 DOI: 10.1038/s41598-024-76969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Intrathecal synthesis of immunoglobulins (Igs) is a key hallmark of multiple sclerosis (MS). B cells are known to accumulate in the leptomeninges of MS patients and associate with pathology in the underlying cortex and a more severe disease course. However, the role of locally produced antibodies in MS brain pathology is poorly understood. Here, we quantified the protein levels of IgA, IgM, IgG and albumin in serum and cerebrospinal fluid (CSF) samples of 80 MS patients and 28 neurological controls to calculate Ig indices. In addition, we quantified presence of meningeal IgA+, IgM+ and IgG+ B cells in post-mortem brain tissue of 20 MS patients and 6 controls using immunostainings. IgM and IgG, but not IgA, indices were increased in CSF of MS patients compared to controls, with no observed differences between MS disease types. Both IgM and IgG indices correlated significantly with neurofilament light (NfL) levels in CSF, but not with clinical or radiological parameters of disease. Similarly, IgG+ and IgM+ B cells were increased in MS meninges compared to controls, whereas IgA+ B cells were not. Neuronal loss did not differ between sections with low or high IgA+, IgM+ and IgG+ B cells, but was increased in sections with high numbers of all CD19+ meningeal B cells. Similarly, high presence of CD19+ meningeal B cells and IgG+ meningeal B cells associated with increased microglial density in the underlying cortex. Taken together, intrathecal synthesis of IgG and IgM is elevated in MS, which corresponds to an increased number of IgG+ and IgM+ B cells in MS meninges. The significant correlation between intrathecal IgG and IgM production and NfL levels, and increased microglial activation in cortical areas adjacent to meningeal infiltrates with high levels of IgG+ B cells indicate a role for intrathecal IgM- and IgG-producing B cells in neuroinflammatory and degenerative processes in MS.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Melissa Mj van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Richard van der Mast
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rutger Nijland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Zoë Keasberry
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisanne van de Bovekamp
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Myrthe Am van Delft
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carmen Picon
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Joep Killestein
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Laboratory Medicine Chemistry, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Dekeyser C, Hautekeete M, Cambron M, Van Pesch V, Patti F, Kuhle J, Khoury S, Lechner Scott J, Gerlach O, Lugaresi A, Maimone D, Surcinelli A, Grammond P, Kalincik T, Habek M, Willekens B, Macdonell R, Lalive P, Csepany T, Butzkueven H, Boz C, Tomassini V, Foschi M, Sánchez-Menoyo JL, Altintas A, Mrabet S, Iuliano G, Sa MJ, Alroughani R, Karabudak R, Aguera-Morales E, Gray O, de Gans K, van der Walt A, McCombe PA, Deri N, Garber J, Al-Asmi A, Skibina O, Duquette P, Cartechini E, Spitaleri D, Gouider R, Soysal A, Van Hijfte L, Slee M, Amato MP, Buzzard K, Laureys G. Routine CSF parameters as predictors of disease course in multiple sclerosis: an MSBase cohort study. J Neurol Neurosurg Psychiatry 2024; 95:1021-1031. [PMID: 38569872 DOI: 10.1136/jnnp-2023-333307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND It remains unclear whether routine cerebrospinal fluid (CSF) parameters can serve as predictors of multiple sclerosis (MS) disease course. METHODS This large-scale cohort study included persons with MS with CSF data documented in the MSBase registry. CSF parameters to predict time to reach confirmed Expanded Disability Status Scale (EDSS) scores 4, 6 and 7 and annualised relapse rate in the first 2 years after diagnosis (ARR2) were assessed using (cox) regression analysis. RESULTS In total, 11 245 participants were included of which 93.7% (n=10 533) were persons with relapsing-remitting MS (RRMS). In RRMS, the presence of CSF oligoclonal bands (OCBs) was associated with shorter time to disability milestones EDSS 4 (adjusted HR=1.272 (95% CI, 1.089 to 1.485), p=0.002), EDSS 6 (HR=1.314 (95% CI, 1.062 to 1.626), p=0.012) and EDSS 7 (HR=1.686 (95% CI, 1.111 to 2.558), p=0.014). On the other hand, the presence of CSF pleocytosis (≥5 cells/µL) increased time to moderate disability (EDSS 4) in RRMS (HR=0.774 (95% CI, 0.632 to 0.948), p=0.013). None of the CSF variables were associated with time to disability milestones in persons with primary progressive MS (PPMS). The presence of CSF pleocytosis increased ARR2 in RRMS (adjusted R2=0.036, p=0.015). CONCLUSIONS In RRMS, the presence of CSF OCBs predicts shorter time to disability milestones, whereas CSF pleocytosis could be protective. This could however not be found in PPMS. CSF pleocytosis is associated with short-term inflammatory disease activity in RRMS. CSF analysis provides prognostic information which could aid in clinical and therapeutic decision-making.
Collapse
Affiliation(s)
| | | | - Melissa Cambron
- Neurology, Sint-Jan Bruges Hospital, Bruges, Belgium
- University of Ghent, Ghent, Belgium
| | - Vincent Van Pesch
- Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Francesco Patti
- Neuroscience, University of Catania Department of Surgical and Medical Sciences and Advanced Technologies 'G.F. Ingrassia', Catania, Italy
- Multiple Sclerosis Unit, AOU Policlinico G Rodolico-San Marco, Catania, Italy
| | - Jens Kuhle
- Neurology, University Hospital Basel, Basel, Switzerland
- Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Basel, Switzerland
| | - Samia Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jeanette Lechner Scott
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter New England Health, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Oliver Gerlach
- Neurology, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
- Neurology, Universiteit Maastricht School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Alessandra Lugaresi
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - Andrea Surcinelli
- Department of Neuroscience, MS Center, S Maria delle Croci Hospital, Ravenna, Italy
| | - Pierre Grammond
- CISSS Chaudière-Appalaches Research Center, Levis, Quebec, Canada
| | - Tomas Kalincik
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mario Habek
- University Hospital Centre Zagreb Department of Neurology, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Zagreb, Croatia
| | - Barbara Willekens
- Neurology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
- Laboratory of Experimental Hematology, Universiteit Antwerpen Faculteit geneeskunde en gezondheidswetenschappen, Wilrijk, Belgium
| | | | - Patrice Lalive
- Clinical Neurosciences, Division of Neurology, Unit of Neuroimmunology, Geneva University Hospitals Department of Medicine, Geneve, Switzerland
| | - Tunde Csepany
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University Central Clinical School, Melbourne, Victoria, Australia
- Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Cavit Boz
- Neurology, Karadeniz Technical University, Medical Faculty, Trabzon, Turkey
| | - Valentina Tomassini
- Istituto di Tecnologie Avanzate Biomediche (ITAB), Dipartimento di Neuroscienze e Imaging e Scienze Cliniche; Centro Sclerosi Multipla, Clinica Neurologica, Ospedale SS Annunziata, Università degli Studi Gabriele d'Annunzio Chieti Pescara, Chieti, Italy
- University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Foschi
- Department of Neuroscience, MS Center, Neurology Unit, S. Maria delle Croci Hospital, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - José Luis Sánchez-Menoyo
- Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ayse Altintas
- Neurology, Koc University School of Medicine and Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Saloua Mrabet
- Neurology, Razi University Hospital, Clinical Investigation Centre Neurosciences and Mental Health, Tunis, Tunisia
- University of Tunis El Manar Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | - Maria Jose Sa
- Neurology, Centro Hospitalar de São João, Porto, Portugal
- Fernando Pessoa University Faculty of Health Sciences, Porto, Portugal
| | | | - Rana Karabudak
- Neurological Sciences, Yeditepe Universitesi, Istanbul, Turkey
- Neuroimmunology, Koşuyolu Hospitals, Istanbul, Turkey
| | - Eduardo Aguera-Morales
- Neurology, Hospital Universitario Reina Sofia, Cordoba, Spain
- GC28 Neuroplasticity and Oxidative Stress, IMIBIC, Cordoba, Spain
| | - Orla Gray
- South Eastern HSC Trust, Belfast, UK
| | | | - Anneke van der Walt
- Monash University Central Clinical School, Melbourne, Victoria, Australia
- Alfred Hospital, Melbourne, Victoria, Australia
| | - Pamela A McCombe
- UQCCR, Royal Brisbane and Woman's Hospital Health Service District, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Norma Deri
- Hospital Fernandez, Buenos Aires, Argentina
| | - Justin Garber
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Abdullah Al-Asmi
- Sultan Qaboos University College of Medicine and Health Science, Muscat, Muscat Governorate, Oman
| | - Olga Skibina
- Neurosciences, The Alfred, Melbourne, Victoria, Australia
- Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
| | | | | | - Daniele Spitaleri
- Neurology, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati Neurologia e Stroke Unit, Avellino, Italy
| | - Riadh Gouider
- University of Tunis El Manar Faculty of Medicine of Tunis, Tunis, Tunisia
- Department of Neurology, Razi Hospital, Faculty of Medicine of Tunis, University Tunis el Manar, Tunisia, Manouba, Tunisia
| | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | | | - Mark Slee
- Neurology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Katherine Buzzard
- Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
- Eastern Health Clinical School, Monash University, Box Hill, Victoria, Australia
| | | |
Collapse
|
5
|
Kennedy PGE, Fultz M, Phares J, Yu X. Immunoglobulin G and Complement as Major Players in the Neurodegeneration of Multiple Sclerosis. Biomolecules 2024; 14:1210. [PMID: 39456143 PMCID: PMC11506455 DOI: 10.3390/biom14101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) and is termed as one of the most common causes of neurological disability in young adults. Axonal loss and neuronal cell damage are the primary causes of disease progression and disability. Yet, little is known about the mechanism of neurodegeneration in the disease, a limitation that impairs the development of more effective treatments for progressive MS. MS is characterized by the presence of oligoclonal bands and raised levels of immunoglobulins in the CNS. The role of complement in the demyelinating process has been detected in both experimental animal models of MS and within the CNS of affected MS patients. Furthermore, both IgG antibodies and complement activation can be detected in the demyelinating plaques and cortical gray matter lesions. We propose here that both immunoglobulins and complement play an active role in the neurodegenerative process of MS. We hypothesize that the increased CNS IgG antibodies form IgG aggregates and bind complement C1q with high affinity, activating the classical complement pathway. This results in neuronal cell damage, which leads to neurodegeneration and demyelination in MS.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK;
| | - Matthew Fultz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| |
Collapse
|
6
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
7
|
Gaetani L, Salvadori N, Brachelente G, Sperandei S, Di Sabatino E, Fiacca A, Mancini A, Villa A, De Stefano N, Parnetti L, Di Filippo M. Intrathecal B cell activation and memory impairment in multiple sclerosis. Mult Scler Relat Disord 2024; 85:105548. [PMID: 38513467 DOI: 10.1016/j.msard.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a common and disabling feature of people with multiple sclerosis (pwMS), but its underlying mechanisms are heterogenous and not fully understood. A role of infiltrating immune cells in the meninges and brain parenchyma has been hypothesized. This study aimed to explore the hypothesis that intrathecal B cells might influence cognitive performance in pwMS. METHODS A retrospective study was performed on 39 newly diagnosed pwMS who underwent cerebrospinal fluid (CSF) analysis. Kappa (κ)-index was measured as a biomarker of intrathecal B cell activation. Cognitive performance was assessed using the Brief Repeatable Battery of Neuropsychological Tests (BRBN). Brain T2 lesions number (T2LN) and volume (T2LV) together with brain, cortical grey matter, thalamic and hippocampal volumes were calculated to account for MRI-visible damage. RESULTS κ-index was higher in pwMS with verbal memory impairment (median 99.6, range 58.5-195.2 vs. median 37.2, range 2.3-396.9, p < 0.001), and it was negatively associated with BRBN tests exploring verbal memory and information processing speed. In multivariate models, higher κ-index was confirmed to be independently associated with worse scores of BRBN tests exploring verbal memory and with a higher probability of verbal memory impairment. CONCLUSION Intrathecal B cells might drive memory impairment in pwMS independently of brain damage visible on MRI scans.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy..
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| | - Giovanni Brachelente
- Clinical Pathology Laboratory, University Hospital S. Maria della Misericordia, Perugia, Italy
| | - Silvia Sperandei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| | - Elena Di Sabatino
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| | - Andrea Fiacca
- Section of Neuroradiology, University Hospital S. Maria della Misericordia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| | - Alfredo Villa
- Clinical Pathology Laboratory, University Hospital S. Maria della Misericordia, Perugia, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi 8, Perugia 06132, Italy
| |
Collapse
|
8
|
Tolkovsky A, Pardo K, Hellmann M, Lotan I, Auriel E, Wilf-Yarkoni A. Association between clinical characteristics, acute steroid treatment and oligoclonal bands result in multiple sclerosis: A retrospective study. Mult Scler Relat Disord 2024; 85:105554. [PMID: 38537510 DOI: 10.1016/j.msard.2024.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Detection of oligoclonal bands (OCBs) in the cerebrospinal fluid (CSF) is important for diagnosis of multiple sclerosis (MS). Previous studies reported that treatment with intravenous methylprednisolone (IVMP) before lumber puncture (LP) could suppress OCBs production. The aim of this study was to assess whether IVMP initiation prior to CSF collection affects OCBs results in patients with an acute demyelinating event. Additionally, we examined which clinical characteristics are associated with the presence of OCBs in the CSF. METHODS We retrospectively evaluated patients admitted to the neurology department at rabin medical center (RMC) between 2010 and 2022 who underwent LP with OCBs analysis as part of their demyelinating attack workup. Patients were divided into OCB-positive and OCB-negative groups and demographical and clinical characteristics (including timing and duration of acute steroid treatment and history of prior demyelinating attacks) were analyzed for association with OCBs results. RESULTS A total of 342 patients were included with a median age of 35 years (IQR, 27-46). Two hundred thirty-eight (69.6 %) were OCB-positive. Initiation of IVMP before LP was not associated with negative OCBs (11.8 % Vs. 13.5 %, P = 0.721), nor was it correlated with OCBs positivity (OR=0.86, P = 0.66). CSF cell count was higher in OCB-positive patients (5 Vs. 3, P = 0.001), and a history of prior demyelinating attacks was associated with- (33.6 % Vs. 20.2 %, P = 0.014) and predictive of OCBs positivity (OR=2, P = 0.013). CONCLUSIONS Timing of steroids was not associated with OCB positivity. However, pleocytosis and a prior attack were associated with OCB positivity in this cohort. Our results suggest that steroid treatment is unlikely to affect OCBs results. Ideally, larger prospective studies would be needed to confirm our observations.
Collapse
Affiliation(s)
- Assaf Tolkovsky
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Keshet Pardo
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark Hellmann
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itay Lotan
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Auriel
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Wilf-Yarkoni
- Departmet of Neurology, Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Puthenparampil M, Marin A, Zanotelli G, Mauceri VA, De Napoli F, Gaggiola M, Miscioscia A, Ponzano M, Bovis F, Perini P, Rinaldi F, Molon B, Gallo P. Blood-brain barrier damage associates with glia-related cytokines in the cerebrospinal fluid of patients with Multiple Sclerosis. Mult Scler Relat Disord 2024; 82:105403. [PMID: 38184910 DOI: 10.1016/j.msard.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The presence of Blood-Brain Barrier (BBB) dysfunction is defined by albumin quotient (QALB) and characterize a group of Multiple Sclerosis (MS) patients at clinical onset. We evaluated the concentration in cerebrospinal fluid (CSF) of 87 cytokines, to better characterize the CSF inflammatory pattern in presence of BBB damage. MATERIALS AND METHOD In an exploratory cohort, CSF cytokines were evaluated by means of Multiplex technology (Bio-Plex Pro-Human Cytokine, GF and Diabetes 27-Plex Panel, Bio-Plex Pro-Human Chemokines 40-Plex Panel, Bio-Plex Pro-Human Inflammation Assays 37-Plex Panel) in a cohort of Other Not Inflammatory Neurological Disorders (ONIND) and in cohort of patients with MS, stratified according to BBB damage into QALB+ and QALB- MS patients. In the validation cohort, we evaluated the relevant molecules in a cohort of MS patients, stratified again into QALB+ and QALB-, including also Neurofilament Light (NfL) and Chitinase 3-like 1 (CHI3L1) CSF concentration. RESULTS While MIP-1α, CXCL-13, and CCL-22 CSF concentrations were higher in both MS groups compared to ONIND, in QALB+ MS CSF concentrations of CXCL-9 (17.85 ± 4.69 pg/mL), CXCL-10 (476.5 ± 324.3 pg/mL), and IL-16 (96.08 ± 86.17 pg/mL) were higher than in QALB- MS (8.98 ± 5368 pg/mL, p < 0.005, 281.0 ± 180.9 pg/mL, p < 0.05, and 47.35 ± 36.87 pg/mL, p < 0.005, respectively) and ONIND (8.98 ± 5368 pg/mlL, p < 0.005, 281.0 ± 180.9 pg/mL, p < 0.005, and 47.35 ± 36.87 pg/mL, p < 0.001, respectively). A strong correlation was observed between CXCL-9 and CXCL-10 in all MS groups (all r>0.75, all p < 0.001). In the validation cohort again CXCL-10 CSF concentration were higher in QALB+ MS than in QALB- MS (94.25 ± 64.75 vs 153.8 ± 99.52, p < 0.05), while no difference was observed in serum. CSF NfL (1642 ± 1963 vs 3231 ± 3492 pg/mL, p < 0.05) and CHI3L1 (183.9 ± 86.62 vs 262 ± 137.5 ng/mL, p < 0.05) were increased in QALB+ MS. CONCLUSIONS BBB damage in MS is linked to a specific CSF cytokines pattern (CXCL-9, CXCL-10, IL-16), that are also involved in astrocyte-microglia interaction. To what extent their continuous production in the CNS may mark a more severe disease course merits to be investigated.
Collapse
Affiliation(s)
- M Puthenparampil
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy.
| | - A Marin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - G Zanotelli
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - V A Mauceri
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - F De Napoli
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - M Gaggiola
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - A Miscioscia
- Department of Neurosciences, University of Padua, Padua, Italy
| | - M Ponzano
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova, Italy
| | - F Bovis
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova, Italy
| | - P Perini
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - F Rinaldi
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - P Gallo
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| |
Collapse
|
10
|
Kennedy PGE, George W, Yu X. The elusive nature of the oligoclonal bands in multiple sclerosis. J Neurol 2024; 271:116-124. [PMID: 37945762 DOI: 10.1007/s00415-023-12081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Intrathecal immunoglobulin G (IgG) and oligoclonal bands (OCBs) detected in both the brain and cerebrospinal fluid (CSF) are seminal features of multiple sclerosis (MS). The presence of OCBs correlates with elevated disease burden and severity and supports the diagnosis of MS. Despite numerous investigations into the potential viral and autoantigen targets, the precise antigenic specificity of OCBs has remained elusive. We have little knowledge of the nature regarding these oligoclonal IgG bands. Here, we present compelling evidence highlighting the key findings that both OCBs and intrathecal IgG antibodies are under genetic control and that OCBs originate from clonal B-cells in both the periphery and CNS. We propose that MS OCBs are IgG immune complexes composed of IgG1 and IgG3 antibodies and that the pathological role of OCB stems from the IgG effector functions of these complexes, leading to demyelination and axonal injuries. We present additional evidence regarding the nature of MS OCBs: (1) disease-modifying therapies have been shown to affect CSF OCB; (2) OCBs have also been detected in several neuroinfectious diseases; (3) Epstein-Barr virus (EBV) has been particularly linked with MS pathogenesis, and its association with OCB is an important area of study. Although OCBs are closely associated with MS, more meticulously planned research is necessary to clarify the precise role of OCB in MS, both in terms of disease pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Woro George
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Zhou W, Graner M, Beseler C, Domashevich T, Selva S, Webster G, Ledreux A, Zizzo Z, Lundt M, Alvarez E, Yu X. Plasma IgG aggregates as biomarkers for multiple sclerosis. Clin Immunol 2023; 256:109801. [PMID: 37816415 DOI: 10.1016/j.clim.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
We recently reported that multiple sclerosis (MS) plasma contains IgG aggregates and induces complement-dependent neuronal cytotoxicity (Zhou et al., 2023). Using ELISA, we report herein that plasma IgG levels in the aggregates can be used as biomarkers for MS. We enriched the IgG aggregates from samples of two cohorts (190 MS and 160 controls) by collecting flow-through after plasma binding to Protein A followed by detection of IgG subclass. We show that there are significantly higher levels of IgG1, IgG3, and total IgG antibodies in MS IgG aggregates, with an AUC >90%; higher levels of IgG1 distinguish secondary progressive MS from relapsing-remitting MS (AUC = 91%). Significantly, we provided the biological rationale for MS plasma IgG biomarkers by demonstrating the strong correlation between IgG antibodies and IgG aggregate-induced neuronal cytotoxicity. These non-invasive, simple IgG-based blood ELISA assays can be adapted into clinical practice for diagnosing MS and SPMS and monitoring treatment responses.
Collapse
Affiliation(s)
- Wenbo Zhou
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Graner
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheryl Beseler
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy Domashevich
- Departments of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean Selva
- Departments of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gill Webster
- Innate Immunotherapeutics Limited, Auckland, New Zealand
| | - Aurelie Ledreux
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zoe Zizzo
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Max Lundt
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Enrique Alvarez
- Departments of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiaoli Yu
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Bigotte M, Groh AMR, Marignier R, Stratton JA. Pathogenic role of autoantibodies at the ependyma in autoimmune disorders of the central nervous system. Front Cell Neurosci 2023; 17:1257000. [PMID: 37771929 PMCID: PMC10525373 DOI: 10.3389/fncel.2023.1257000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Ependymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more. A role for ependymal cells in a variety of neurological disorders has been proposed, including in neuromyelitis optica and multiple sclerosis, two autoimmune demyelinating diseases of the central nervous system, where periventricular damage is common. What is not known is the mechanisms behind how ependymal cells become dysregulated in these diseases. In neuromyelitis optica, it is well established that autoantibodies directed against Aquaporin-4 are drivers of disease, and it has been shown recently that these autoantibodies can drive ependymal cell dysregulation. We propose a similar mechanism is at play in multiple sclerosis, where autoantibodies targeting a glial cell protein called GlialCAM on ependymal cells are contributing to disease. GlialCAM shares high molecular similarities with the Epstein-Barr virus (EBV) protein EBNA1. EBV has recently been shown to be necessary for multiple sclerosis initiation, yet how EBV mediates pathogenesis, especially in the periventricular area, remains elusive. In this perspective article, we discuss how ependymal cells could be targeted by antibody-related autoimmune mechanisms in autoimmune demyelinating diseases and how this is implicated in ventricular/periventricular pathology.
Collapse
Affiliation(s)
- Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Adam M. R. Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Romain Marignier
- Forgetting Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, Bron, France
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
14
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
de Caneda MAG, Rizzo MRL, Furlin G, Kupske A, Valentini BB, Ortiz RF, Silva CBDO, de Vecino MCA. Interrater reliability for the detection of cortical lesions on phase-sensitive inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Radiol Bras 2023; 56:187-194. [PMID: 37829590 PMCID: PMC10567094 DOI: 10.1590/0100-3984.2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 10/14/2023] Open
Abstract
Objective To assess the reliability of phase-sensitive inversion recovery (PSIR) magnetic resonance imaging (MRI) and its accuracy for determining the topography of demyelinating cortical lesions in patients with multiple sclerosis (MS). Materials and Methods This was a cross-sectional study conducted at a tertiary referral center for MS and other demyelinating disorders. We assessed the agreement among three raters for the detection and topographic classification of cortical lesions on fluid-attenuated inversion recovery (FLAIR) and PSIR sequences in patients with MS. Results We recruited 71 patients with MS. The PSIR sequences detected 50% more lesions than did the FLAIR sequences. For detecting cortical lesions, the level of interrater agreement was satisfactory, with a mean free-response kappa (κFR) coefficient of 0.60, whereas the mean κFR for the topographic reclassification of the lesions was 0.57. On PSIR sequences, the raters reclassified 366 lesions (20% of the lesions detected on FLAIR sequences), with excellent interrater agreement. There was a significant correlation between the total number of lesions detected on PSIR sequences and the Expanded Disability Status Scale score (ρ = 0.35; p < 0.001). Conclusion It seems that PSIR sequences perform better than do FLAIR sequences, with clinically satisfactory interrater agreement, for the detection and topographic classification of cortical lesions. In our sample of patients with MS, the PSIR MRI findings were significantly associated with the disability status, which could influence decisions regarding the treatment of such patients.
Collapse
|
16
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
17
|
Polak J, Wagnerberger JH, Torsetnes SB, Lindeman I, Høglund RAA, Vartdal F, Sollid LM, Lossius A. Single-cell transcriptomics combined with proteomics of intrathecal IgG reveal transcriptional heterogeneity of oligoclonal IgG-secreting cells in multiple sclerosis. Front Cell Neurosci 2023; 17:1189709. [PMID: 37362001 PMCID: PMC10285169 DOI: 10.3389/fncel.2023.1189709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The phenotypes of B lineage cells that produce oligoclonal IgG in multiple sclerosis have not been unequivocally determined. Here, we utilized single-cell RNA-seq data of intrathecal B lineage cells in combination with mass spectrometry of intrathecally synthesized IgG to identify its cellular source. We found that the intrathecally produced IgG matched a larger fraction of clonally expanded antibody-secreting cells compared to singletons. The IgG was traced back to two clonally related clusters of antibody-secreting cells, one comprising highly proliferating cells, and the other consisting of more differentiated cells expressing genes associated with immunoglobulin synthesis. These findings suggest some degree of heterogeneity among cells that produce oligoclonal IgG in multiple sclerosis.
Collapse
Affiliation(s)
- Justyna Polak
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johanna H. Wagnerberger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ida Lindeman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Rune A. Aa. Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode Vartdal
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ludvig M. Sollid
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
18
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
19
|
Belimezi M, Kalliaropoulos A, Mentis AFA, Chrousos GP. Diagnostic significance of IgG and albumin indices versus oligoclonal band types in demyelinating disorders. J Clin Pathol 2023; 76:166-171. [PMID: 34526372 DOI: 10.1136/jclinpath-2021-207766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 11/04/2022]
Abstract
AIMS The laboratory diagnosis of demyelinating inflammatory disorders (DIDs) relies on both intrathecal oligoclonal band (OCB) positivity and IgG index. Although OCB typing remains the gold-standard test for DIDs, it can be laborious and ambiguous, complicating diagnostics, and unduly increasing diagnostic time. We examined whether serum or cerebrospinal fluid (CSF) parameters can classify OCB types and, thus, be used as a replacement test to standard OCB typing. METHODS We retrospectively analysed >1000 prospectively collected samples of patients with DIDs and quantified albumin and IgG levels in the CSF and serum. We determined OCB types by isoelectric focusing combined with immunofixation and evaluated the diagnostic accuracies of IgG and albumin indices in discriminating OCB types by receiver operating characteristic curves and multinomial regression. RESULTS An IgG index cut-off of 0.589 differentiated types 2/3 from types 1/4 (area under the curve 0.780, 95% CI 0.761 to 0.812, p<0.001; specificity: 71.10%, sensitivity: 73.45%). Albumin quotient cut-off values of 6.625 and of 6.707 discriminated type 1 from type 4 and type 2 from type 3, respectively (specificity: <55%, sensitivity: <75%). Female sex, age, IgG index, CSF IgG and serum albumin were associated with different OCB types. CONCLUSIONS Our study reveals that IgG and albumin index can differentiate OCB types with adequate accuracy, especially if refined by age and gender.
Collapse
Affiliation(s)
- Maria Belimezi
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Alexios-Fotios A Mentis
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece .,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Rosenstein I, Axelsson M, Novakova L, Rasch S, Blennow K, Zetterberg H, Lycke J. High levels of kappa free light chain synthesis predict cognitive decline in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1106028. [PMID: 36742305 PMCID: PMC9896185 DOI: 10.3389/fimmu.2023.1106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Background Evolving evidence suggests that measurement of cerebrospinal fluid (CSF) kappa free light chain (KFLC) synthesis has high diagnostic sensitivity and specificity for multiple sclerosis (MS), but its prognostic ability is less investigated. The usefulness of KFLC in predicting cognitive impairment (CI) is still unknown. Methods In a monocentric longitudinal retrospecitve cohort study, KFLC-index ([CSF KFLC/serum KFLC]/[CSF albumin/serum albumin]) measured by latex-enhanced immunonephelometry was prospectively determined as part of the diagnostic workup in patients with early relapsing-remitting MS (RRMS, n=77). The ability of KFLC-index to predict information processing speed (IPS) worsening as assessed with the symbol digit modalities test (SDMT) was investigated in univariable and multivariable models. Results In patients with KFLC-index>100 (n=31), 11 subjects (35.5%) showed reduced SDMT scores by ≥8 points at follow-up (mean follow-up time 7.3 ± 2.6 years), compared with their baseline scores (p=0.01). Baseline KFLC-index>100 was strongly associated with a higher hazard of SDMT score reduction at follow-up (adjusted hazard ratio 10.5, 95% confidence interval 2.2-50.8, p=0.003; median time to SDMT reduction 7 years). Conclusion Intrathecal KFLC synthesis has become an attractive diagnostic tool for MS. We show for the first time that in a real-world setting of early RRMS, KFLC-index predicted cognitive decline. Whether this predictive ability of KFLC-index also concerns other cognitive domains than IPS, warrants further investigations.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Igal Rosenstein,
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden,United Kingdom (UK) Dementia Research Institute at University College London (UCL), London, United Kingdom,Department of Neurodegenerative Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Centre for Neurodegenerative Diseases, Hong Kong SAR, China,Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Lucchini M, De Arcangelis V, Piro G, Nociti V, Bianco A, De Fino C, Di Sante G, Ria F, Calabresi P, Mirabella M. CSF CXCL13 and Chitinase 3-like-1 Levels Predict Disease Course in Relapsing Multiple Sclerosis. Mol Neurobiol 2023; 60:36-50. [PMID: 36215027 PMCID: PMC9758105 DOI: 10.1007/s12035-022-03060-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Several biomarkers from multiple sclerosis (MS) patients' biological fluids have been considered to support diagnosis, predict disease course, and evaluate treatment response. In this study, we assessed the CSF concentration of selected molecules implicated in the MS pathological process. To investigate the diagnostic and prognostic significance of CSF concentration of target candidate biomarkers in both relapsing (RMS, n = 107) and progressive (PMS, n = 18) MS patients and in other inflammatory (OIND, n = 10) and non-inflammatory (ONIND, n = 15) neurological disorders. We measured the CSF concentration of APRIL, BAFF, CHI3L1, CCL-2, CXCL-8, CXCL-10, CXCL-12, CXCL-13 through a Luminex Assay. MS patients were prospectively evaluated, and clinical and radiological activity were recorded. CHI3L1 and CXCL13 CSF levels were significantly higher in both MS groups compared to control groups, while CCL2, BAFF, and APRIL concentrations were lower in RMS patients compared to PMS and OIND. Considering RMS patients with a single demyelinating event, higher concentrations of CHI3L1, CXCL10, CXCL12, and CXCL13 were recorded in patients who converted to clinically defined MS(CDMS). RMS patients in the CXCL13 and CHI3L1 high concentration group had a significantly higher risk of relapse (HR 12.61 and 4.57), MRI activity (HR 7.04 and 2.46), and of any evidence of disease activity (HR 12.13 and 2.90) during follow-up. CSF CXCL13 and CHI3L1 levels represent very good prognostic biomarkers in RMS patients, and therefore can be helpful in the treatment choice. Higher CSF concentrations of neuro-inflammatory biomarkers were associated with a higher risk of conversion to CDMS in patients with a first clinical demyelinating event. Differential CSF BAFF and APRIL levels between RMS and PMS suggest a different modulation of B-cells pathways in the different phases of the disease.
Collapse
Affiliation(s)
- Matteo Lucchini
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Valeria De Arcangelis
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Geny Piro
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Oncologia Medica, Rome, Italy
| | - Viviana Nociti
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Assunta Bianco
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Chiara De Fino
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Gabriele Di Sante
- grid.9027.c0000 0004 1757 3630Dipartimento Di Medicina e Chirurgia, Sezione Di Anatomia Umana, Clinica e Forense, Università Degli Studi Di Perugia, Perugia, Italy
| | - Francesco Ria
- grid.8142.f0000 0001 0941 3192Dipartimento Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.414603.4Dipartimento Di Scienze Di Laboratorio Ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Mirabella
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
22
|
Kennedy PGE, Graner MW, Fringuello A, Zhou W, Pointon T, Alquatli K, Bisel S, Langford D, Yu X. Higher Levels of IgG3 Antibodies in Serum, But Not in CSF, Distinguish Multiple Sclerosis From Other Neurological Disorders. J Neuroimmune Pharmacol 2022; 17:526-537. [PMID: 34989971 DOI: 10.1007/s11481-021-10048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023]
Abstract
Increased intrathecal IgG and oligoclonal bands (OCB) are seminal features of multiple sclerosis (MS). Although no such differences in MS blood total IgG antibodies have been reported, serum OCB are a common and persistent finding in MS and have a systemic source. Recent studies showed that IgG3+ B cells and higher levels of serum IgG3 are linked to the development of MS. Additionally, intrathecal IgG synthesis in MS is associated with IgG3 heavy chain gene single nucleotide polymorphisms, and there is a strong relationship between susceptibility to MS and an IgG3 restriction fragment length polymorphism. These studies support the role of IgG3 in disease pathogenesis. Using multiple immunoassays, we investigated levels of total IgG, IgG1, and IgG3 in sera and CSF of 102 MS patients (19 paired CSF and sera), 76 patients with other neurological disorders (9 paired CSF and sera), and 13 healthy controls. We show that higher levels of total IgG and IgG3 antibodies were detected in MS serum, but not in CSF, which distinguishes MS from other inflammatory and non-inflammatory neurological disorders, with Receiver Operating Characteristic (ROC) Curves 0.79 for both IgG3 & total IgG. Our data support the notion that IgG3 antibodies may be a potential candidate for MS blood biomarker development.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kinda Alquatli
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Bisel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dianne Langford
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
23
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
24
|
Linzey M, DiSano K, Welsh N, Pachner A, Gilli F. Divergent complement system activation in two clinically distinct murine models of multiple sclerosis. Front Immunol 2022; 13:924734. [PMID: 35958570 PMCID: PMC9360327 DOI: 10.3389/fimmu.2022.924734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a neurological disease featuring neuroinflammation and neurodegeneration in young adults. So far, most research has focused on the peripheral immune system, which appears to be the driver of acute relapses. Concurrently, the mechanisms underlying neurodegeneration in the progressive forms of the disease remain unclear. The complement system, a molecular component of the innate immunity, has been recently implicated in several neurological disorders, including MS. However, it is still unknown if the complement proteins detected in the central nervous system (CNS) are actively involved in perpetuating chronic inflammation and neurodegeneration. To address this knowledge gap, we compared two clinically distinct mouse models of MS: 1) proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (rEAE) resembling a relapsing-remitting disease course, and 2) Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) resembling a progressive disease. Real-time PCR was performed in the spinal cord of rEAE mice, TMEV-IDD mice and age-matched sham controls to quantify gene expression for a broad range of complement components. In both experimental models, we found significantly increased expression of complement factors, such as C1q, C3, CfB, and C3aR. We showed that the complement system, specifically the classical complement pathway, was associated with TMEV-IDD pathogenesis, as the expression of C1q, C3 and C3aR1 were all significantly correlated to a worse disease outcome (all P≤0.0168). In line with this finding, C1q and C3 deposition was observed in the spinal cord of TMEV-IDD mice. Furthermore, C1q deposition was detected in spinal cord regions characterized by inflammation, demyelination, and axonal damage. Conversely, activation of the classical complement cascade seemed to result in protection from rEAE (C1q: P=0.0307). Interestingly, the alternative pathway related to a worse disease outcome in rEAE (CFb: P=0.0006). Overall, these results indicate potential divergent roles for the complement system in MS. The chronic-progressive disease form is more reliant on the activation of the classic complement pathway, while protecting from acute relapses. Conversely, relapsing MS appears more likely affected by the alternative pathway. Understanding the functions of the complement system in MS is critical and can lead to better, more targeted therapies in the future.
Collapse
Affiliation(s)
- Michael Linzey
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Michael Linzey,
| | - Krista DiSano
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Department of Veteran Affairs Medical Center, White River Junction, VT, United States
| | - Nora Welsh
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Andrew Pachner
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Francesca Gilli
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
25
|
James Bates RE, Browne E, Schalks R, Jacobs H, Tan L, Parekh P, Magliozzi R, Calabrese M, Mazarakis ND, Reynolds R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022; 145:4287-4307. [PMID: 35776111 DOI: 10.1093/brain/awac232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Organised meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the cerebrospinal fluid of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior sub-clinical immunisation with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localised over-expression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin+ fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on prior myelin oligodendrocyte glycoprotein immunisation, the neuronal loss was present irrespective of immunisation. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.
Collapse
Affiliation(s)
- Rachel E James Bates
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Eleanor Browne
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Renee Schalks
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Heather Jacobs
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Li Tan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Puja Parekh
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Roberta Magliozzi
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Puthenparampil M, Torresin T, Franciotta S, Marin A, De Napoli F, Mauceri VA, Miante S, Pilotto E, Midena E, Gallo P. Hyper-Reflecting Foci in Multiple Sclerosis Retina Associate With Macrophage/Microglia-Derived Cytokines in Cerebrospinal Fluid. Front Immunol 2022; 13:852183. [PMID: 35664007 PMCID: PMC9160385 DOI: 10.3389/fimmu.2022.852183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Increasing evidence suggests that retinal hyper-reflecting foci (HRF) might be clusters of activated and proliferating microglia. Since microglia are widespread activated in multiple sclerosis (MS) brain, its evaluation in retina may help to understand and monitor MS-related pathology. Aim This study aims at investigating the association of HRF with cerebrospinal fluid (CSF) cytokines and MRI parameters in relapsing–remitting MS (RRMS). Methods Nineteen RRMS at clinical onset and 15 non-inflammatory neurological disorders (NIND) underwent brain 3T MRI and CSF examination. Optical coherence tomography (OCT) analysis, including HRF count, was performed on RRMS patients. Sixty-nine cytokines/chemokines were analyzed in the CSF by multiplex technology. Results In RRMS, HRF count in the ganglion cell layer (GCL) was associated with IL-1Ra, IL-9, IL-15, IFN-γ, and G-CSF. Moreover, in RRMS patients CSF concentrations of IL-1Ra and G-CSF associated with global cortical thickness. The HRF count in the inner nuclear layer (INL) correlated with IL-22, IL-34, IL-35, CXCL-2, CXCL-10, and CXCL-13, and multivariate analysis confirmed a strong association (r2: 0.47) with both CXCL-2 (β: -0.965, p = 0.0052) and CXCL-13 (β: 0.241, p = 0.018). This latter cytokine increased in RRMS with high HRF count compared with NIND and RRMS with low HRF count. Finally, the CXCL-13/CXCL-2 ratio strongly associated with HRF count (r: 0.8, p < 0.005) and cortical lesion volume (r: 0.5, p < 0.05). Conclusions The association of HRF with intrathecally produced monocyte/microglia-derived cytokines confirms their microglial origin and indicates they are worth further evaluating as markers of activated microglia.
Collapse
Affiliation(s)
- Marco Puthenparampil
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Tommaso Torresin
- Ophthalmology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Silvia Franciotta
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Annachiara Marin
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Federica De Napoli
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Valentina Annamaria Mauceri
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Silvia Miante
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Elisabetta Pilotto
- Ophthalmology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Edoardo Midena
- Ophthalmology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
27
|
Kennedy PGE, Graner M, Pointon T, Li X, Tanimoto K, Dennison K, Im G, Fringuello A, Zhou W, Graner A, Sillau S, Vollmer T, Yu X. Aberrant Immunoglobulin G Glycosylation in Multiple Sclerosis. J Neuroimmune Pharmacol 2022; 17:218-227. [PMID: 33942224 PMCID: PMC9279016 DOI: 10.1007/s11481-021-09996-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022]
Abstract
A hallmark of the inflammatory response in multiple sclerosis (MS) is the presence of intrathecal Immunoglobulin G (IgG) antibodies and oligoclonal bands (OCBs). The biological activity of IgGs is modulated by changes in glycosylation. Using multiple immunoassays with common lectins for sialylation and galactosylation, we investigated levels of IgG glycosylation in 28 MS and 37 control sera as well as paired CSF and serum. We demonstrated the presence of significantly lower levels of IgG sialylation in MS CSF compared to paired serum. Further, we showed that in MS there was no correlation between sialylated IgG and total IgG antibodies, or between sialylated IgG in CSF and serum. ELISA with native IgG antibodies showed significantly higher levels of sialylated and galactosylated IgG in MS compared to other neurological disorders and normal healthy controls. We conclude that lower levels of sialylated intrathecal IgG and higher levels of serum IgG galactosylation in MS may play significant role in disease pathogenesis. The unique IgG glycosylation profiles suggest a complexed nature of the IgG antibodies which may influence its effector functions in MS.
Collapse
Affiliation(s)
- Peter GE Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaomeng Li
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kayo Tanimoto
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn Dennison
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gina Im
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wenbo Zhou
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arin Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy Vollmer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Corresponding author:
| |
Collapse
|
28
|
Carta S, Ferraro D, Ferrari S, Briani C, Mariotto S. Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 2022; 59:391-404. [DOI: 10.1080/10408363.2022.2039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Carta
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Diana Ferraro
- Department of Biomedicine, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Coll-Martinez C, Quintana E, Salavedra-Pont J, Buxó M, González-Del-Rio M, Gómez I, Muñoz-San Martín M, Villar LM, Álvarez-Bravo G, Robles-Cedeño R, Ramió-Torrentà L, Gich J. Assessing the presence of oligoclonal IgM bands as a prognostic biomarker of cognitive decline in the early stages of multiple sclerosis. Brain Behav 2021; 11:e2405. [PMID: 34796675 PMCID: PMC8671794 DOI: 10.1002/brb3.2405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND An association has been found between the presence of lipid-specific oligoclonal IgM bands (LS-OCMB) in cerebrospinal fluid and a more severe clinical multiple sclerosis course. OBJECTIVE To investigate lipid-specific oligoclonal IgM bands as a prognostic biomarker of cognitive impairment in the early stages of multiple sclerosis. METHODS Forty-four patients underwent neuropsychological assessment at baseline and 4 years. Cognitive performance at follow-up was compared adjusting by age, education, anxiety-depression, and baseline performance. RESULTS LS-OCMB+ patients only performed worse for Long-Term Storage in the Selective Reminding Test (p = .018). CONCLUSION There are no remarkable cognitive differences between LS-OCMB- and LS-OCMB+ patients in the early stages of MS.
Collapse
Affiliation(s)
- Clàudia Coll-Martinez
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Ester Quintana
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Judit Salavedra-Pont
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Maria Buxó
- Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Marina González-Del-Rio
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Immaculada Gómez
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - María Muñoz-San Martín
- Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - Luisa María Villar
- REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain.,Immunology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Gary Álvarez-Bravo
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain
| | - René Robles-Cedeño
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Lluís Ramió-Torrentà
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain.,REEM, Multiple Sclerosis Spanish Network, Instituo de Salud Carlos III, Madrid, Spain
| | - Jordi Gich
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona/Salt, Spain.,Neurodegeneration and Neuroimflammation Research Group, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta, Salt, Spain.,Medical Sciences Department, University of Girona, Girona, Spain
| |
Collapse
|
30
|
Next Generation Sequencing of Cerebrospinal Fluid B Cell Repertoires in Multiple Sclerosis and Other Neuro-Inflammatory Diseases-A Comprehensive Review. Diagnostics (Basel) 2021; 11:diagnostics11101871. [PMID: 34679570 PMCID: PMC8534365 DOI: 10.3390/diagnostics11101871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.
Collapse
|
31
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
32
|
TANYEL KİREMİTÇİ T, MERCAN Ö, MISIRLI C, TÜRKOĞLU R. Activation of NLRP1 and NLRP3 Inflammasomes in Multiple Sclerosis and Clinically Isolated Syndrome. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.730473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Ben Noon G, Vigiser I, Shiner T, Kolb H, Karni A, Regev K. Reinforcing the evidence of oligoclonal bands as a prognostic factor in patients with Multiple sclerosis. Mult Scler Relat Disord 2021; 56:103220. [PMID: 34455137 DOI: 10.1016/j.msard.2021.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022]
Abstract
The prognostic value of oligoclonal bands in the cerebrospinal fluid of Multiple Sclerosis (MS) patients is controversial. While several studies have demonstrated a worse disease course in OCB positive patients, others did not reproduce these findings. We evaluated the prognostic significance of OCB retrospectively based on clinical records of OCB status upon diagnosis and severity outcomes including the MS Severity Score, Progression Index and regional involvement in Magnetic Resonance Imaging. OCB positive patients had a higher median MSSS and PI, and a greater proportion of spinal cord involvement. These findings provide further evidence of the prognostic importance of OCB in MS patients.
Collapse
Affiliation(s)
- G Ben Noon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - I Vigiser
- Neuroimmunology and Multiple Sclerosis Unit of the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - T Shiner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - H Kolb
- Neuroimmunology and Multiple Sclerosis Unit of the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - A Karni
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Neuroimmunology and Multiple Sclerosis Unit of the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - K Regev
- Neuroimmunology and Multiple Sclerosis Unit of the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
34
|
Pitteri M, Magliozzi R, Nicholas R, Ziccardi S, Pisani AI, Pezzini F, Marastoni D, Calabrese M. Cerebrospinal fluid inflammatory profile of cognitive impairment in newly diagnosed multiple sclerosis patients. Mult Scler 2021; 28:768-777. [PMID: 34328817 DOI: 10.1177/13524585211032510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The cerebrospinal fluid (CSF) molecular milieu is a marker of diffuse intrathecal inflammation in the meninges that, in turn, targets the grey matter (GM) in multiple sclerosis (MS). Cognitive impairment (CI) is associated with brain damage in MS and is often present early in people with MS (pwMS). OBJECTIVE To investigate whether a specific CSF inflammatory profile is associated with different degrees of CI in newly diagnosed pwMS. METHODS Sixty-nine pwMS and 43 healthy controls (HCs) underwent neuropsychological testing. The presence and levels of 57 inflammatory mediators in the CSF were assessed. RESULTS Apparently cognitively normal (ACN) pwMS had impaired executive functioning compared to HCs but performed better than pwMS with mild and severe CI (mCI and sCI) in all tests. CSF mediators involving innate immunity and immune activation and recruitment, differentiate ACN from pwMS with mCI, while CSF mediators related to B- and T-cell immunity and chemotaxis differentiate both ACN and mCI from those with sCI. CXCL13 was the only molecule that differentiated sCI from mCI pwMS. CONCLUSION Specific CSF molecular patterns, reflecting the involvement of both innate and adaptive immune responses, are associated with the severity of CI in newly diagnosed pwMS.
Collapse
Affiliation(s)
- Marco Pitteri
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Magliozzi
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy/Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Stefano Ziccardi
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Isabella Pisani
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10:e1316. [PMID: 34336206 PMCID: PMC8312887 DOI: 10.1002/cti2.1316] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity plays a significant role in the pathogenesis of demyelination. Multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) are now recognised as separate disease entities under the amalgam of human central nervous system demyelinating disorders. While these disorders share inherent similarities, investigations into their distinct clinical presentations and lesion pathologies have aided in differential diagnoses and understanding of disease pathogenesis. An interplay of various genetic and environmental factors contributes to each disease, many of which implicate an autoimmune response. The pivotal role of the adaptive immune system has been highlighted by the diagnostic autoantibodies in NMOSD and MOGAD, and the presence of autoreactive lymphocytes in MS lesions. While a number of autoantigens have been proposed in MS, recent emphasis on the contribution of B cells has shed new light on the well‐established understanding of T cell involvement in pathogenesis. This review aims to synthesise the clinical characteristics and pathological findings, discuss existing and emerging hypotheses regarding the aetiology of demyelination and evaluate recent pathogenicity studies involving T cells, B cells, and autoantibodies and their implications in human demyelination.
Collapse
Affiliation(s)
- Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Martina Denkova
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Department of Neurology Concord Hospital Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
36
|
Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study. Sci Rep 2021; 11:14987. [PMID: 34294805 PMCID: PMC8298473 DOI: 10.1038/s41598-021-94423-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) patients with immunoglobulin gamma (IgG) oligoclonal bands (OCB) in the cerebrospinal fluid (CSF) have different genetic backgrounds and brain MRI features compared to those without. In this study, we aimed to determine whether CSF-OCB status is associated with long-term disability outcomes. We used Swedish MS register data on clinically definite MS patients with known OCB status. Date of birth, age at MS onset, and time to sustained Expanded Disability Status Scale (EDSS) milestones 3, 4, and 6; time to conversion to secondary progressive (SP) MS, sex, and immunomodulatory treatment (IMTs) duration were collected. Multivariate Cox regression models were used to investigate the association between OCB status and risk of reaching each milestone. The OCB-positive group reached disability milestones at an earlier time and younger age. OCB-positivity significantly increased the risk of reaching EDSS 3.0 (HR = 1.29, 95% CI 1.12 to 1.48, P < 0.001) and 4.0 (HR = 1.38, 95% CI 1.17 to 1.63, P < 0.001). The OCB-positive group had a 20% higher risk of conversion to SPMS. CSF-OCB presence is associated with higher risk of reaching EDSS milestones and conversion to SPMS. Our findings suggest higher disease modifying effect of OCB presence in the early inflammatory stages of MS.
Collapse
|
37
|
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144:2954-2963. [PMID: 34180982 PMCID: PMC8634125 DOI: 10.1093/brain/awab241] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis is a highly heterogeneous disease, and the detection of neuroaxonal damage as well as its quantification is a critical step for patients. Blood-based serum neurofilament light chain (sNfL) is currently under close investigation as an easily accessible biomarker of prognosis and treatment response in patients with multiple sclerosis. There is abundant evidence that sNfL levels reflect ongoing inflammatory-driven neuroaxonal damage (e.g. relapses or MRI disease activity) and that sNfL levels predict disease activity over the next few years. In contrast, the association of sNfL with long-term clinical outcomes or its ability to reflect slow, diffuse neurodegenerative damage in multiple sclerosis is less clear. However, early results from real-world cohorts and clinical trials using sNfL as a marker of treatment response in multiple sclerosis are encouraging. Importantly, clinical algorithms should now be developed that incorporate the routine use of sNfL to guide individualized clinical decision-making in people with multiple sclerosis, together with additional fluid biomarkers and clinical and MRI measures. Here, we propose specific clinical scenarios where implementing sNfL measures may be of utility, including, among others: initial diagnosis, first treatment choice, surveillance of subclinical disease activity and guidance of therapy selection.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D'Hebron, Cemcat, Barcelona, Spain
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Pellerin K, Rubino SJ, Burns JC, Smith BA, McCarl CA, Zhu J, Jandreski L, Cullen P, Carlile TM, Li A, Rebollar JV, Sybulski J, Reynolds TL, Zhang B, Basile R, Tang H, Harp CP, Pellerin A, Silbereis J, Franchimont N, Cahir-McFarland E, Ransohoff RM, Cameron TO, Mingueneau M. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain 2021; 144:2361-2374. [PMID: 34145876 DOI: 10.1093/brain/awab231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies are a hallmark of numerous neurologic disorders, including multiple sclerosis (MS), autoimmune encephalitides and neuromyelitis optica (NMO). While well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor (FcR) signaling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding FcR signaling in microglia. Here, we describe a novel in vivo experimental paradigm that allows for selective engagement of Fc receptors within the CNS by peripherally injecting anti-myelin oligodendrocyte glycoprotein (MOG) monoclonal antibodies (mAbs) in normal wild-type mice. MOG antigen-bound immunoglobulins were detected throughout the CNS and triggered a rapid and tightly regulated proliferative response in both brain and spinal cord microglia. This microglial response was abrogated when anti-MOG antibodies were deprived of Fc effector function or injected into Fc γ R knockout mice and was associated with the downregulation of FcRs in microglia, but not peripheral myeloid cells, establishing that this response was dependent on central FcR engagement. Downstream of FcRs, Bruton's tyrosine kinase (BTK) was a required signaling node for this response, as microglia proliferation was amplified in BTKE41K knock-in mice expressing a constitutively active form of BTK and blunted in mice treated with a CNS penetrant small molecule inhibitor of BTK. Finally, this response was associated with transient and stringently regulated changes in gene expression predominantly related to cellular proliferation, which markedly differed from transcriptional programs typically associated with FcR engagement in peripheral myeloid cells. Together, these results establish a physiologically-meaningful functional response to FcR and BTK signaling in microglia while providing a novel in vivo tool to further dissect the roles of microglia-specific FcR and BTK-driven responses to both pathogenic and therapeutic antibodies in CNS homeostasis and disease.
Collapse
Affiliation(s)
- Kathryn Pellerin
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Stephen J Rubino
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Jeremy C Burns
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | - Jing Zhu
- Translational Biology, Biogen, Cambridge, USA
| | | | | | | | - Angela Li
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | | | | | - Rebecca Basile
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Hao Tang
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | - Alex Pellerin
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - John Silbereis
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | | | | | - Michael Mingueneau
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| |
Collapse
|
39
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
40
|
Magliozzi R, Pitteri M, Ziccardi S, Pisani AI, Montibeller L, Marastoni D, Rossi S, Mazziotti V, Guandalini M, Dapor C, Schiavi G, Tamanti A, Nicholas R, Reynolds R, Calabrese M. CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Ann Clin Transl Neurol 2021; 8:534-547. [PMID: 33484486 PMCID: PMC7951111 DOI: 10.1002/acn3.51298] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction and methods In order to verify whether parvalbumin (PVALB), a protein specifically expressed by GABAergic interneurons, could be a MS‐specific marker of grey matter neurodegeneration, we performed neuropathology/molecular analysis of PVALB expression in motor cortex of 40 post‐mortem progressive MS cases, with/without meningeal inflammation, and 10 control cases, in combination with cerebrospinal fluid (CSF) assessment. Analysis of CSF PVALB and neurofilaments (Nf‐L) levels combined with physical/cognitive/3TMRI assessment was performed in 110 naïve MS patients and in 32 controls at time of diagnosis. Results PVALB gene expression was downregulated in MS (fold change = 3.7 ± 1.2, P < 0.001 compared to controls) reflecting the significant reduction of PVALB+ cell density in cortical lesions, to a greater extent in MS patients with high meningeal inflammation (51.8, P < 0.001). Likewise, post‐mortem CSF‐PVALB levels were higher in MS compared to controls (fold change = 196 ± 36, P < 0.001) and correlated with decreased PVALB+ cell density (r = −0.64, P < 0.001) and increased MHC‐II+ microglia density (r = 0.74, P < 0.01), as well as with early age of onset (r = −0.69, P < 0.05), shorter time to wheelchair (r = −0.49, P < 0.05) and early age of death (r = −0.65, P < 0.01). Increased CSF‐PVALB levels were detected in MS patients at diagnosis compared to controls (P = 0.002). Significant correlation was found between CSF‐PVALB levels and cortical lesion number on MRI (R = 0.28, P = 0.006) and global cortical thickness (R = −0.46, P < 0.001), better than Nf‐L levels. CSF‐PVALB levels increased in MS patients with severe cognitive impairment (mean ± SEM:25.2 ± 7.5 ng/mL) compared to both cognitively normal (10.9 ± 2.4, P = 0.049) and mild cognitive impaired (10.1 ± 2.9, P = 0.024) patients. Conclusions CSF‐PVALB levels reflect loss of cortical interneurons in MS patients with more severe disease course and might represent an early, new MS‐specific biomarker of cortical neurodegeneration, atrophy, and cognitive decline.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Marco Pitteri
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Ziccardi
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Isabella Pisani
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luigi Montibeller
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Mazziotti
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maddalena Guandalini
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Caterina Dapor
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gianmarco Schiavi
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Richard Nicholas
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
42
|
Gaetani L, Salvadori N, Chipi E, Gentili L, Borrelli A, Parnetti L, Di Filippo M. Cognitive impairment in multiple sclerosis: lessons from cerebrospinal fluid biomarkers. Neural Regen Res 2021; 16:36-42. [PMID: 32788445 PMCID: PMC7818856 DOI: 10.4103/1673-5374.286949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment is a common clinical manifestation of multiple sclerosis, but its pathophysiology is not completely understood. White and grey matter injury together with synaptic dysfunction do play a role. The measurement of biomarkers in the cerebrospinal fluid and the study of their association with cognitive impairment may provide interesting in vivo evidence of the biological mechanisms underlying multiple sclerosis-related cognitive impairment. So far, only a few studies on this topic have been published, giving interesting results that deserve further investigation. Cerebrospinal fluid biomarkers of different pathophysiological mechanisms seem to reflect different neuropsychological patterns of cognitive deficits in multiple sclerosis. The aim of this review is to discuss the studies that have correlated cerebrospinal fluid markers of immune, glial and neuronal pathology with cognitive impairment in multiple sclerosis. Although preliminary, these findings suggest that cerebrospinal fluid biomarkers show some correlation with cognitive performance in multiple sclerosis, thus providing interesting insights into the mechanisms underlying the involvement of specific cognitive domains.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Chipi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lucia Gentili
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Angela Borrelli
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
43
|
Leptomeningeal, dura mater and meningeal vessel wall enhancements in multiple sclerosis. Mult Scler Relat Disord 2020; 47:102653. [PMID: 33333417 DOI: 10.1016/j.msard.2020.102653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Leptomeningeal contrast enhancement (LMCE) has previously shown potential to be an indirect marker for leptomeningeal inflammation in multiple sclerosis (MS). Dura mater (DME), inclusive falx cerebri (FCE) enhancement and meningeal vessel wall enhancement (VWE) represent two other meningeal enhancement patterns in MS that have not been extensively studied. OBJECTIVES To investigate the frequency of LMCE, DME/FCE and VWE in patients with MS and their associations with demographic, clinical and MRI characteristics in a longitudinal retrospective study. METHODS 217 MS patients (193 relapsing-remitting MS, 24 progressive MS) were assessed at baseline and over 18 months follow-up using 3T 3D FLAIR pre- and post-contrast and subtraction images. Lesion and brain volume outcomes were additionally calculated. Analyses were adjusted for age, and corrected for multiple comparisons. RESULTS LMCE and VWE frequency was associated with higher age (p<0.02), but the presence of DME/FCE was not (p=0.402). 24% of MS patients revealed LMCE and VWE, respectively, and 47% showed DME/FCE. Presence of LMCE, VWE and DME/FCE was not significantly associated with clinical or imaging markers of disease severity. All three patterns of meningeal enhancement showed a high persistence in shape and size at follow-up. CONCLUSIONS LMCE, DME/FCE and VWE can be identified by gadolinium-enhanced 3D FLAIR MR imaging. Meningeal enhancement is associated with higher age. DME/FCE is the most frequent meningeal enhancement pattern in MS, however further case-control studies should determine whether this represents abnormal lymphatic drainage in these patients or is an age-dependent physiologic phenomenon.
Collapse
|
44
|
Barati S, Tahmasebi F, Faghihi F. Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides 2020; 84:102095. [PMID: 33059244 DOI: 10.1016/j.npep.2020.102095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) with symptoms such as neuroinflammation and axonal degeneration. Existing drugs help reduce inflammatory conditions and protect CNS from demyelination and axonal damage; however, these drugs are unable to enhance axonal repair and remyelination. In this regard, cell therapy is considered as a promising regenerative approach to MS treatment. High immunomodulatory capacity, neuro-differentiation and neuroprotection properties have made Mesenchymal Stem Cells (MSCs) particularly useful for regenerative medicine. There are scant studies on the role of MSCs in patients suffering from MS. The low number of MS patients and the lack of control groups in these studies may explain the lack of beneficial effects of MSC transplantation in cell therapies. In this review, we evaluated the beneficial effects of MSC transplantation in clinical studies in terms of immunomodulatory, remyelinating and neuroprotecting properties of MSCs.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Padnahad Co.Ltd, Tehran, Iran.
| |
Collapse
|
45
|
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, Sørensen PS, Hohlfeld R, Hauser SL. Role of B Cells in Multiple Sclerosis and Related Disorders. Ann Neurol 2020; 89:13-23. [PMID: 33091175 DOI: 10.1002/ana.25927] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The success of clinical trials of selective B-cell depletion in patients with relapsing multiple sclerosis (MS) and primary progressive MS has led to a conceptual shift in the understanding of MS pathogenesis, away from the classical model in which T cells were the sole central actors and toward a more complex paradigm with B cells having an essential role in both the inflammatory and neurodegenerative components of the disease process. The role of B cells in MS was selected as the topic of the 27th Annual Meeting of the European Charcot Foundation. Results of the meeting are presented in this concise review, which recaps current concepts underlying the biology and therapeutic rationale behind B-cell-directed therapeutics in MS, and proposes strategies to optimize the use of existing anti-B-cell treatments and provide future directions for research in this area. ANN NEUROL 2021;89:13-23.
Collapse
Affiliation(s)
- Giancarlo Comi
- Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Amit Bar-Or
- Department of Neurology, Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA
| | - Hans Lassmann
- Department of Neuroimmunology (Center for Brain Research), University Hospital Vienna, Vienna, Austria
| | - Antonio Uccelli
- Department of Neuroscience, Genetic Ophthalmology, and Infant Maternity Science, San Martino Polyclinic Hospital, Genoa, Italy
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xavier Montalban
- Neurology-Neuroimmunology Department and Neurorehabilitation Unit, Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Per Solberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University of Munich and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
46
|
Yu X, Graner M, Kennedy PGE, Liu Y. The Role of Antibodies in the Pathogenesis of Multiple Sclerosis. Front Neurol 2020; 11:533388. [PMID: 33192968 PMCID: PMC7606501 DOI: 10.3389/fneur.2020.533388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
The presence of persistent intrathecal oligoclonal immunoglobulin G (IgG) bands (OCBs) and lesional IgG deposition are seminal features of multiple sclerosis (MS) disease pathology. Despite extensive investigations, the role of antibodies, the products of mature CD19+ B cells, in disease development is still controversial and under significant debate. Recent success of B cell depletion therapies has revealed that CD20+ B cells contribute to MS pathogenesis via both antigen-presentation and T-cell-regulation. However, the limited efficacy of CD20+ B cell depletion therapies for the treatment of progressive MS indicates that additional mechanisms are involved. In this review, we present findings suggesting a potential pathological role for increased intrathecal IgGs, the relation of circulating antibodies to intrathecal IgGs, and the selective elevation of IgG1 and IgG3 subclasses in MS. We propose a working hypothesis that circulating B cells and antibodies contribute significantly to intrathecal IgGs, thereby exerting primary and pathogenic effects in MS development. Increased levels of IgG1 and IgG3 antibodies induce potent antibody-mediated cytotoxicity to central nervous system (CNS) cells and/or reduce the threshold required for antigen-driven antibody clustering leading to optimal activation of immune responses. Direct proof of the pathogenic roles of antibodies in MS may provide opportunities for novel blood biomarker identification as well as strategies for the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter G E Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yiting Liu
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
47
|
Advanced MRI features in relapsing multiple sclerosis patients with and without CSF oligoclonal IgG bands. Sci Rep 2020; 10:13703. [PMID: 32792656 PMCID: PMC7426866 DOI: 10.1038/s41598-020-70693-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Oligoclonal IgG bands (OCB) in cerebrospinal fluid (CSF) are important in diagnosis of multiple sclerosis (MS). We evaluated the MRI features of clinically definite MS subjects with and without CSF-OCB. Relapsing MS subjects were recruited from a prospective registry in a university center. CSF-OCB were detected using isoelectric focusing and lgG-specific immunofixation. MRI metrics including brain volumes, lesion volumes and microstructural measures, were analyzed by FMRIB Software Library (FSL) and Statistical Parametric Mapping (SPM). Seventy-five subjects with relapsing MS were analyzed. Forty-four (59%) subjects had an interval MRI at around 1 year. CSF-OCB were detected in 46 (61%) subjects. The OCB-positive group had a higher proportion of cerebellar lesions than the OCB-negative group (23.9% vs. 3.4%, p = 0.057). Except for amygdala volumes which were lower in the OCB-positive group (p = 0.034), other regional brain volumes including the subcortical deep gray matter and corpus callosum were similar. The two groups also showed comparable brain atrophy rate. For DTI, the OCB-positive group showed significantly higher mean diffusivity (MD) value in perilesional normal-appearing white matter (p = 0.043). Relapsing MS patients with and without CSF-OCB shared similar MRI features regarding volumetric analyses and DTI microstructural integrity.
Collapse
|
48
|
Puthenparampil M, Stropparo E, Zywicki S, Bovis F, Cazzola C, Federle L, Grassivaro F, Rinaldi F, Perini P, Sormani MP, Gallo P. Wide Cytokine Analysis in Cerebrospinal Fluid at Diagnosis Identified CCL-3 as a Possible Prognostic Factor for Multiple Sclerosis. Front Immunol 2020; 11:174. [PMID: 32194540 PMCID: PMC7066207 DOI: 10.3389/fimmu.2020.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Apart from IgG oligoclonal bands, no other biomarker has, to date, been validated for diagnostic and/or prognostic purposes in multiple sclerosis (MS). Aim: To investigate a wide panel of cytokines and chemokines in the cerebrospinal fluid (CSF) of relapsing-remitting MS (RRMS) patients and evaluate their association with clinical and magnetic resonance imaging (MRI) parameters, as well as their predictive clinical value. Methods: Fifty-one RRMS at clinical onset and 17 other not inflammatory neurological disorders (ONINDs) underwent brain MRI (including 3D-T1, 3D-FLAIR, and 3-DIR sequences) and CSF examination. Eighty-seven cytokines and chemokines were analyzed in CSF by Multiplex technology. Results: Compared to ONIND, CXCL-10, CXCL-11, CXCL-13, CCL-1, CCL-2, CCL-3, CCL-22, IL-16, and BAFF were significantly (p < 0.05) increased in RRMS CSF. However, only CCL-3 was associated with both MS diagnosis and IgGOB detection. Based on a 95%CI in ONIND (cut-off value: 0.798 pg/ml) and ROC analysis (cut-off value: 0.495 pg/ml), RRMS patients were stratified in CCL-3high (>0.736 pg/mL), CCL-3medium, and CCL-3low (<0.495 pg/ml). Survival analysis disclosed a strong association between high CCL-3 values and disease reactivation (OR = 4.9, 95%CI: 1.8-13.3, p < 0.005) in the following 2 years. Conclusions: CCL-3 deserves further investigation as a candidate prognostic biomarker for RRMS.
Collapse
Affiliation(s)
- Marco Puthenparampil
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Erica Stropparo
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Sofia Zywicki
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Francesca Bovis
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Cazzola
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Lisa Federle
- Multiple Sclerosis Centre, ULSS8 Berica, Ospedale San Bortolo, Vicenza, Italy
| | - Francesca Grassivaro
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Francesca Rinaldi
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Paola Perini
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Paolo Gallo
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
49
|
Graner M, Pointon T, Manton S, Green M, Dennison K, Davis M, Braiotta G, Craft J, Edwards T, Polonsky B, Fringuello A, Vollmer T, Yu X. Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS One 2020; 15:e0228883. [PMID: 32084151 PMCID: PMC7034880 DOI: 10.1371/journal.pone.0228883] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/24/2020] [Indexed: 12/04/2022] Open
Abstract
IgG oligoclonal bands (OCBs) are present in the cerebrospinal fluid (CSF) of more than 95% of patients with multiple sclerosis (MS), and are considered to be the immunological hallmark of disease. However, the target specificities of the IgG in MS OCBs have remained undiscovered. Nevertheless, evidence that OCBs are associated with increased levels of disease activity and disability support their probable pathological role in MS. We investigated the antigen specificity of individual MS CSF IgG from 20 OCB-positive patients and identified 40 unique peptides by panning phage-displayed random peptide libraries. Utilizing our unique techniques of phage-mediated real-time Immuno-PCR and phage-probed isoelectric focusing immunoblots, we demonstrated that these peptides were targeted by intrathecal oligoclonal IgG antibodies of IgG1 and IgG3 subclasses. In addition, we showed that these peptides represent epitopes sharing sequence homologies with proteins of viral origin, and proteins involved in cell stress, apoptosis, and inflammatory processes. Although homologous peptides were found within individual patients, no shared peptide sequences were found among any of the 42 MS and 13 inflammatory CSF control specimens. The distinct sets of oligoclonal IgG-reactive peptides identified by individual MS CSF suggest that the elevated intrathecal antibodies may target patient-specific antigens.
Collapse
Affiliation(s)
- Michael Graner
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Tiffany Pointon
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sean Manton
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Miyoko Green
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathryn Dennison
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mollie Davis
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Gino Braiotta
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Julia Craft
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Taylor Edwards
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Bailey Polonsky
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Timothy Vollmer
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
50
|
Central nervous system-specific antinuclear antibodies in patients with multiple sclerosis. J Neurol Sci 2020; 409:116619. [PMID: 31835211 DOI: 10.1016/j.jns.2019.116619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nuclear antigen released from central nervous system (CNS) cells undergoing destruction may induce production of antinuclear antibodies (ANA). We characterized the CNS-specific production of ANA in multiple sclerosis (MS). METHODS We assessed CNS-ANA binding to mouse cerebellar cell nuclei by immunofluorescence assay (IFA) with sera from 104 MS patients (91 relapsing-remitting; 13 secondary progressive), 30 patients with neuromyelitis optica spectrum disorders (NMOSD), and 30 healthy controls (HCs). Conventional ANA (cANA) was detected by IFA using human epithelial type-2 cells. CNS-ANA-positive cANA-negative patients were termed CNS-specific ANA-positive. Western blotting (WB) was performed using mouse cerebellar nuclear fractions. RESULTS CNS-specific ANA were more frequent in MS than in NMOSD patients or HCs (13.5% vs 0% for both comparisons, both p < .05) and were associated with HLA-DRB1*15:01 (p = .0174). WB revealed a common 55 kDa band in seven MS patients. Compared with CNS-specific ANA-negative MS patients, those with 55 kDa band-immunoreactive CNS-specific ANA showed a higher frequency of secondary progressive MS (42.9% vs 10.0%, p = .0387) and greater Expanded Disability Status Scale scores (4.50 ± 2.02 vs 2.92 ± 2.27, p = .0506). CONCLUSIONS The CNS-specific ANA was more frequently detected in MS patients than NMOSD patients or HCs. 55 kDa band-reactive CNS-specific ANA may reflect clinical disease progression in MS.
Collapse
|