1
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li Q, Xie H, Guo Y, Li J, Qian J, Wu W. Formoterol Reduces the Pro-Inflammatory Phenotype by Enhancing the Activity of Glutaminase in Monocyte-Derived Macrophages in the CVB3-Induced Viral Myocarditis. Immun Inflamm Dis 2024; 12:e70073. [PMID: 39601476 PMCID: PMC11600452 DOI: 10.1002/iid3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Viral myocarditis (VMC) plays a significant role in heart failure, and there is currently a shortage of available targeted treatments. Macrophage phenotype and function are closely associated with the beta-2 adrenergic receptor (β2-AR). METHOD This research employed a BALB/c mouse model of VMC generated using Coxsackievirus B3 (CVB3), and the β2-AR agonist formoterol was administered as treatment. A bioinformatic analysis was conducted to identify the β2-AR in CCR2+MHCIIhigh monocyte-derived macrophages (MoMFs). Echocardiography and histopathological assessments were utilized to evaluate cardiac function and inflammation. The enzymatic activity of glutaminase (GLS) was quantified. Flow cytometry was employed to characterize the phenotype and function of the macrophages. RESULT Our study revealed that formoterol treatment effectively mitigated cardiac inflammation and fibrosis, improved cardiac function, and prolonged survival compared to the VMC group. Formoterol reduced the infiltration of CCR2+MHCIIhigh MoMFs in the heart, inhibited M1 phenotypic expression and activity, and reduced the percentage of Ly6Chigh monocytes in circulation. Additionally, formoterol stimulated M2 phenotypic expression and activity and increased the percentage of Ly6Clow monocytes in circulation. Additionally, the combination of NICB3344, a C-C motif chemokine receptor 2 inhibitor, with formoterol did not exhibit synergistic effects on reducing cardiac pathological scores or enhancing cardiac function. In vitro studies involving the use of lipopolysaccharide (LPS)-induced bone marrow-derived macrophages, revealed the ability of formoterol to suppress the M1 phenotype and functions induced by LPS while promoting the M2 phenotype and functions. Nevertheless, the observed effects were negated by the introduction of the GLS inhibitor BPTES. CONCLUSION Formoterol potentially serves as a significant metabolic regulator in the differentiation process of cardiac MoMFs, influencing this process by controlling GLS activity. Targeting β2-AR exhibits potential as an effective approach for managing VMC. It is essential to acknowledge that these findings were derived under specific experimental conditions, with the current conclusions predominantly based on animal models. Future research is necessary to further investigate the feasibility of formoterol in clinical practice.
Collapse
Affiliation(s)
- Quan‐liang Li
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hua‐bao Xie
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Ying‐xin Guo
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Juan‐fen Li
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jing Qian
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wei‐Feng Wu
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and Ministry, Guangxi Medical UniversityNanningChina
| |
Collapse
|
3
|
Naushad W, Premadasa LS, Okeoma BC, Mohan M, Okeoma CM. Extracellular condensates (ECs) are endogenous modulators of HIV transcription and latency reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613037. [PMID: 39345617 PMCID: PMC11429871 DOI: 10.1101/2024.09.14.613037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) latent reservoir is the major challenge to HIV cure because the latent reservoir is not eliminated by antiretroviral therapy (ART), and they serve as sources for viral rebound upon cessation of ART. Mechanisms regulating viral persistence are not well understood. This study used model systems of post-integration latency to explore the role of basal ganglia (BG) isolated extracellular condensates (ECs) in reprogramming HIV latent cells. We found that BG ECs from uninfected macaques (VEH) and SIV infected macaques (VEH|SIV) activate latent HIV transcription in various model systems. VEH and VEH|SIV ECs significantly increased expression of viral antigen in latently infected cells. Activation of viral transcription, antigen expression, and latency reactivation was inhibited by ECs from the brain of macaques treated with Delta-9-tetrahydrocannabinol (THC) and infected with SIV (THC|SIV). Virus produced by latently infected cells treated with VEH|SIV ECs potentiated cell-cell and cell-free HIV transmission. VEH|SIV ECs also reversed dexamethasone-mediated inhibition of HIV transcription while TNFα-mediated reactivation of latency was reversed by THC|SIV ECs. Transcriptome and secretome analyses of total RNA and supernatants from latently infected cells treated with ECs revealed significant alteration in gene expression and cytokine secretion. THC|SIV ECs increased secretion of Th2 and decreased secretion of proinflammatory cytokines. Most strikingly, while VEH/SIV ECs robustly induced HIV RNA in latently HIV-infected cells, long-term low-dose THC administration enriched ECs for anti-inflammatory cargo that significantly diminished their ability to reactivate latent HIV, an indication that ECs are endogenous host factors that may regulate HIV persistence. Highlights ECs isolated from SIV infected macaques (VEH|SIV ECs) is a positive regulator of LTR-dependent HIV transcription and production of infectious viral particles in vitro.ECs isolated from THC treated SIV infected macaques (THC|SIV ECs) prevents the transcription and reactivation of HIV in latently infected cells and prevents production of viral particles in vitro.ECs reprogram host transcriptome and secretome in manners that or suppress promote reactivation of latent HIV reservoir.The above highlights led to the conclusion that while VEH/SIV ECs robustly induced HIV RNA in latently HIV-infected cells, long-term low-dose THC administration enriched ECs for anti-inflammatory cargo that significantly diminished their ability to reactivate latent HIV.
Collapse
|
4
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
6
|
Loppi SH, Tavera-Garcia MA, Scholpa NE, Maiyo BK, Becktel DA, Morrison HW, Schnellmann RG, Doyle KP. Boosting Mitochondrial Biogenesis Diminishes Foam Cell Formation in the Post-Stroke Brain. Int J Mol Sci 2023; 24:16632. [PMID: 38068955 PMCID: PMC10706318 DOI: 10.3390/ijms242316632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Following ischemic stroke, the degradation of myelin and other cellular membranes surpasses the lipid-processing capabilities of resident microglia and infiltrating macrophages. This imbalance leads to foam cell formation in the infarct and areas of secondary neurodegeneration, instigating sustained inflammation and furthering neurological damage. Given that mitochondria are the primary sites of fatty acid metabolism, augmenting mitochondrial biogenesis (MB) may enhance lipid processing, curtailing foam cell formation and post-stroke chronic inflammation. Previous studies have shown that the pharmacological activation of the β2-adrenergic receptor (β2-AR) stimulates MB. Consequently, our study sought to discern the effects of intensified β2-AR signaling on MB, the processing of brain lipid debris, and neurological outcome using a mouse stroke model. To achieve this goal, aged mice were treated with formoterol, a long-acting β2-AR agonist, daily for two and eight weeks following stroke. Formoterol increased MB in the infarct region, modified fatty acid metabolism, and reduced foam cell formation. However, it did not reduce markers of post-stroke neurodegeneration or improve recovery. Although our findings indicate that enhancing MB in myeloid cells can aid in the processing of brain lipid debris after stroke, it is important to note that boosting MB alone may not be sufficient to significantly impact stroke recovery.
Collapse
Affiliation(s)
- Sanna H. Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Marco A. Tavera-Garcia
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA; (N.E.S.); (R.G.S.)
| | - Boaz K. Maiyo
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Danielle A. Becktel
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | | | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA; (N.E.S.); (R.G.S.)
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- R. Ken Coit Center for Longevity and Neurotherapeutics, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA
| | - Kristian P. Doyle
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Psychology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
7
|
Deng A, Wang S, Qin J, Yang P, Shen S, Zhou H, Chen X. ErbB4 processing is involved in OGD/R induced neuron injury. J Stroke Cerebrovasc Dis 2023; 32:107373. [PMID: 37734179 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Our previous study found that ErbB4 gene expression was changed after oxygen-glucose deprivation/reperfusion (OGD/R). However, the exact role and mechanism of ErbB4 in brain ischemia are largely unknown. In this study, we explored the protective effects of ErbB4 and its possible mechanism after OGD/R. METHODS Cerebral ischemia/reperfusion (I/R) injury model was established in vitro and in vivo. Cell viability, apoptosis, and ROS production were measured by MTT, TUNEL, and fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Infarct size was evaluated by TTC. We performed bioinformatics analyses to screen for novel key genes involved in ErbB4 changes. RNA-Seq was used to transcriptome analysis. RNA and protein expression were detected by quantitative RT‒PCR and western bloting. RESULTS The expression of 80-kDa ErbB4 decreased after cerebral I/R injury in vitro and in vivo. Co-expression network analysis revealed that ErbB4 expression was correlated with the changes in Adrb1, Adrb2, Ldlr, and Dab2. Quantitative RT‒PCR revealed that the mRNA expression levels of Adrb1, Adrb2, and Dab2 were upregulated, and that of Ldlr was decreased after OGD/R. Activation of ErbB4 expression by neuregulin 1 (NRG1) significantly promoted cell survival, attenuated hippocampal apoptosis, and decreased ROS production after OGD/R. Furthermore, the elimination of ErbB4 using a specific siRNA reversed these beneficial effects. CONCLUSION Our data revealed the neuroprotective effects of ErbB4 against OGD/R injury, and the action could be related to changes in the ErbB4 membrane-associated fragment and the expression of Adrb1, Adrb2, Ldlr, and Dab2.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Panpan Yang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shaoze Shen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hongzhi Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
8
|
Zhou M, Luo Q, Xu Y. As an inhibitor of norepinephrine release, dexmedetomidine provides no improvement on stroke-associated pneumonia in mice. Front Pharmacol 2023; 14:1203646. [PMID: 37601052 PMCID: PMC10433391 DOI: 10.3389/fphar.2023.1203646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Dexmedetomidine (DEX) is commonly employed as a sedative agent to attenuate sympathetic tone and reduce norepinephrine (NE) levels. In the context of stroke-associated pneumonia (SAP), which is believed to arise from heightened sympathetic nervous system activity and elevated NE release, the precise influence of DEX remains uncertain. Methods: In this study, we generated an SAP model using middle cerebral artery occlusion (MCAO) and examined NE levels, immunological statuses in the brain and periphery, pneumonia symptoms, and extent of infarction. We aimed to determine the effects of DEX on SAP and explore the underlying. Despite its potential to reduce NE levels, DEX did not alleviate SAP symptoms or decrease the infarct area. Interestingly, DEX led to an increase in spleen size and spleen index. Furthermore, we observed a decrease in the CD3+ T cell population in both the blood and brain, but an increase in the spleen following DEX administration. The precise mechanism linking decreased CD3+ T cells and DEX's role in SAP requires further investigation. Conclusion: The clinical use of DEX in stroke patients should be approached with caution, considering its inability to alleviate SAP symptoms and reduce the infarct area. Further research is necessary to fully understand the relationship between decreased CD3+ T cells and DEX's influence on SAP.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiong Luo
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Younian Xu
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Johnson A, Krogman W, Peterson J. Ischemic Stroke in the Setting of Anabolic Androgenic Steroid Use. Kans J Med 2023; 16:141-142. [PMID: 37283774 PMCID: PMC10241198 DOI: 10.17161/kjm.vol16.19507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Allan Johnson
- Department of Anesthesiology, University of Kansas School of Medicine-Wichita, Wichita, KS
| | - William Krogman
- Department of Anesthesiology, University of Kansas School of Medicine-Wichita, Wichita, KS
| | - John Peterson
- Department of Anesthesiology, University of Kansas School of Medicine-Wichita, Wichita, KS
| |
Collapse
|
10
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
11
|
Clemente-Moragón A, Oliver E, Calle D, Cussó L, Gómez M, Pradillo JM, Castejón R, Rallón N, Benito JM, Fernández-Ferro JC, Carneado-Ruíz J, Moro MA, Sánchez-González J, Fuster V, Cortés-Canteli M, Desco M, Ibáñez B. Neutrophil β 1 adrenoceptor blockade blunts stroke-associated neuroinflammation. Br J Pharmacol 2023; 180:459-478. [PMID: 36181002 PMCID: PMC10100149 DOI: 10.1111/bph.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Reperfusion therapy is the standard of care for ischaemic stroke; however, there is a need to identify new therapeutic targets able to ameliorate cerebral damage. Neutrophil β1 adrenoceptors (β1AR) have been linked to neutrophil migration during exacerbated inflammation. Given the central role of neutrophils in cerebral damage during stroke, we hypothesize that β1AR blockade will improve stroke outcomes. EXPERIMENTAL APPROACH Rats were subjected to middle cerebral artery occlusion-reperfusion to evaluate the effect on stroke of the selective β1AR blocker metoprolol (12.5 mg·kg-1 ) when injected i.v. 10 min before reperfusion. KEY RESULTS Magnetic resonance imaging and histopathology analysis showed that pre-reperfusion i.v. metoprolol reduced infarct size. This effect was accompanied by reduced cytotoxic oedema at 24 h and vasogenic oedema at 7 days. Metoprolol-treated rats showed reduced brain neutrophil infiltration and those which infiltrated displayed a high proportion of anti-inflammatory phenotype (N2, YM1+ ). Additional inflammatory models demonstrated that metoprolol specifically blocked neutrophil migration via β1AR and excluded a significant effect on the glia compartment. Consistently, metoprolol did not protect the brain in neutrophil-depleted rats upon stroke. In patients suffering an ischaemic stroke, β1AR blockade by metoprolol reduced circulating neutrophil-platelet co-aggregates. CONCLUSIONS AND IMPLICATIONS Our findings describe that β1AR blockade ameliorates cerebral damage by targeting neutrophils, identifying a novel therapeutic target to improve outcomes in patients with stroke. This therapeutic strategy is in the earliest stages of the translational pathway and should be further explored.
Collapse
Affiliation(s)
- Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Daniel Calle
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús M Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Raquel Castejón
- Internal Medicine Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - José C Fernández-Ferro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Neurology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | | | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta Cortés-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiovascular Risk Factors and Brain Function program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
12
|
Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Research progress on the role of hormones in ischemic stroke. Front Immunol 2022; 13:1062977. [PMID: 36569944 PMCID: PMC9769407 DOI: 10.3389/fimmu.2022.1062977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability around the world. However, ischemic stroke treatment is currently limited, with a narrow therapeutic window and unsatisfactory post-treatment outcomes. Therefore, it is critical to investigate the pathophysiological mechanisms following ischemic stroke brain injury. Changes in the immunometabolism and endocrine system after ischemic stroke are important in understanding the pathophysiological mechanisms of cerebral ischemic injury. Hormones are biologically active substances produced by endocrine glands or endocrine cells that play an important role in the organism's growth, development, metabolism, reproduction, and aging. Hormone research in ischemic stroke has made very promising progress. Hormone levels fluctuate during an ischemic stroke. Hormones regulate neuronal plasticity, promote neurotrophic factor formation, reduce cell death, apoptosis, inflammation, excitotoxicity, oxidative and nitrative stress, and brain edema in ischemic stroke. In recent years, many studies have been done on the role of thyroid hormone, growth hormone, testosterone, prolactin, oxytocin, glucocorticoid, parathyroid hormone, and dopamine in ischemic stroke, but comprehensive reviews are scarce. This review focuses on the role of hormones in the pathophysiology of ischemic stroke and discusses the mechanisms involved, intending to provide a reference value for ischemic stroke treatment and prevention.
Collapse
Affiliation(s)
- Shuyuan Huang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Liu
- Department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaodong Tang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulan Xie
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinrui Li
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Xianhui Kang, ; Shengmei Zhu,
| |
Collapse
|
13
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
14
|
Nguyen TNB, Ely BA, Pick D, Patel M, Xie H, Kim-Schulze S, Gabbay V. Clenbuterol attenuates immune reaction to lipopolysaccharide and its relationship to anhedonia in adolescents. Brain Behav Immun 2022; 106:89-99. [PMID: 35914697 PMCID: PMC9817216 DOI: 10.1016/j.bbi.2022.07.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
While inflammation has been implicated in psychopathology, relationships between immune-suppressing processes and psychiatric constructs remain elusive. This study sought to assess whether β2-agonist clenbuterol (CBL) would attenuate immune activation in adolescents with mood and anxiety symptoms following ex vivo exposure of whole blood to lipopolysaccharide (LPS). Our focus on adolescents aimed to target a critical developmental period when psychiatric conditions often emerge and prior to chronicity effects. To capture a diverse range of immunologic and symptomatologic phenotypes, we included 97 psychotropic-medication free adolescents with mood and anxiety symptoms and 33 healthy controls. All participants had comprehensive evaluations and dimensional assessments of psychiatric symptoms. Fasting whole-blood samples were collected and stimulated with LPS in the presence and absence of CBL for 6 hours, then analyzed for 41 cytokines, chemokines, and hematopoietic growth factors. Comparison analyses used Bonferroni-corrected nonparametric tests. Levels of nine immune biomarkers-including IL-1RA, IL-1β, IL-6, IP-10, MCP-1, MIP-1α, MIP-1β, TGF-α, and TNF-α-were significantly reduced by CBL treatment compared to LPS alone. Exploratory factor analysis reduced 41 analytes into 5 immune factors in each experimental condition, and their relationships with psychiatric symptoms were examined as a secondary aim. CBL + LPS Factor 4-comprising EGF, PDGF-AA, PDGF-AB/BB, sCD40L, and GRO-significantly correlated with anticipatory and consummatory anhedonia, even after controlling for depression severity. This study supports the possible inhibitory effect of CBL on immune activation. Using a data-driven method, distinctive relationships between CBL-affected immune biomarkers and dimensional anhedonia were reported, further elucidating the role of β2-agonism in adolescent affective symptomatology.
Collapse
Affiliation(s)
- Tram N B Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Danielle Pick
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
15
|
Bagrowski B. Perspectives for the application of neurogenetic research in programming Neurorehabilitation. Mol Aspects Med 2022; 91:101149. [PMID: 36253186 DOI: 10.1016/j.mam.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Certain genetic variants underlie the proper functioning of the nervous system. They affect the nervous system in all aspects - molecular, systemic, cognitive, computational and sensorimotor. The greatest changes in the nervous system take place in the process of its maturation in the period of psychomotor development, as well as during neurorehabilitation, the task of which is to rebuild damaged neuronal pathways, e.g. by facilitating movement or training cognitive functions. Certain genetic polymorphisms affect the effectiveness of the processes of reconstruction or restoration of neural structures, which is clearly reflected in the effects of neurorehabilitation. This review presents the perspectives for the application of neurogenetic research in programming neurorehabilitation by determining the relationship of as many as 16 different genetic polymorphisms with specific functions of importance in rehabilitation. Thanks to this broad view, it may be possible to predict the effectiveness of rehabilitation on the basis of genetic testing, which would significantly contribute to the development of personalized medicine and to the optimal management of medical services in healthcare systems.
Collapse
Affiliation(s)
- Bartosz Bagrowski
- Poznan University of Medical Sciences, Department of Mother and Child Health, Department of Practical Training in Obstetrics, Poland; Gynecology and Obstetrics Clinical Hospital of Poznan University of Medical Sciences, Rehabilitation Center for Children, Poland.
| |
Collapse
|
16
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
17
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
18
|
Xu Y, Ge Y, Zhou M, Zhang Z. Clenbuterol, a Selective β2-Adrenergic Receptor Agonist, Inhibits or Limits Post-Stroke Pneumonia, but Increases Infarct Volume in MCAO Mice. J Inflamm Res 2022; 15:295-309. [PMID: 35058704 PMCID: PMC8765548 DOI: 10.2147/jir.s344521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Younian Xu
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yangyang Ge
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Miaomiao Zhou
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Miaomiao Zhou Anesthesiology Department, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, People’s Republic of ChinaTel/Fax +86 027-67812903 Email
| | - Zongze Zhang
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Kasozi KI, Zirintunda G, Aslam A, Allahyani M, Welburn SC, Batiha GES. Effects of β-Blockers on the Sympathetic and Cytokines Storms in Covid-19. Front Immunol 2021; 12:749291. [PMID: 34867978 PMCID: PMC8637815 DOI: 10.3389/fimmu.2021.749291] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative virus in the development of coronavirus disease 2019 (Covid-19) pandemic. Respiratory manifestations of SARS-CoV-2 infection such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) leads to hypoxia, oxidative stress, and sympatho-activation and in severe cases leads to sympathetic storm (SS). On the other hand, an exaggerated immune response to the SARS-CoV-2 invasion may lead to uncontrolled release of pro-inflammatory cytokine development of cytokine storm (CS). In Covid-19, there are interactive interactions between CS and SS in the development of multi-organ failure (MOF). Interestingly, cutting the bridge between CS and SS by anti-inflammatory and anti-adrenergic agents may mitigate complications that are induced by SARS-CoV-2 infection in severely affected Covid-19 patients. The potential mechanisms of SS in Covid-19 are through different pathways such as hypoxia, which activate the central sympathetic center through carotid bodies chemosensory input and induced pro-inflammatory cytokines, which cross the blood-brain barrier and activation of the sympathetic center. β2-receptors signaling pathway play a crucial role in the production of pro-inflammatory cytokines, macrophage activation, and B-cells for the production of antibodies with inflammation exacerbation. β-blockers have anti-inflammatory effects through reduction release of pro-inflammatory cytokines with inhibition of NF-κB. In conclusion, β-blockers interrupt this interaction through inhibition of several mediators of CS and SS with prevention development of neural-cytokine loop in SARS-CoV-2 infection. Evidence from this study triggers an idea for future prospective studies to confirm the potential role of β-blockers in the management of Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali Ismail Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,School of Medicine, Kabale Unviersity, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | - Akhmed Aslam
- Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
20
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
21
|
Li JM, Mu ZN, Zhang TT, Li X, Shang Y, Hu GH. Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6015702. [PMID: 34603472 PMCID: PMC8486536 DOI: 10.1155/2021/6015702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
METHODS Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.
Collapse
Affiliation(s)
- Jia Min Li
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhen Ni Mu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tian Tian Zhang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Li
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yan Shang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guo Heng Hu
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
22
|
Petkevicius K, Bidault G, Virtue S, Newland SA, Dale M, Dugourd A, Saez-Rodriguez J, Mallat Z, Vidal-Puig A. Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol Metab 2021; 48:101220. [PMID: 33774223 PMCID: PMC8086137 DOI: 10.1016/j.molmet.2021.101220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Neuroimmune interactions between the sympathetic nervous system (SNS) and macrophages are required for the homeostasis of multiple tissues, including the adipose tissue. It has been proposed that the SNS maintains adipose tissue macrophages (ATMs) in an anti-inflammatory state via direct norepinephrine (NE) signaling to macrophages. This study aimed to investigate the physiological importance of this paradigm by utilizing a mouse model in which the adrenergic signaling from the SNS to macrophages, but not to other adipose tissue cells, was disrupted. METHODS We generated a macrophage-specific B2AR knockout mouse (Adrb2ΔLyz2) by crossing Adrb2fl/fl and Lyz2Cre/+ mice. We have previously shown that macrophages isolated from Adrb2ΔLyz2 animals do not respond to NE stimulation in vitro. Herein we performed a metabolic phenotyping of Adrb2ΔLyz2 mice on either chow or high-fat diet (HFD). We also assessed the adipose tissue function of Adrb2ΔLyz2 animals during fasting and cold exposure. Finally, we transplanted Adrb2ΔLyz2 bone marrow to low-density lipoprotein receptor (LDLR) knockout mice and investigated the development of atherosclerosis during Western diet feeding. RESULTS We demonstrated that SNS-associated ATMs have a transcriptional profile indicative of activated beta-2 adrenergic receptor (B2AR), the main adrenergic receptor isoform in myeloid cells. However, Adrb2ΔLyz2 mice have unaltered energy balance on a chow or HFD. Furthermore, Adrb2ΔLyz2 mice show similar levels of adipose tissue inflammation and function during feeding, fasting, or cold exposure, and develop insulin resistance during HFD at the same rate as controls. Finally, macrophage-specific B2AR deletion does not affect the development of atherosclerosis on an LDL receptor-null genetic background. CONCLUSIONS Overall, our data suggest that the SNS does not directly modulate the phenotype of adipose tissue macrophages in either lean mice or mouse models of cardiometabolic disease. Instead, sympathetic nerve activity exerts an indirect effect on adipose tissue macrophages through the modulation of adipocyte function.
Collapse
MESH Headings
- Adipocytes/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Bone Marrow Transplantation/methods
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Diet, Western/adverse effects
- Disease Models, Animal
- Female
- Insulin Resistance/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Panniculitis/genetics
- Panniculitis/metabolism
- Phenotype
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/genetics
- Sympathetic Nervous System/metabolism
Collapse
Affiliation(s)
- Kasparas Petkevicius
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom.
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Stephen A Newland
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Dale
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine & Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine & Heidelberg University Hospital, Heidelberg, Germany
| | - Ziad Mallat
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, United Kingdom.
| |
Collapse
|
23
|
Hatefi A, Zare Shahneh A, Ansari Pirsaraie Z, Alizadeh AM, Atashnak MP, Masoudi R, Pio F. The stimulation and inhibition of beta-2 adrenergic receptor on the inflammatory responses of ovary and immune system in the aged laying hens. BMC Vet Res 2021; 17:195. [PMID: 34022889 PMCID: PMC8140518 DOI: 10.1186/s12917-021-02892-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Ovarian chronic inflammation has been known to incidence in the laying hen mainly via increasing laying frequency and microbial infection, especially during late stage of production period. This study was aimed to evaluate beta-2 adrenergic agonist (Beta-2 Adrenergic Agonist, BAA) Salmeterol and beta blocker (Beta Blocker, BB) Propranolol on the gene expression of the ovarian pro- and anti-inflammatory mediators, inflammatory responses of immune system, ovarian functions and, hormones in the laying hens on the late stage of production period. Forty-eight White Leghorn hens aged 92 weeks were used for 4 weeks to be supplemented by Salmeterol and Propranolol. Ovulation rate and follicular growth were determined based on laying frequency and ovarian visual evaluation, respectively; the mRNA expressions of follicular beta-2 adrenergic receptor (Beta-2 Adrenergic Receptor, β2ADR), cyclooxygenases (Cyclooxygenases, COX) 1 and 2, and cytokines were measured by real-time PCR. The plasma concentration of ovarian hormones, cellular, and humoral immune responses were measured via ELISA, heterophil to lymphocyte ratio (Heterophil to Lymphocyte ratio, H:L), and sheep red blood cell (Sheep Red Blood Cell, SRBC) test, respectively. Results As compared to control, both of BAA Salmeterol and BB Propranolol resulted in a significant decrease in the mRNA expression of β2ADR, cyclooxygenases, and pro- and anti-inflammatory cytokines (P < 0.01). A significant elevation was observed in the ovulation rate (P < 0.05), plasma estradiol content on both treated groups (P < 0.05), and the content of progesterone and was just significantly (P < 0.05) increased in Salmeterol group. H:L was reduced in BAA group (P < 0.05), and immunoglobulin (Ig) M was elevated in both treated hens, when compared to control. The results indicated that Salmeterol significantly increases body weight (P < 0.05). Conclusion The stimulation and inhibition of beta-2 adrenergic signaling could reduce ovarian inflammatory condition in addition to enhancing laying efficiency in the aged laying hens.
Collapse
Affiliation(s)
- Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran.
| | | | | | | | - Mohammad Pouya Atashnak
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
24
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
25
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Liu R, Wu XM, He X, Wang RZ, Yin XY, Zhou F, Ji MH, Shen JC. Contribution of DNA methyltransferases to spared nerve injury induced depression partially through epigenetically repressing Bdnf in hippocampus: Reversal by ketamine. Pharmacol Biochem Behav 2021; 200:173079. [DOI: 10.1016/j.pbb.2020.173079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
|
27
|
Chhatar S, Lal G. Role of adrenergic receptor signalling in neuroimmune communication. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:202-217. [PMID: 35492402 PMCID: PMC9040148 DOI: 10.1016/j.crimmu.2021.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroimmune communication plays a crucial role in maintaining homeostasis and promptly responding to any foreign insults. Sympathetic nerve fibres are innervated into all the lymphoid organs (bone marrow, thymus, spleen, and lymph nodes) and provide a communication link between the central nervous system (CNS) and ongoing immune response in the tissue microenvironment. Neurotransmitters such as catecholamines (epinephrine and norepinephrine) bind to adrenergic receptors present on most immune and non-immune cells, establish a local neuroimmune-communication system, and help regulate the ongoing immune response. The activation of these receptors varies with the type of receptor-activated, target cell, the activation status of the cells, and timing of activation. Activating adrenergic receptors, specifically β-adrenergic signalling in immune cells leads to activation of the cAMP-PKA pathway or other non-canonical pathways. It predominantly leads to immune suppression such as inhibition of IL-2 secretion and a decrease in macrophages phagocytosis. This review discusses the expression of different adrenergic receptors in various immune cells, signalling, and how it modulates immune cell function and contributes to health and diseases. Understanding the neuroimmune communication through adrenergic receptor signalling in immune cells could help to design better strategies to control inflammation and autoimmunity. Primary and secondary lymphoid organs are innervated with sympathetic nerve fibres. Adrenergic receptor expression on immune and non-immune cells establishes a local neuroimmune communication system. Adrenergic receptor signalling in immune cells controls the differentiation and function of various immune cells. Modulating adrenergic receptor signalling with a specific agonist or antagonist also affect the immune response.
Collapse
Affiliation(s)
| | - Girdhari Lal
- Corresponding author. National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
28
|
Lee HY, Park JH, Lee H, Kim TW, Yoo SD. Does Hip Bone Density Differ between Paretic and Non-Paretic Sides in Hemiplegic Stroke Patients? and Its Relationship with Physical Impairment. J Bone Metab 2020; 27:237-246. [PMID: 33317227 PMCID: PMC7746477 DOI: 10.11005/jbm.2020.27.4.237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Bone loss after stroke escalates the risk of fractures, mainly in the hip, leading to further disability in individuals with stroke. We aimed to investigate the skeletal effect of bone mineral density (BMD) based on the duration of onset of stroke, compare the BMD of the paretic and non-paretic sides, and elucidate the relationship between BMD and disability variables. Methods The 31 male hemiplegic stroke patients between 20 and 70 years of age with cerebral infarction or hemorrhage were considered in this study. Subacute and chronic cases included 13 and 18 patients with lag time from the onset of 1 to 6 months and beyond 6 months, respectively. BMD in the lumbar, paretic, and non-paretic hip as well as the disability variables were analyzed retrospectively. Results The subacute group showed a significant reduction in the femoral neck BMD on the paretic side compared to that on the non-paretic side based on T-scores (P=0.013). Bone loss was significantly correlated with lower limb muscle strength and overall physical impairment (P<0.05). The chronic group demonstrated significant reduction in femur neck and total femur BMD on the paretic side compared to that on the non-paretic side based on T-scores (P=0.002 and P<0.001, respectively). T-scores of BMD in the chronic phase were not significantly associated with the clinical parameters. Conclusions Early screening of bilateral hip BMD in the early stages after stroke, monitoring, and timely implementation of prevention strategies are important to minimize subsequent bone loss and prevent possible complications in patients who experience stroke.
Collapse
Affiliation(s)
- Hoo Young Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea.,TBI Rehabilitation Center, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul University College of Medicine, Seoul, Korea.,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Jung Hyun Park
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Rehabilitation Medicine, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyanglim Lee
- Department of Internal Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul University College of Medicine, Seoul, Korea
| | - Tae-Woo Kim
- TBI Rehabilitation Center, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea.,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul University College of Medicine, Seoul, Korea
| | - Seung Don Yoo
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Novel Insights into Beta 2 Adrenergic Receptor Function in the rd10 Model of Retinitis Pigmentosa. Cells 2020; 9:cells9092060. [PMID: 32917020 PMCID: PMC7563182 DOI: 10.3390/cells9092060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background: In retinitis pigmentosa (RP), inherited rod death is followed by cone loss and blindness. Why cones die is still a matter of consideration. Here, we investigate the pathogenic role of the sympathetic transmission in the rd10 mouse model of RP. Methods: Retinal levels of beta adrenergic receptor (BAR) 2 and norepinephrine (NE) were measured. After administration of the BAR1/2 blocker propranolol or the hypoxia-inducible factor (HIF)-1 activator dimethyloxalylglycine (DMOG), retinal levels of HIF-1α, BAR2 or proteins involved in BAR2 desensitization were also measured. In DMOG treated mice, expression and localization of BAR2, inflammatory markers and cone arrestin were determined. Finally, rd10 mice were subjected to electroretinogram (ERG) analysis to assess rod and cone function. Results: In the rd10 retina, BAR2 overexpression and NE accumulation were found, with BAR2 immunoreactivity localized to Müller cells. BAR2 overexpression was likely due to desensitization defects. Upregulated levels of BAR2 were drastically reduced by propranolol that also restored desensitization defects. Due to the low level of HIF-1 consequent to the hyperoxic environment in the rd10 retina, we hypothesized a link between HIF-1 and BAR2. HIF-1α stabilization with DMOG resulted in i. increased HIF-1α accumulation, ii. decreased BAR2 levels, iii. restored desensitization processes, iv. reduced expression of inflammatory markers and v. increased cone survival without improved retinal function. Conclusions: Our results support a pathogenic role of the sympathetic system in RP that might help to understand why rd10 mice show a positive response to BAR blockers.
Collapse
|
30
|
Obesity Drives Delayed Infarct Expansion, Inflammation, and Distinct Gene Networks in a Mouse Stroke Model. Transl Stroke Res 2020; 12:331-346. [PMID: 32588199 DOI: 10.1007/s12975-020-00826-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
Obesity is associated with chronic peripheral inflammation, is a risk factor for stroke, and causes increased infarct sizes. To characterize how obesity increases infarct size, we fed a high-fat diet to wild-type C57BL/6J mice for either 6 weeks or 15 weeks and then induced distal middle cerebral artery strokes. We found that infarct expansion happened late after stroke. There were no differences in cortical neuroinflammation (astrogliosis, microgliosis, or pro-inflammatory cytokines) either prior to or 10 h after stroke, and also no differences in stroke size at 10 h. However, by 3 days after stroke, animals fed a high-fat diet had a dramatic increase in microgliosis and astrogliosis that was associated with larger strokes and worsened functional recovery. RNA sequencing revealed a dramatic increase in inflammatory genes in the high-fat diet-fed animals 3 days after stroke that were not present prior to stroke. Genetic pathways unique to diet-induced obesity were primarily related to adaptive immunity, extracellular matrix components, cell migration, and vasculogenesis. The late appearance of neuroinflammation and infarct expansion indicates that there may be a therapeutic window between 10 and 36 h after stroke where inflammation and obesity-specific transcriptional programs could be targeted to improve outcomes in people with obesity and stroke.
Collapse
|
31
|
Effects of β-Adrenergic Blockade on Metabolic and Inflammatory Responses in a Rat Model of Ischemic Stroke. Cells 2020; 9:cells9061373. [PMID: 32492962 PMCID: PMC7349353 DOI: 10.3390/cells9061373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke provokes an inflammatory response concurrent with both sympathetic nervous system activation and hyperglycemia. Currently, their crosstalk and consequences in stroke outcomes are of clinical attraction. We have provided experimental evidence showing the suppressive effects of the nonselective β-adrenoreceptor antagonist propranolol on hyperglycemia, inflammation, and brain injury in a rat model experiencing cerebral ischemia. Pretreatment with propranolol protected against postischemic brain infarction, edema, and apoptosis. The neuroprotection caused by propranolol was accompanied by a reduction in fasting glucose, fasting insulin, glucose tolerance impairment, plasma C-reactive protein, plasma free fatty acids, plasma corticosterone, brain oxidative stress, and brain inflammation. Pretreatment with insulin alleviated-while glucose augmented-postischemic brain injury and inflammation. Additionally, the impairment of insulin signaling in the gastrocnemius muscles was noted in rats with cerebral ischemia, with propranolol improving the impairment by reducing oxidative stress and tumor necrosis factor-α signaling. The anti-inflammatory effects of propranolol were further demonstrated in isoproterenol-stimulated BV2 and RAW264.7 cells through its ability to decrease cytokine production. Despite their potential benefits, stroke-associated hyperglycemia and inflammation are commonly linked with harmful consequences. Our findings provide new insight into the anti-inflammatory, neuroprotective, and hypoglycemic mechanisms of propranolol in combating neurodegenerative diseases, such as stroke.
Collapse
|
32
|
Zong MM, Zhou ZQ, Ji MH, Jia M, Tang H, Yang JJ. Activation of β2-Adrenoceptor Attenuates Sepsis-Induced Hippocampus-Dependent Cognitive Impairments by Reversing Neuroinflammation and Synaptic Abnormalities. Front Cell Neurosci 2019; 13:293. [PMID: 31354429 PMCID: PMC6636546 DOI: 10.3389/fncel.2019.00293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation and synaptic plasticity impairment of the hippocampus. The β2-adrenoceptor (β2-AR) is a G-protein coupled receptor that regulates immune response and synaptic plasticity, whereas its dysfunction has been implicated in various neurodegenerative diseases. Thus, we hypothesized abnormal β2-AR signaling is involved in sepsis-induced cognitive impairment. In the present study, C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to mimic the clinical human sepsis-associated encephalopathy. The levels of hippocampal β2-AR, proinflammatory cytokines tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, cAMP-response element binding protein (CREB), brain derived neurotrophic factor (BDNF), post-synaptic density protein 95 (PSD95), and NMDA receptor 2 B subtypes (GluN2B) were determined at 6, 12, 24 h and 7 and 16 days after CLP. For the interventional study, mice were treated with β2-AR agonist clenbuterol in two ways: early treatment (immediately following CLP) and delayed treatment (on the 8th day following CLP). Neurobehavioral performances were assessed by open field and fear conditioning tests. Here, we found that hippocampal β2-AR expression was significantly decreased starting from 12 h and persisted until 16 days following CLP. Besides, sepsis mice also exhibited increasing neuroinflammation, down-regulated CREB/BDNF, decreasing PSD95 and GluN2B expression, and displayed hippocampus-dependent cognitive impairments. Notably, early clenbuterol treatment alleviated sepsis-induced cognitive deficits by polarizing microglia toward an anti-inflammatory phenotype, reducing proinflammatory cytokines including IL-1β, TNF-α, and up-regulating CREB/BDNF, PSD95, and GluN2B. Intriguingly, delayed clenbuterol treatment also improved cognitive impairments by normalization of hippocampal CREB/BDNF, PSD95, and GluN2B. In summary, our results support the beneficial effects of both early and delayed clenbuterol treatment, which suggests that activation of β2-AR has a translational value in sepsis-associated organ dysfunction including cognitive impairments.
Collapse
Affiliation(s)
- Man-Man Zong
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|