1
|
Nazakat L, Ali S, Summer M, Nazakat F, Noor S, Riaz A. Pharmacological modes of plant-derived compounds for targeting inflammation in rheumatoid arthritis: A comprehensive review on immunomodulatory perspective. Inflammopharmacology 2025; 33:1537-1581. [PMID: 40074996 DOI: 10.1007/s10787-025-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is one of the most prevalent autoimmune, chronic, inflammatory disease characterized by joint inflammation, synovial swelling, loss of articular structures, swelling, and pain. RA is a major cause of discomfort and disability worldwide, associated with infectious agents, genetic determinants, epigenetic factors, advancing age, obesity, and smoking. Although conventional therapies for RA alleviate the symptoms, but their long-term use is associated with significant side effects. This necessitates the urge to discover complementary and alternative medicine from natural products with minimum side effects. PURPOSE In this review, natural product's potential mechanism of action against RA has been documented in the setting of in-vivo, in-vitro and pre-clinical trials, which provides new treatment opportunities for RA patients. The bioefficacy of these natural product's bioactive compounds must be further studied to discover novel natural medications for RA with high selectivity, improved effectiveness, and economic replacement with minimum side effects. STUDY DESIGN AND METHODS The current review article was designed systematically in chronological order. Plants and their phytochemicals are discussed in an order concerning their mode of action. All the mechanisms of action are depicted in diagrams which are thoroughly generated by the Chembiodraw to maintain the integrity of the work. Moreover, by incorporating the recent data with simple language which is not incorporated previously, we tried to provide a molecular insight to the readers of every level and ethnicity. Moreover, Google Scholar, PubMed, ResearchGate, and Science Direct databases were used to collect the data. SOLUTION Traditionally, various plant extracts and bioactive compounds are effectively used against RA, but their comprehensive pharmacological mechanistic actions are rarely discussed. Therefore, the objective of this study is to systematically review the efficacy and proposed mechanisms of action of different plants and their bioactive compounds including Tripterygium wilfordii Hook F (celastrol and triptolide), Nigella sativa (thymoquinone), Zingiber officinale (shogaols, zingerone), Boswellia serrata (boswellic acids), Curcuma longa (curcumin), and Syzygium aromaticum (eugenol) against rheumatoid arthritis. CONCLUSION These plants have strong anti-inflammatory, anti-oxidant, and anti-arthritic effects in different study designs of rheumatoid arthritis with negligible side effects. Phytomedicines could revolutionize pharmacology as they act through alternative pathways hence seeming biocompatible.
Collapse
Affiliation(s)
- Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fakiha Nazakat
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
3
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
4
|
Dong X, Deng L, Su Y, Han X, Yao S, Wu W, Cao J, Tian L, Bai Y, Wang G, Ren W. Curcumin alleviates traumatic brain injury induced by gas explosion through modulating gut microbiota and suppressing the LPS/TLR4/MyD88/NF-κB pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1094-1113. [PMID: 38032526 DOI: 10.1007/s11356-023-30708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Gas explosions (GE) are a prevalent and widespread cause of traumatic brain injury (TBI) in coal miners. However, the impact and mechanism of curcumin on GE-induced TBI in rats remain unclear. In this study, we simulated GE-induced TBI in rats and administered curcumin orally at a dose of 100 mg/kg every other day for 7 days to modulate the gut microbiota in TBI rats. We employed 16S rRNA sequencing and LC-MS/MS metabolomic analysis to investigate changes in the intestinal flora and its metabolic profile. Additionally, we utilized ELISA, protein assays, and immunohistochemistry to assess neuroinflammatory signaling molecules for validation. In a rat TBI model, GE resulted in weight loss, pathological abnormalities, and cortical hemorrhage. Treatment with curcumin significantly mitigated histological abnormalities and microscopic mitochondrial structural changes in brain tissue. Furthermore, curcumin treatment markedly ameliorated GE-induced brain dysfunction by reducing the levels of several neuroinflammatory signaling molecules, including neuron-specific enolase, interleukin (IL)-1β, IL-6, and cryptothermic protein 3. Notably, curcumin reshaped the gut microbiome by enhancing evenness, richness, and composition. Prevotella_9, Alloprevotella, Bacilli, Lactobacillales, Proteobacteria, and Gammaproteobacteria were identified as prominent members of the gut microbiota, increasing the linear discriminant analysis scores and specifically enhancing the abundance of bacteria involved in the nuclear factor (NF)-κB signaling pathway, such as Lachnospiraceae and Roseburia. Additionally, there were substantial alterations in serum metabolites associated with metabolic NF-κB signaling pathways in the model group. Curcumin administration reduced serum lipopolysaccharide levels and downregulated downstream Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling. Furthermore, curcumin alleviated GE-induced TBI in rats by modulating the gut microbiota and its metabolites. Based on these protective effects, curcumin may exert its influence on the gut microbiota and the TLR4/MyD88/NF-κB signaling pathways to ameliorate GE-induced TBI.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Linqiang Tian
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yichun Bai
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Guizhi Wang
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, 601 Jinsui Street Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
6
|
Enayati A, Soghi A, Butler AE, Rizzo M, Sahebkar A. The Effect of Curcumin on the Gut-Brain Axis: Therapeutic Implications. J Neurogastroenterol Motil 2023; 29:409-418. [PMID: 37814431 PMCID: PMC10577457 DOI: 10.5056/jnm23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
The gut-brain axis describes the bidirectional communication between the gut, the enteric nervous system, and the central nervous system. The gut-brain axis has attracted increasing attention owing to its regulatory effect on dysbiosis and a wide range of related diseases. Several types of nutrients, such as curcumin, have been proposed as regulators of the dysbiotic state, and preclinical experiments have suggested that curcumin is not only beneficial but also safe. This review focuses on the interplay between curcumin and the gut microbiota. Moreover, it provides a comprehensive review of the crosstalk between the gut-brain axis and disease, whilst also discussing curcumin-mediated gut-brain axis-dependent and -independent signaling about modulation of gut microbiota dysbiosis. This will help to define the utility of curcumin as a novel therapeutic agent to regulate intestinal microflora dysbiosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Aida Soghi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Tomaras S, Keyßer G, Feist E. Curcumin: Useful add-on for Rheumatic Diseases? J Clin Med 2022; 11:2908. [PMID: 35629033 PMCID: PMC9143911 DOI: 10.3390/jcm11102908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
Plant-derived nutraceuticals are proposed as new key instruments to represent a profound "back to basics" shift in medical treatment. Data accumulated over the past ten years suggest that curcumin, the major active compound of the turmeric plant, has anti-inflammatory properties. It has yet to be determined whether the anti-inflammatory profile of curcumin is potent enough to justify the application of this substance as a nutritional supplement for patients with rheumatic diseases. To address this question, the most relevant in vitro studies that investigate the mechanism of action of curcumin were reviewed in this article. In addition, a total of 18 animal and human trials were evaluated. The pleiotropic, anti-inflammatory and immunomodulatory effects of curcumin were observed in animal studies. In addition, human trials demonstrated promising findings. In these studies, curcumin was able to reduce the expression of proinflammatory cytokines, lower the level of the C-reactive protein and improve clinical parameters. A limiting factor of the application of curcumin is the inconsistent bioavailability of the substance. Therefore, new formulations have been developed to improve the pharmacodynamic profile of curcumin. The future acceptance of the substance is dependent on new controlled clinical trials with a standardised formulation of curcumin administered as well as standard of care.
Collapse
Affiliation(s)
- Stylianos Tomaras
- Department of Rheumatology, HELIOS Clinic Vogelsang-Gommern, 39245 Vogelsang-Gommern, Germany;
| | - Gernot Keyßer
- Clinic for Internal Medicine II, Department of Internal Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Eugen Feist
- Department of Rheumatology, HELIOS Clinic Vogelsang-Gommern, 39245 Vogelsang-Gommern, Germany;
| |
Collapse
|
10
|
Xie J, Liu L, Guo H, Bao Q, Hu P, Li H, Che H, Xie W. Orally administered melanin from Sepiapharaonis ink ameliorates depression-anxiety-like behaviors in DSS-induced colitis by mediating inflammation pathway and regulating apoptosis. Int Immunopharmacol 2022; 106:108625. [PMID: 35180627 DOI: 10.1016/j.intimp.2022.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
The effects of intestinal inflammation on the brain and behavior have received a lot of attention. Melanin (MSI) from Sepiapharaonis ink as an emerging functional food, it exhibited a significant protective effect on dextran sulfate sodium (DSS) induced colitis in previous study. In present study, C57BL/6J mice were free to drink 2.5% DSS solution to establish the colitis model. During the DSS treatment, mice were orally administrated with MSI once per day (75, 150, and 300 mg/kg, respectively). The results showed that MSI treatment ameliorated the depression and anxiety symptoms of colitis mice. Further mechanism studies indicated that MSI alleviated inflammatory response by adjusting cytokines TNF-α, IL-1β, IFN-γ, and IL-10, and proteins NLRP3/ASC/caspase-1 inflammasome), inhibited the activation of microglia, restored brain synaptic density, reduced oxidative stress (SOD, MDA) and regulated apoptosis (tunel staining, caspase-3). MSI could modulate depression-anxiety states by targeting inflammation, nerve tissue, oxidative stress and apoptosis. MSI administration could serve as an emerging blue food and nutrition strategy for the prevention of digestive tract inflammation and behavioral disorders.
Collapse
Affiliation(s)
- Jingwen Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Lin Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hao Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Qi Bao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Penglong Hu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China.
| |
Collapse
|
11
|
Kessler J, Totoson P, Devaux S, Moretto J, Wendling D, Demougeot C. Animal models to study pathogenesis and treatments of cardiac disorders in rheumatoid arthritis: Advances and challenges for clinical translation. Pharmacol Res 2021; 170:105494. [PMID: 34139344 DOI: 10.1016/j.phrs.2021.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Although cardiac diseases such as acute myocardial infarction, heart failure and arrhythmias are the leading cause of cardiovascular complications in rheumatoid arthritis (RA), their pathogenesis is far from being understood and optimal therapeutic options to treat specifically these disorders in RA are lacking. Preclinical studies on animal models of arthritis can help to decipher the complex link between arthritis and the heart, and to identify critical pathways and novel therapeutic targets. This review presented the available data on cardiac disorders in animal models of RA, as well as the current knowledge on pathophysiology and pharmacology of these disorders. Future directions for translational studies in a cardiorheumatic perspective are proposed.
Collapse
Affiliation(s)
- Julie Kessler
- PEPITE EA 4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de Rhumatologie, CHU Minjoz, 25000 Besançon, France
| | - Perle Totoson
- PEPITE EA 4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Sylvie Devaux
- PEPITE EA 4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Johnny Moretto
- PEPITE EA 4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Daniel Wendling
- Service de Rhumatologie, CHU Minjoz, 25000 Besançon, France; EA 4266 " Agents Pathogènes et Inflammation ", EPILAB, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA 4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
12
|
Tang M, Gao X, Geng T, Chen X, Wang J, Shen C, Gao H, Qian M, Wang Z, Cao L, Xiao W. Metabolomics analysis of the therapeutic effects of Qiwei Tongbi oral liquid on rheumatoid arthritis in rats. J Pharm Biomed Anal 2021; 202:114166. [PMID: 34052551 DOI: 10.1016/j.jpba.2021.114166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Qiwei Tongbi oral liquid (QWTB), a classical traditional Chinese medicine (TCM) formula, has a good therapeutic effect on rheumatoid arthritis (RA) and is widely used in China. To comprehensively elucidate the therapeutic mechanism of QWTB in the treatment of RA, the effects of QWTB on biomarkers and metabolic pathways in a rat model of kidney deficiency arthritis were investigated in this study. The effects of QWTB on pharmacodynamic indicators, including paw swelling, arthritis score; interleukin-1β, interleukin-6, interleukin-17 F, tumor necrosis factor-α, tartrate-resistant acid phosphatase 5b, bone alkaline phosphatase, bone-specific alkaline phosphatase, bone glaprotein, urea, and creatinine levels; and histopathology, suggested that QWTB significantly improved renal function, inhibited the inflammatory response, and reduced bone loss. In total, 39 differential metabolites were screened by comparing the endogenous components between blank and model rat plasma, among which 16 metabolites were altered by QWTB. The metabolism pathway analysis revealed that α-linolenic acid metabolism, phenylalanine metabolism, sphingolipid metabolism, histidine metabolism and glycerophospholipid metabolism were greatly disturbed. Thus, the biomarkers investigated included (1) α-linolenic acid, (2) hippuric acid, (3) phosphatidylethanolamine (15:0/22:2(13Z,16Z)), (4) phenylpyruvic acid, (5) sphinganine, and (6) urocanic acid. QWTB affected three abnormal biomarkers: (3), (4), and (6). Phenylphruvic acid, sphinganine and urocanic acid were significantly associated with pharmacodynamic indicators, as shown by Pearson correlation analysis. These results indicated that RA-related biomarkers had certain reliability and biological significance. In summary, QWTB regulated the metabolic disorders in rats with RA. Its therapeutic mechanism may involve the regulation of phenylalanine metabolism, histidine metabolism, and glycerophospholipid metabolism. The results of this study are useful for understanding the therapeutic mechanisms of TCM.
Collapse
Affiliation(s)
- Ming Tang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Xia Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Ting Geng
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| | - Xialin Chen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jiajia Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Canjie Shen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Huifang Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Mengyu Qian
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Liang Cao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| | - Wei Xiao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| |
Collapse
|
13
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
14
|
Oral administration of curcumin ameliorates pulmonary fibrosis in mice through 15d-PGJ2-mediated induction of hepatocyte growth factor in the colon. Acta Pharmacol Sin 2021; 42:422-435. [PMID: 32694760 DOI: 10.1038/s41401-020-0469-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Oral administration of curcumin has been shown to inhibit pulmonary fibrosis (PF) despite its extremely low bioavailability. In this study, we investigated the mechanisms underlying the anti-PF effect of curcumin in focus on intestinal endocrine. In bleomycin- and SiO2-treated mice, curcumin (75, 150 mg· kg-1 per day) exerted dose-dependent anti-PF effect when administered orally or rectally but not intravenously, implying an intestinal route was involved in the action of curcumin. We speculated that curcumin might promote the generation of gut-derived factors and the latter acted as a mediator subsequently entering the lungs to ameliorate fibrosis. We showed that oral administration of curcumin indeed significantly increased the expression of gut-derived hepatocyte growth factor (HGF) in colon tissues. Furthermore, in bleomycin-treated mice, the upregulated protein level of HGF in lungs by oral curcumin was highly correlated with its anti-PF effect, which was further confirmed by coadministration of c-Met inhibitor SU11274. Curcumin (5-40 μM) dose-dependently increased HGF expression in primary mouse fibroblasts, macrophages, CCD-18Co cells (fibroblast cell line), and RAW264.7 cells (monocyte-macrophage cell line), but not in primary colonic epithelial cells. In CCD-18Co cells and RAW264.7 cells, curcumin dose-dependently activated PPARγ and CREB, whereas PPARγ antagonist GW9662 (1 μM) or cAMP response element (CREB) inhibitor KG-501 (10 μM) significantly decreased the boosting effect of curcumin on HGF expression. Finally, we revealed that curcumin dose-dependently increased the production of 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) in CCD-18Co cells and RAW264.7 cells, which was a common upstream of the two transcription factors. Moreover, both the in vitro and in vivo effects of curcumin were diminished by coadministration of HPGDS-inhibitor-1, an inhibitor of 15d-PGJ2 generation. Together, curcumin promotes the expression of HGF in colonic fibroblasts and macrophages by activating PPARγ and CREB via an induction of 15d-PGJ2, and the HGF enters the lungs giving rise to an anti-PF effect.
Collapse
|
15
|
Hemshekhar M, Anaparti V, El-Gabalawy H, Mookherjee N. A bioavailable form of curcumin, in combination with vitamin-D- and omega-3-enriched diet, modifies disease onset and outcomes in a murine model of collagen-induced arthritis. Arthritis Res Ther 2021; 23:39. [PMID: 33494792 PMCID: PMC7836561 DOI: 10.1186/s13075-021-02423-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Curcumin (CUR), vitamin D3 (D3), and omega-3-fatty acids (O3FA) individually modulate inflammation and pain in arthritis. Although these supplements are widely used, their combinatorial effects have not been defined. In this study, we examined the effects of a D3 and O3FA (VO)-enriched diet in conjunction with a highly bioavailable form of CUR (Cureit/Acumin™) in a collagen-induced arthritis (CIA) murine model. METHODS Male DBA/1J mice were acclimatized to VO-enriched diet and challenged with bovine collagen II (CII). Bioavailable CUR was administered daily by oral gavage from the onset of CII challenge. Disease severity was determined by monitoring joint thickness and standardized clinical score. Cellular infiltration and cartilage degradation in the joints were assessed by histology, serum cytokines profiled by Meso Scale Discovery multiplex assay, and joint matrix metalloproteinases examined by western blots. RESULTS CUR by itself significantly decreased disease severity by ~ 60%. Administration of CUR in CIA mice taking a VO-enriched diet decreased disease severity by > 80% and maximally delayed disease onset and progression. Some of the disease-modifying effects was mediated by CUR alone, e.g., suppression of serum anti-collagen antibodies and decrease of cellular infiltration and MMP abundance in the joints of CIA mice. Although CUR alone suppressed inflammatory cytokines in serum of CIA mice, the combination of CUR and VO diet significantly enhanced the suppression (> 2-fold compared to CUR) of TNF, IFN-γ, and MCP-1, all known to be associated with RA pathogenesis. CONCLUSION This study provides proof-of-concept that the combination of bioavailable CUR, vitamin D3, and O3FA substantially delays the development and severity of CIA. These findings provide a rationale for systematically evaluating these widely available supplements in individuals at risk for developing future RA.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Vidyanand Anaparti
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Hani El-Gabalawy
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada.,Division of Rheumatology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada. .,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada.
| |
Collapse
|
16
|
Rinkunaite I, Simoliunas E, Alksne M, Dapkute D, Bukelskiene V. Anti-inflammatory effect of different curcumin preparations on adjuvant-induced arthritis in rats. BMC Complement Med Ther 2021; 21:39. [PMID: 33478498 PMCID: PMC7819195 DOI: 10.1186/s12906-021-03207-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022] Open
Abstract
Background Curcumin, a natural polyphenolic substance, has been known for more than two millennia as having strong anti-inflammatory activity towards multiple ailments, including arthritis. The main drawback of curcumin is its poor solubility in water, which leads to low intestinal absorption and minimal bioavailability. In this study, we aimed to compare the anti-arthritic in vivo effect of different curcumin preparations – basic curcumin extract, micellar curcumin, curcumin mixture with piperine, and microencapsulated curcumin. Methods Arthritis was induced in Wistar rats by complete Freund’s adjuvant, and the severity of arthritis was evaluated daily using the arthritis score system. Curcumin preparations were given to animals per os daily for 20 consecutive days, starting at 6th day after arthritis induction. To determine the inflammatory background, pro-inflammatory cytokines were determined using the ELISA test. In addition, hematologic test, weight change, and limb swelling were tracked. Results Our results indicate that curcumin had a rather weak effect on arthritis progression in the Wistar rat model, microencapsulated curcumin effectively prevented the progression of arthritis – the disease stabilized after 10 days of supplementation. It also reduced the levels of immune cells (neutrophils and leukocytes), as well as pro-inflammatory cytokines – TNFα, IL-1, and IL-6, which levels were close to arthritis-free control. Other formulations of curcumin had lower or no effect on arthritis progression. Conclusion Our study shows that the same concentrations of curcumin had a distinctly expressed positive anti-inflammatory effect depending on the form of its delivery. Specifically, we found that microencapsulated curcumin had the most promising effect for treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03207-3.
Collapse
Affiliation(s)
- Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Dominyka Dapkute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
17
|
Agostini JF, Santo GD, Baldin SL, Bernardo HT, de Farias ACS, Rico EP, Wanderley AG. Gallic Acid Reverses Neurochemical Changes Induced by Prolonged Ethanol Exposure in the Zebrafish Brain. Neuroscience 2020; 455:251-262. [PMID: 33285238 DOI: 10.1016/j.neuroscience.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023]
Abstract
Gallic acid (GA) is a polyphenolic compound that has attracted significant interest due to its antioxidant action through free radical elimination and metal chelation. Ethanol is a highly soluble psychoactive substance, and its toxicity is associated with oxidative stress. In this context, the purpose of the present study was to investigate the effect of GA on neurochemical changes in zebrafish brains exposed to ethanol. GA was first analyzed in isolation by treating the animals at concentrations of 5, 10, and 20 mg/L for 24 h and 48 h. The results revealed that the group exposed to 20 mg/L over a 24/48 h period exhibited increases in thiobarbituric acid reactive substance (TBA-RS) levels and 2',7'-dichlorofluorescein (DCFH) oxidation, demonstrating a pro-oxidant profile. Moreover, decrease in acetylcholinesterase (AChE) enzyme activity was observed. To investigate the effects of GA after ethanol exposure, the animals were divided into four groups: control; those exposed to 0.5% ethanol for 7 days; those exposed to 0.5% ethanol for 7 days and treated with GA at 5 and 10 mg/L on day 8. Treatment with GA at 5 and 10 mg/L reversed impairment of choline acetyltransferase activity and the damage to TBA-RS levels, DCFH oxidation, and superoxide dismutase activity induced by ethanol. Results of the present study suggest that GA treatment (20 mg/L) appeared to disrupt oxidative parameters in the zebrafish brain. GA treatment at 5 and 10 mg/L reversed alterations to the cholinergic system induced by prolonged exposure to ethanol in the zebrafish brain, probably through an antioxidant mechanism.
Collapse
Affiliation(s)
- Jotele Fontana Agostini
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Glaucia Dal Santo
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
18
|
Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP, Sonkar SC, Chaturvedi N, Shukla D, Vishvakarma NK. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol 2020; 886:173551. [PMID: 32931783 PMCID: PMC7832734 DOI: 10.1016/j.ejphar.2020.173551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
The severity of the recent pandemic and the absence of any specific medication impelled the identification of existing drugs with potential in the treatment of Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Curcumin, known for its pharmacological abilities especially as an anti-inflammatory agent, can be hypothesized as a potential candidate in the therapeutic regimen. COVID-19 has an assorted range of pathophysiological consequences, including pulmonary damage, elevated inflammatory response, coagulopathy, and multi-organ damage. This review summarizes the several evidences for the pharmacological benefits of curcumin in COVID-19-associated clinical manifestations. Curcumin can be appraised to hinder cellular entry, replication of SARS-CoV-2, and to prevent and repair COVID-19-associated damage of pneumocytes, renal cells, cardiomyocytes, hematopoietic stem cells, etc. The modulation and protective effect of curcumin on cytokine storm-related disorders are also discussed. Collectively, this review provides grounds for its clinical evaluation in the therapeutic management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Atul Kumar Tiwari
- Department of Zoology, Bhanwar Singh Porte Government Science College, Pendra, Chhattisgarh, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Rajat Pratap Singh
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Subash Chandra Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Navaneet Chaturvedi
- Department of Molecular and Cell Biology, Henry Welcome Building, University of Leicester, Leicester, LE26AW, UK; School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University (IIT-BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
19
|
Cao F, Cheng MH, Hu LQ, Shen HH, Tao JH, Li XM, Pan HF, Gao J. Natural products action on pathogenic cues in autoimmunity: Efficacy in systemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments. Pharmacol Res 2020; 160:105054. [PMID: 32645358 DOI: 10.1016/j.phrs.2020.105054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by self-perpetuating inflammation and tissue/organ damage, resulting from the failure of lymphocyte auto-tolerance, cause morbidity and mortality worldwide. The current drugs or therapies including conventional non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs), as well as several biologic therapies such as B cell-targeted, T cell-targeted, cytokines-targeted and cytokines receptors-targeted therapy, cannot completely cure SLE and RA, and are always accompanied by unexpected side effects. Therefore, more studies have explored new methods for therapy and found that the herbal medicine as well as its natural products (NPs) exhibited promising therapeutic value through exerting effects of immunomodulation, anti-inflammation, anti-oxidation, and anti-apoptosis, etc. via regulating abnormal responses in kidney, innate and adaptive immune systems, intestine, synoviocytes, as well as bone system including chondrocytes, osteoclasts, joints and paw tissues. In the present review, we will elucidate the current mainstream drugs and therapies for SLE and RA, and summarize the efficacy and mechanisms of NPs in the treatment of SLE and RA based on available findings including in vitro and in vivo animal models, as well as clinical studies, and further analyze the existing challenges, in order to provide comprehensive evidence for improvement of SLE and RA therapy by NPs and to promote management of these two autoimmune diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ming-Han Cheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Li-Qin Hu
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Jian Gao
- The Second Affiliated Hospital and School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
20
|
Alghadir A, Miraj M, Ali S. Efficacy of Curcumin with Iontophoretic Application on Paw Edema and Hematological Responses in Collagen-Induced Arthritis Rat Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4606520. [PMID: 32351596 PMCID: PMC7171674 DOI: 10.1155/2020/4606520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND According to previous studies, oral administration of curcumin elucidates anti-inflammatory effect irrespective of its poor bioavailability. This study aims to measure the efficacy of lyophilized curcumin extracts with iontophoresis in arthritic rat models. METHODS Lyophilization and characterization of curcumin using the standard HPTLC method was carried out followed by induction of inflammatory arthritis in male albino rats. The animals were then treated with curcumin in three different forms, i.e., oral curcumin (OCU), oral curcumin with topical application (OCU + TOCU), and oral curcumin along with iontophoretically applied curcumin (OCU + IOCU). Various objective variables including body weight, paw edema, arthritic scores, and hematological and biochemical parameters, as well as histopathological examinations were conducted. RESULTS All the curcumin-treated groups showed significant alleviation of arthritic condition (p ∗ < 0.05) when compared with arthritic controls. Group V (OCU + IOCU) demonstrated maximum therapeutic effect by restoring the body weight, decreasing the paw edema, and normalizing the Erythrocyte sedimentation rate and leukocyte count, when compared with other experimental rat groups (p ∗∗ < 0.01). CONCLUSIONS Iontophoretic administration of curcumin may ameliorate arthritic symptoms significantly, and the effect is assumed to be due to better penetration and enhanced bioavailability. Geriatrics patients are supposed to be benefited fairly by this technique.
Collapse
Affiliation(s)
- Ahmad Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Miraj
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sharique Ali
- Department of Biotechnology, Saifia Science College, Bhopal, India
| |
Collapse
|
21
|
Onaru K, Ohno S, Kubo S, Nakanishi S, Hirano T, Mantani Y, Yokoyama T, Hoshi N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats. J Vet Med Sci 2020; 82:360-372. [PMID: 31983703 PMCID: PMC7118483 DOI: 10.1292/jvms.19-0689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonicotinoid pesticides (NNs) act as agonists on nicotinic acetylcholine receptors (nAChRs) of insects, and there have been concerns about the effects of NNs on the health of mammals.
Since nAChRs are expressed in immune cells, it is possible that NNs disturb the immune system. However, few reports have examined the immunotoxicity of clothianidin (CLO), a
widely-used NN. Here, we report the effects of CLO on immune organs and type IV allergic reactions in ear auricles. We orally administered CLO at 0, 30 and 300 mg/kg/day
(CLO-0, 30 and 300) to Sprague-Dawley rats for 28 days. The effects were evaluated by organ and body weights, histopathology, and immunohistochemistry (TCRαβ, CD4, CD8,
CD11b, CD68, CD103). In addition, some cecal contents were subjected to preliminary gut microbiota analysis, because microbiota contribute to host homeostasis, including the immunity. Our
results showed loose stool, suppression of body weight gain, significant changes in organ weights (thymus: decreased; liver: increased) and changes of the gut microbiota in the
CLO-300 group. There were no obvious histopathological changes in immune organs. Granulomas of the ear auricles were found in one rat of each of the
CLO-30 and 300 groups, but CLO had no apparent effect on the thickness or immunohistochemistry in the ear auricles. We present new evidence that CLO affects the thymus and
intestine, and might enhance the local inflammatory response. These findings should contribute to the appropriate evaluation of the safety of NNs in the future.
Collapse
Affiliation(s)
- Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
22
|
Qiao S, Dou Y, Hu H, Dai Y. Curcumin Activates Vagal Afferent Neurons Through the Modulation of Ion Channels via α7 nAChR. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19873738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a plant polyphenol, has been previously reported to attenuate collagen-induced arthritis in rats by modulating the function of the cholinergic system, but the underlying mechanism remains to be identified. In this study, primary nodose ganglion (NG) neurons were prepared from the adult rats and the electrophysiological recording was performed using the whole-cell patch clamp technique. Curcumin was shown to reduce total potassium currents and A-type currents, without significant effect on the activation or inactivation of potassium channels. Moreover, curcumin selectively enhanced tetrodotoxin-sensitive (TTX-S) sodium channel currents. These effects could be abolished by methyllycaconitine citrate (specific antagonist of α7 nACh receptor). Interestingly, curcumin did not modulate TTX-resistant (TTX-R) or calcium channels. These results suggest that curcumin increases the excitability of NG neurons by decreasing potassium currents and increasing TTX-S sodium currents via α7 nicotinic acetylcholine receptor (nAchR).
Collapse
Affiliation(s)
- Simiao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yannong Dou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Li F, Shi Y, Liang J, Zhao L. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J Biomater Appl 2019; 34:476-486. [PMID: 31280635 DOI: 10.1177/0885328219860929] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fang Li
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yijie Shi
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Jia Liang
- 2 Life Science Institution, Jinzhou Medical University, Jinzhou, PR China
| | - Liang Zhao
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
24
|
D'Cunha NM, Seddon N, Mellor DD, Georgousopoulou EN, McKune AJ, Panagiotakos DB, Kellett J, Naumovski N. Curcumin for Cognition: Is It Just Hype, Based on Current Data? Adv Nutr 2019; 10:179-181. [PMID: 30624556 PMCID: PMC6370263 DOI: 10.1093/advances/nmy066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nathan M D'Cunha
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups,University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom,Address correspondence to NMDC (e-mail: )
| | - Nathan Seddon
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups
| | - Duane D Mellor
- University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom,Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ekavi N Georgousopoulou
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups,University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom,School of Medicine, The University of Notre Dame, Sydney, Australia,Department of Kinesiology and Health at The School of Arts and Sciences, Rutgers, The State University of New Jersey, NJ
| | - Andrew J McKune
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups,University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Demosthenes B Panagiotakos
- School of Medicine, The University of Notre Dame, Sydney, Australia,Department of Kinesiology and Health at The School of Arts and Sciences, Rutgers, The State University of New Jersey, NJ
| | - Jane Kellett
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups,University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Nenad Naumovski
- Faculty of Health and Collaborative Research in Bioactives and Biomarkers Groups,University of Canberra, Canberra, Australia; School of Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
25
|
Asteriou E, Gkoutzourelas A, Mavropoulos A, Katsiari C, Sakkas LI, Bogdanos DP. Curcumin for the Management of Periodontitis and Early ACPA-Positive Rheumatoid Arthritis: Killing Two Birds with One Stone. Nutrients 2018; 10:nu10070908. [PMID: 30012973 PMCID: PMC6073415 DOI: 10.3390/nu10070908] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We propose curcumin as a preventive measure to avoid/manage periodontitis (PD), and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive responses and disease development. Curcumin appears to have efficient anti-bacterial activity against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant, and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing autoimmunity. We introduce curcumin as a natural product for the management of both PD and RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high risk to develop RA.
Collapse
Affiliation(s)
- Eleni Asteriou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| |
Collapse
|
26
|
Adrian TE, Collin P. The Anti-Cancer Effects of Frondoside A. Mar Drugs 2018; 16:E64. [PMID: 29463049 PMCID: PMC5852492 DOI: 10.3390/md16020064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Frondoside A is a triterpenoid glycoside from the Atlantic Sea Cucumber, Cucumariafrondosa. Frondoside A has a broad spectrum of anti-cancer effects, including induction of cellular apoptosis, inhibition of cancer cell growth, migration, invasion, formation of metastases, and angiogenesis. In cell lines and animal models studied to date, the anti-cancer effects of the compound are seen in all solid cancers, lymphomas, and leukemias studied to date. These effects appear to be due to potent inhibition of p21-activated kinase 1 (PAK1), which is up-regulated in many cancers. In mouse models, frondoside A has synergistic effects with conventional chemotherapeutic agents, such as gemcitabine, paclitaxel, and cisplatin. Frondoside A administration is well-tolerated. No side effects have been reported and the compound has no significant effects on body weight, blood cells, or on hepatic and renal function tests after long-term administration. Frondoside A may be valuable in the treatment of malignancies, either as a single agent or in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Thomas E Adrian
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Peter Collin
- Coastside Bio Resources, Deer Isle, ME 04627, USA.
| |
Collapse
|