1
|
Kancheva R, Hill M, Velíková M, Kancheva L, Včelák J, Ampapa R, Židó M, Štětkářová I, Libertínová J, Vosátková M, Kubala Havrdová E. Altered Steroidome in Women with Multiple Sclerosis. Int J Mol Sci 2024; 25:12033. [PMID: 39596101 PMCID: PMC11593676 DOI: 10.3390/ijms252212033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) mainly afflicting young women. Various steroids can influence the onset and development of the disease or, on the contrary, mitigate its course; however, a systematic review of steroidomic changes in MS patients is lacking. Based on the gas chromatography tandem mass spectrometry (GC-MS/MS) platform and, in the case of estradiol, also using immunoassay, this study performed a comprehensive steroidomic analysis in 25 female MS patients aged 39(32, 49) years compared to 15 female age-matched controls aged 38(31, 46) years. A significant trend towards higher ratios of conjugated steroids to their unconjugated counterparts was found in patients, which is of particular interest in terms of the balance between excitatory and inhibitory steroid modulators of ionotropic receptors. Patients showed altered metabolic pathway to cortisol with decreased conversion of pregnenolone to 17-hydroxypregnenolone and 17-hydroxypregnenolone to 17-hydroxyprogesterone and increased conversion of 17-hydroxypregnenolone to dehydroepiandrosterone (DHEA), resulting in lower levels of 17-hydroxyprogesterone, as well as indications of impaired conversion of 11-deoxy-steroids to 11β-hydroxy-steroids but reduced conversion of cortisol to cortisone. Due to over-activation of hypothalamic-pituitary-adrenal axis (HPAA), however, cortisol and cortisone levels were higher in patients with indications of depleted cortisol synthesizing enzymes. Patients showed lower conversion of DHEA to androstenedione, androstenedione to testosterone, androstenedione to estradiol in the major pathway, and testosterone to estradiol in the minor pathway for estradiol synthesis at increased conversion of androstenedione to testosterone. They also showed lower conversion of immunoprotective Δ5 androstanes to their more potent 7α/β-hydroxy metabolites and had lower circulating allopregnanolone and higher ratio 3β-hydroxy-steroids to their neuroprotective 3α-hydroxy-counterparts.
Collapse
Affiliation(s)
- Radmila Kancheva
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Martin Hill
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Marta Velíková
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Ludmila Kancheva
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Josef Včelák
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Radek Ampapa
- MS Center, Jihlava Hospital, 58633 Jihlava, Czech Republic;
| | - Michal Židó
- Department of Neurology 3FM CU and UHKV, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic; (M.Ž.); (I.Š.)
| | - Ivana Štětkářová
- Department of Neurology 3FM CU and UHKV, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic; (M.Ž.); (I.Š.)
| | - Jana Libertínová
- MS Center, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic;
| | - Michala Vosátková
- Institute of Endocrinology, 11000 Prague, Czech Republic; (M.V.); (L.K.); (J.V.); (M.V.)
| | - Eva Kubala Havrdová
- Department of Neurology, First Faculty of Medicine, Charles University, 12008 Prague, Czech Republic;
| |
Collapse
|
2
|
Fedotcheva TA, Uspenskaya ME, Ulchenko DN, Shimanovsky NL. Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application. Pharmaceuticals (Basel) 2024; 17:1186. [PMID: 39338348 PMCID: PMC11435263 DOI: 10.3390/ph17091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent. This unique feature could be beneficial for the medicinal application, especially for the local treatment of various pathologies. At present, the clinical use of dehydroepiandrosterone is limited by its Intrarosa® (Quebec city, QC, Canada) prasterone) 6.5 mg vaginal suppositories for the treatment of vaginal atrophy and dyspareunia, while the dehydroepiandrosterone synthetic derivatives Triplex, BNN 27, and Fluasterone have the investigational status for the treatment of various diseases. Here, we discuss the molecular targets of dehydroepiandrosterone, which open future prospects to expand its indications for use. Dehydroepiandrosterone, as an oral drug, is surmised to have promise in the treatment of osteoporosis, cachexia, and sarcopenia, as does 10% unguent for skin and muscle regeneration. Also, 5-androstenediol, a metabolite of dehydroepiandrosterone, is a promising candidate for the treatment of acute radiation syndrome and as an immunostimulating agent during radiopharmaceutical therapy. The design and synthesis of new 5-androstenediol derivatives with increased bioavailability may lead to the appearance of highly effective cytoprotectors on the pharmaceutical market. The argumentations for new clinical applications of these steroids and novel insights into their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Tatiana A Fedotcheva
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Maria E Uspenskaya
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Darya N Ulchenko
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Nikolay L Shimanovsky
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| |
Collapse
|
3
|
Hill M, Velíková M, Hovorková T, Bulant J, Janšáková K, Valeš K. Steroidomics in Men with Schizophrenia. Int J Mol Sci 2024; 25:8729. [PMID: 39201417 PMCID: PMC11354902 DOI: 10.3390/ijms25168729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Schizophrenia is associated with numerous abnormalities, including imbalances in all hormonal axes, among which steroids play a major role. Steroidomic studies therefore represent a promising tool for early diagnosis and appropriate treatment of schizophrenia. A total of 51 adult male schizophrenics aged 27 (22, 34) years (shown as median with quartiles) and 16 healthy controls (HCs) aged 28 (25, 32) years were enrolled into this study. Our results showed the effective differentiation of men with schizophrenia from controls based on steroidomic profiles. We also found an altered metabolic pathway from pregnenolone and its sulfate (PREG/S) to cortisol in schizophrenics with several metabolic bottlenecks such as lower PREG levels due to increased PREG sulfation and/or suppressed PREGS desulfation and attenuated conversion of 17-hydroxy-PREG to 17-hydroxy-progesterone, as well as the results suggestive of suppressed CYP11B1 activity. In contrast, steroid molar ratios suggested two counterregulatory steps involving increased conversion of PREG/S to 17-hydroxy-PREG/S and decreased conversion of cortisol to cortisone, which may maintain unchanged basal cortisol levels but may not ensure a sufficient cortisol response to stress. Our data also indicated a trend to higher 7α-, 7β-, and 16α-hydroxylation that may counteract the autoimmune complications and proinflammatory processes accompanying schizophrenia. Finally, a possible suppression of HSD17B3 activity was suggested, resulting in decreased circulating testosterone levels with increased androstenedione levels.
Collapse
Affiliation(s)
- Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Marta Velíková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Tereza Hovorková
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Josef Bulant
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 139/8, 110 00 Prague, Czech Republic; (M.V.); (T.H.); (J.B.)
| | - Katarína Janšáková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia;
| | - Karel Valeš
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic;
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| |
Collapse
|
4
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
5
|
Bulut O, Temba GS, Koeken VACM, Moorlag SJCFM, de Bree LCJ, Mourits VP, Kullaya VI, Jaeger M, Qi C, Riksen NP, Domínguez-Andrés J, Xu CJ, Joosten LAB, Li Y, de Mast Q, Netea MG. Common and distinct metabolomic markers related to immune aging in Western European and East African populations. Mech Ageing Dev 2024; 218:111916. [PMID: 38364983 DOI: 10.1016/j.mad.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands.
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cancan Qi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Yang Li
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn53115 Germany
| |
Collapse
|
6
|
Tumilovich A, Yablokov E, Mezentsev Y, Ershov P, Basina V, Gnedenko O, Kaluzhskiy L, Tsybruk T, Grabovec I, Kisel M, Shabunya P, Soloveva N, Vavilov N, Gilep A, Ivanov A. The Multienzyme Complex Nature of Dehydroepiandrosterone Sulfate Biosynthesis. Int J Mol Sci 2024; 25:2072. [PMID: 38396748 PMCID: PMC10889563 DOI: 10.3390/ijms25042072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.
Collapse
Affiliation(s)
- Anastasiya Tumilovich
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Evgeniy Yablokov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Yuri Mezentsev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Pavel Ershov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Viktoriia Basina
- Research Centre for Medical Genetics, 1 Moskvorechye Street, 115522 Moscow, Russia;
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Leonid Kaluzhskiy
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Tatsiana Tsybruk
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Irina Grabovec
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Maryia Kisel
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Polina Shabunya
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Natalia Soloveva
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Nikita Vavilov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Andrei Gilep
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| |
Collapse
|
7
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Longitudinal evaluation of dehydroepiandrosterone (DHEA), its sulfated form and estradiol with cancer-related cognitive impairment in early-stage breast cancer patients receiving chemotherapy. Sci Rep 2022; 12:16552. [PMID: 36192413 PMCID: PMC9529889 DOI: 10.1038/s41598-022-20420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to elucidate how patient-reported cognitive symptoms manifest from variations in hormone levels or precursors such as dehydroepiandrosterone (DHEA) and its sulfated form [collectively termed as DHEA(S)] and to investigate their association in breast cancer survivors. Levels of estradiol and DHEA(S) were compared between early-stage breast cancer patients with and without cancer-related cognitive impairment (CRCI) during adjuvant chemotherapy. Data were analyzed from 242 patients (mean age ± SD = 50.8 ± 9.2 years) who had completed FACT-Cog v.3.0, blood draws and questionnaires. Regression model was used to fit the magnitude of change in each respective biomarker levels against overall cognitive impairment status while adjusting for clinically important covariates. There was reduction in mean plasma levels of estradiol and DHEAS during and towards the end of chemotherapy (p-values < 0.001). Compared to non-impaired patients, smaller magnitude of decline was observed in DHEA(S) levels in patients reporting CRCI, with significant association between decline in DHEAS levels and acute onset of CRCI at 6 weeks from baseline (adjusted β of 0.40, p-value of 0.02). In contrast, patients reporting CRCI showed greater magnitude of decline in estradiol compared to non-impaired patients, although this was not found to be statistically significant. There was an association between magnitude of change in biomarker levels with self-reported CRCI which suggests that the hormonal pathway related to DHEAS may be implicated in acute CRCI for breast cancer survivors. Our findings help to improve biological understanding of the pathway from which DHEAS may correlate with cognitive dysfunction and its impact on cancer survivors.
Collapse
|
9
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
10
|
van de Vyver M, Powrie YSL, Smith C. Targeting Stem Cells in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:163-181. [PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.
Collapse
Affiliation(s)
- Mari van de Vyver
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Yigael S L Powrie
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Wang J, Wang L. The therapeutic effect of dehydroepiandrosterone (DHEA) on vulvovaginal atrophy. Pharmacol Res 2021; 166:105509. [PMID: 33610719 DOI: 10.1016/j.phrs.2021.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Vulvovaginal atrophy (VVA) is a chronic disease that mostly occurs in postmenopausal women. After menopause, insufficient sex hormones affect the anatomy of the vagina and cause drastic physiological changes. The main histopathological studies of VVA show that postmenopausal estrogen deficiency can lead to the increase of intermediate/parabasal cells, resulting in the loss of lactobacillus, elasticity and lubricity, vaginal epithelial atrophy, pain, dryness. Although the role of estrogen hormones in the treatment of VVA has always been in the past, it is now widely accepted that it also depends on androgens. Estrogen drugs have many side effects. So, Dehydroepiandrosterone(DHEA)is promising for the treatment of VVA, especially when women with contraindications to estrogen have symptoms. This review is expected to understand the latest developments in VVA and the efficacy of DHEA.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
12
|
Kokras N, Dioli C, Paravatou R, Sotiropoulos MG, Delis F, Antoniou K, Calogeropoulou T, Charalampopoulos I, Gravanis A, Dalla C. Psychoactive properties of BNN27, a novel neurosteroid derivate, in male and female rats. Psychopharmacology (Berl) 2020; 237:2435-2449. [PMID: 32506234 DOI: 10.1007/s00213-020-05545-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
RATIONALE Νeurosteroids, like dehydroepiandrosterone (DHEA), play an important role in neurodegeneration and neural protection, but they are metabolized in androgens, estrogens, or other active metabolites. A newly developed synthetic DHEA analog, BNN27 ((20R)-3β,21-dihydroxy-17R,20-epoxy-5-pregnene), exerts neurotrophic and neuroprotective actions without estrogenic or androgenic effects. OBJECTIVES This study aimed to investigate potential anxiolytic or antidepressant properties of BNN27. METHODS Male and female adult Wistar rats were treated with BNN27 (10, 30, or 90 mg/kg, i.p.) and subjected to behavioral tests measuring locomotion, exploration, and "depressive-like" behavior (open field, light/dark box, hole-board, and forced swim tests). The hippocampus and prefrontal cortex were collected for glutamate and GABA measurements, and trunk blood was collected for gonadal hormone analysis. RESULTS Acute high-dose BNN27 reduced locomotion and exploratory behavior in both sexes. Intermediate acute doses (30 mg/kg) of BNN27 reduced exploration and testosterone levels only in males, and enhanced progesterone levels in both sexes. Notably, with the present design, BNN27 had neither anxiolytic nor antidepressant effects and did not affect estrogen levels. Interestingly, acute administration of a low BNN27 dose (10 mg/kg) increased glutamate turnover, GABA, and glutamine levels in the hippocampus. The same dose also enhanced glutamate levels in the prefrontal cortex of males only. Sex differences were apparent in the basal levels of behavioral, hormonal, and neurochemical parameters, as expected. CONCLUSIONS BNN27 affects locomotion, progesterone, and testosterone levels, as well as the glutamatergic and GABAergic systems of the hippocampus and prefrontal cortex in a sex-dependent way.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Dioli
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Rafaella Paravatou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Marinos G Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Hale ΒΤΜ 9002AA, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, 11635, Athens, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, 71110, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, 71110, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| |
Collapse
|
13
|
D-galactose: a model of accelerated ageing sufficiently sensitive to reflect preventative efficacy of an antioxidant treatment. Biogerontology 2020; 21:745-761. [PMID: 32638260 DOI: 10.1007/s10522-020-09891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Considering that the phenomenon of accelerated ageing contributes to early onset of various chronic diseases, modelling of the relevant dysregulated systems or responses is vital for research aimed at identification of potential therapeutic targets. Here, we aimed to establish a model capable of simulating the redox and inflammatory changes of accelerated ageing-specifically, the aim was early phase accelerated ageing, which would allow therapeutic intervention in a preventative approach prior to clinical disease manifestation. A secondary aim was to evaluate the sensitivity of the model to reflect preventative treatment efficacy. Daily D-galactose injections (250 mg/kg body mass/day) for 8 weeks in 9-week-old male Wistar rats induced a model of early accelerated ageing (decreased plasma FRAP; P < 0.05 and altered inflammatory signalling) and an aged profile in lymph node ultrastructure, but did not yet result in telomere shortening. Preventative daily oral antioxidant administration (grape seed-derived polyphenol, 100 mg/kg body mass) prevented tissue ageing, beneficially modulated the inflammatory response, including neutrophil chemokinetic capacity, and tended to increase absolute telomere length. Data suggests that using a mild model of D-galactose administration than those employed to induce neurodegeneration, simulated the point where oxidative stress starts to overwhelm the endogenous antioxidant response and where a pro-inflammatory phenotype switch manifests. Furthermore, despite the expected small effect size, the model was sufficiently sensitive to reflect benefits of preventative antioxidant treatment in the context of ageing. This model presents a practical model for use in drug discovery, particularly in the context of preventative medicine aimed at limiting oxidative stress-associated ageing. Since this starting point of accelerated ageing as illustrated by current data, is not expected to reflect major ageing-associated changes yet, we recommend that future preventative drug discovery studies employ a longitudinal study design in order to clearly demonstrate the delay of this starting point by preventative strategies.
Collapse
|
14
|
Scarola SJ, Bardi M. Environmental enrichment modulates inflammation during development in long-evans rats (Rattus norvegicus). Dev Psychobiol 2020; 63:183-191. [PMID: 32573778 DOI: 10.1002/dev.22007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
It is unknown whether increased production of pro-inflammatory mediators during the life span is caused by aging per se or via the combination of a cumulative allostatic load due to life challenges. This study aimed to investigate the long-term effects of stress and environmental enrichment on the inflammatory status associated with aging in rats. Animals were assigned to the following five treatment groups: chronic stress with and without environmental enrichment; acute stress with and without environmental enrichment; control animals. Enrichment was provided as an open field containing novel objects (30 min three times per week). Animals assigned to chronic stress groups were exposed to predator sound stressors (e.g., hawk sound) for 30 min daily, while animals assigned to acute stress groups were exposed once a week for 30 min. The interaction between the hypothalamic-pituitary-adrenal axis and the immune system was investigated by measuring metabolized dehydroepiandrosterone (DHEA) levels and peripheral levels of the cytokines IL-6 and IL-10. Results suggested that inflamm-aging was more pronounced in animals with low DHEA levels, which in turn were affected by exposure to environmental enrichment and acute stress. This study showed that environmental enrichment and acute stress can significantly attenuate disruptions in DHEA production, consequently contributing to improved neuroimmune function of aging animals.
Collapse
|
15
|
Xie M, Zhong Y, Xue Q, Wu M, Deng X, O Santos H, Tan SC, Kord-Varkaneh H, Jiao P. Impact of dehydroepianrosterone (DHEA) supplementation on serum levels of insulin-like growth factor 1 (IGF-1): A dose-response meta-analysis of randomized controlled trials. Exp Gerontol 2020; 136:110949. [PMID: 32304719 DOI: 10.1016/j.exger.2020.110949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Inconsistencies exist with regard to the influence of dehydroepiandrosterone (DHEA) supplementation on insulin-like growth factor 1 (IGF-1) levels. The inconsistencies could be attributed to several factors, such as dosage, gender, and duration of intervention, among others. To address these inconsistencies, we conducted a systematic review and meta-analysis to combine findings from randomized controlled trials (RCTs) on this topic. METHODS Electronic databases (Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar) were searched for relevant literature published up to February 2020. RESULTS Twenty-four qualified trials were included in this meta-analysis. It was found that serum IGF-1 levels were significantly increased in the DHEA group compared to the control (weighted mean differences (WMD): 16.36 ng/ml, 95% CI: 8.99, 23.74; p = .000). Subgroup analysis revealed that a statistically significant increase in serum IGF-1 levels was found only in women (WMD: 23.30 ng/ml, 95% CI: 13.75, 32.87); in participants who supplemented 50 mg/d DHEA (WMD: 15.75 ng/ml, 95% CI: 7.61, 23.89); in participants undergoing DHEA intervention for >12 weeks (WMD: 17.2 ng/ml, 95% CI: 8.02, 26.22); in participants without an underlying comorbidity (WMD: 19.11 ng/ml, 95% CI: 10.69, 27.53); and in participants over the age of 60 years (WMD: 19.79 ng/ml, 95% CI: 9.86, 29.72). CONCLUSION DHEA supplementation may increase serum IGF-I levels especially in women and older subjects. However, further studies are warranted before DHEA can be recommended for clinical use.
Collapse
Affiliation(s)
- Min Xie
- Operating Room Nursing Department, Xiangya Third Hospital of Central South University, Changsha, Hunan 400013, China
| | - Yanfa Zhong
- Department of Laboratory Medicine, Dezhou Hospital of Traditional Chinese Medicine, Dezhou, Shandong 253000, China
| | - Qing Xue
- Department of Laboratory Medicine, Dezhou Hospital of Traditional Chinese Medicine, Dezhou, Shandong 253000, China
| | - Meirong Wu
- Operating Room Nursing Department, Xiangya Third Hospital of Central South University, Changsha, Hunan 400013, China
| | - Xiaoxian Deng
- Operating Room Nursing Department, Xiangya Third Hospital of Central South University, Changsha, Hunan 400013, China
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peng Jiao
- Department of Endocrinology, Dezhou Hospital of Traditional Chinese Medicine, Dezhou, Shandong 253000, China.
| |
Collapse
|
16
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
17
|
Arbo B, Ribeiro M, Garcia-Segura L. Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO). Ageing Res Rev 2019; 54:100943. [PMID: 31430564 DOI: 10.1016/j.arr.2019.100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disease, affecting currently 43 million people over the world. To date, most of the pharmacological interventions in AD are intended for the alleviation of some of its symptoms, and there are no effective treatments to inhibit the progression of the disease. Translocator protein (TSPO) is present in contact points between the outer and the inner mitochondrial membranes and is involved in the control of steroidogenesis, inflammation and apoptosis. In the last decade, studies have shown that TSPO ligands present neuroprotective effects in different experimental models of AD, both in vitro and in vivo. The aim of this review is to analyze the data provided by these studies and to discuss if TSPO could be a viable therapeutic target for the development of new treatments for AD.
Collapse
|
18
|
Thomas N, Gurvich C, Kulkarni J. Sex Differences in Aging and Associated Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:57-76. [PMID: 31493222 DOI: 10.1007/978-3-030-25650-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|