1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Revilla-González G, González-Montelongo MDC, Vasconcelos EJR, Ureña J, Shi J, Castellano A. Delayed changes in the transcriptomic profile of cerebral arteries in a rat model of subarachnoid hemorrhage. Exp Neurol 2025; 384:115074. [PMID: 39608561 DOI: 10.1016/j.expneurol.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Aneurismal subarachnoid hemorrhage (aSAH) is a neurovascular disease characterized by blood released into the subarachnoid space due to rupture of the cerebral arteries. After the onset of bleeding, secondary associated vasospasm (VSP) remains a dramatic side effect that causes severe comorbidities. We analyzed alterations in the expression profiles of arteries from a rat model of SAH using microarray and bioinformatics approaches. A single injection autologous blood rat model, previously characterized in our laboratory, was used. We performed a total RNA extraction and a microarray analysis of cerebral arteries from animals 7 days after surgery to study the delayed transcriptional changes induced by SAH. To assess the functional relationship between differently expressed genes, we run a combination of gene enrichment tools: GSEA, ClueGO, and ClusterProfiler. Our results showed that in SAH animals, the gene sets related to inflammation and immune system activation were up-regulated; genes related to the pathways involved in the regulation of muscle contraction had their expression disturbed; and the gene categories associated with DNA damage and repair were overrepresented. In conclusion, our results suggest that, after the SAH insult, multiple mechanisms, rather than a single cause, are activated at the same time in the cerebral vessels to trigger vascular alterations.
Collapse
Affiliation(s)
- Gonzalo Revilla-González
- Instituto de Biomedicina de Sevilla, IBIS/ Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain; Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain; Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - María Del Carmen González-Montelongo
- Instituto de Biomedicina de Sevilla, IBIS/ Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain; Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain; Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Spain.
| | | | - Juan Ureña
- Instituto de Biomedicina de Sevilla, IBIS/ Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain; Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Antonio Castellano
- Instituto de Biomedicina de Sevilla, IBIS/ Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain; Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.
| |
Collapse
|
3
|
Zhang P, Zhu H, Li X, Qian Y, Zhu Y, Zhang W, Yan Z, Ni H, Lin Z, Lin X, Li Z, Zhuge Q, Zeng B. Interrelationships Between Inflammatory Score, Delayed Cerebral Ischemia and Unfavorable Outcome in Patients with aSAH: A Four-Way Decomposition. J Inflamm Res 2024; 17:11073-11085. [PMID: 39697790 PMCID: PMC11653884 DOI: 10.2147/jir.s481066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
Background To identify biomarkers and develop an inflammatory score based on proper integration to improve risk prediction of delayed cerebral ischemia (DCI) and poor outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH). We also further explore the mediation and interaction of DCI within the chain of events using the four-way effect decomposition. Methods Machine learning algorithms are used for biomarker selection and constructed the inflammatory score. Multivariate logistic regression was performed to identify the association of inflammatory score with DCI and poor outcome. Next, we employed a four-way decomposition to assess the extent to which the inflammation effect on the risk of poor outcome is mediated by or interacts with DCI. Finally, the additive value of inflammatory score was measured using the area under the curve (AUC), net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results In total, 368 aSAH patients were included. The inflammatory score was calculated with the combination of lymphocyte, pan-immune-inflammation value (PIV), red blood cell distribution width (RDW), and lactate dehydrogenase (LDH). Multivariate analysis identified that inflammatory score was independently associated with DCI and poor outcome. The effect of high inflammatory score on poor outcome may be partly explained by DCI, where there is both pure mediation and mediated interaction. With DCI as a potential mediator, the excess relative risk could be decomposed into 30.86% controlled direct effect, 3.60% mediation only, 26.64% interaction only, and 38.89% mediated interaction. Adding the inflammatory score to the predictive model improved the AUC from 0.772 to 0.822, with an NRI of 5.3% and IDI of 6.9%. Conclusion The inflammatory score was significantly associated with DCI and poor outcome in patients with aSAH. Not only may be a potential synergistic interaction between high inflammatory score and DCI on the risk of poor outcome but also where DCI is an important mediating mechanism.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Haiyang Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Xinbo Li
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yiwei Qian
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yehao Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Weizhong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Zhiyuan Yan
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Haoqi Ni
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Department of Thoracic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Department of Breast Surgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Zequn Li
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qichuan Zhuge
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Bo Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
4
|
Yu X, Chen Z, Bao W, Jiang Y, Ruan F, Wu D, Le K. The neutrophil extracellular traps in neurological diseases: an update. Clin Exp Immunol 2024; 218:264-274. [PMID: 38975702 PMCID: PMC11557138 DOI: 10.1093/cei/uxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/08/2024] [Accepted: 07/06/2024] [Indexed: 07/09/2024] Open
Abstract
Neutrophil extracellular traps (NETs) released by neutrophils are web-like DNA structures adhered to granulin proteins with bactericidal activity and can be an important mechanism for preventing pathogen dissemination or eliminating microorganisms. However, they also play important roles in diseases of other systems, such as the central nervous system. We tracked the latest advances and performed a review based on published original and review articles related to NETs and neurological diseases. Generally, neutrophils barely penetrate the blood-brain barrier into the brain parenchyma, but when pathological changes such as infection, trauma, or neurodegeneration occur, neutrophils rapidly infiltrate the central nervous system to exert their defensive effects. However, neutrophils may adversely affect the host when they uncontrollably release NETs upon persistent neuroinflammation. This review focused on recent advances in understanding the mechanisms and effects of NETs release in neurological diseases, and we also discuss the role of molecules that regulate NETs release in anticipation of clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong S.A.R., China
| |
Collapse
|
5
|
Yan C, Li Y. Causal Relationships Between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis. Mol Neurobiol 2024; 61:8590-8599. [PMID: 38523223 DOI: 10.1007/s12035-024-04101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a neurological emergency that can lead to fatal outcomes. It occurs when bleeding happens in the subarachnoid space, a small gap between the arachnoid and pia mater. This condition results from the rupture of diseased or damaged blood vessels at the brain's base or surface. This study combined various omics approaches with Mendelian randomization analysis, including MR-IVW, MR Egger, MR weight median, and MR weight mode, to generate preliminary results. It also employed reverse Mendelian randomization, treating SAH as the exposure. Finally, a meta-analysis was conducted to summarize these findings. The study found positive correlations between SAH and both GBPA-Pyridoxal 5 phosphate biosynthesis I (OR=1.48, 95% CI, 1.04-2.12) and GBPA-glucose biosynthesis I (OR=0.68, 95% CI, 0.52-0.90). Increased levels of urokinase-type plasma activator were also associated with SAH (OR=1.17, 95% CI, 1.04-1.32). Associations were observed with SAH for CD80 on CD62L+ plasmacytoid dendritic cells, CD80 on plasmacytoid dendritic cells, CD123 on CD62L+ plasmacytoid dendritic cells, and SSC-A on plasmacytoid dendritic cells. This study, through Mendelian randomization and meta-analysis, established links between SAH and four inflammatory cells, one inflammatory protein, and two gut microbiota-related pathways. These findings suggest potential treatment targets for SAH, highlighting the importance of modulating gut microbiota and utilizing anti-inflammatory drugs in its management.
Collapse
Affiliation(s)
| | - Yun Li
- Zhejiang Hospital, Zhejiang, China.
| |
Collapse
|
6
|
Wei N, Guo Z, Qiu M, Ye R, Shao X, Liang Y, Liu B, Fang J, Fang J, Du J. Astrocyte Activation in the ACC Contributes to Comorbid Anxiety in Chronic Inflammatory Pain and Involves in The Excitation-Inhibition Imbalance. Mol Neurobiol 2024; 61:6934-6949. [PMID: 38363535 DOI: 10.1007/s12035-024-04027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Neurons within the anterior cingulate cortex (ACC) orchestrate the co-occurrence of chronic pain and anxiety. The ACC hyperactivity plays a crucial role in the emotional impact of neuropathic pain. Astrocyte-mediated neuroinflammatory is responsible for regulating the balance between excitation-inhibition (E/I) in the brain. However, there is limited understanding of the possible contributions of astrocytes in the ACC to comorbidity of anxiety and chronic inflammatory pain. This paper aims to investigate the possible contribution of astrocytes in the ACC to the comorbidity between anxiety and chronic inflammatory pain, as well as their involvement in the E/I imbalance of pyramidal cells. Our results show that CFA rats displayed allodynia and anxiety-like behaviors. The E/I balance in the ACC shifts to excitement in comorbidity of chronic pain and anxiety by western blotting, and electrophysiological recording. Result of RNA-Seq also indicated that E/I imbalance and neuroinflammation of ACC were involved in pain-anxiety comorbidity. Then, positive cells of GFAP but not Iba1 in the contralateral ACC were increased; the mRNA expression of GFAP and its activation-related proinflammatory cytokines (TNF-α, IL-6, and IL-1β) in the contralateral ACC were also elevated. Furthermore, specific chemogenic inhibition of ACC astrocytes reversed comorbid pain and anxiety and suppressed high ACC excitability. Our data suggest that astrocytes participate in comorbid pain and anxiety and excitation-inhibition imbalance in ACC. Inhibition astrocyte activation can reduce anxiety related to pain and restore the imbalance in the ACC. These findings shed light on the involvement of astrocytes in comorbid conditions, offering valuable insights into a potential therapeutic approach for the co-occurrence of chronic pain and anxiety.
Collapse
Affiliation(s)
- Naixuan Wei
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zi Guo
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, 311400, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Lu H, Xie T, Wei S, Wang Y, Li H, Luo B, Qin X, Liu X, Zhao Z, Chen Z, Ding R. Metabolome and transcriptome integration reveals cerebral cortical metabolic profiles in rats with subarachnoid hemorrhage. Front Aging Neurosci 2024; 16:1424312. [PMID: 39233827 PMCID: PMC11371592 DOI: 10.3389/fnagi.2024.1424312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe subtype of hemorrhagic stroke. The molecular mechanisms of its secondary brain damage remain obscure. To investigate the alterations in gene and metabolite levels following SAH, we construct the transcriptome and metabolome profiles of the rat cerebral cortex post-SAH using whole transcriptome sequencing and untargeted metabolomics assays. Transcriptomic analysis indicated that there were 982 differentially expressed genes (DEGs) and 540 differentially expressed metabolites (DEMs) between the sham group and SAH 1d, and 292 DEGs and 254 DEMs between SAH 1d and SAH 7d. Most notably, DEGs were predominantly involved in the activation of immune and inflammatory pathways, particularly the Complement and coagulation cascades, TNF signaling pathway, and NOD-like receptor signaling pathway. Metabolic analysis revealed that the metabolic pathways of Arginine and proline, Arachidonic acid, Folate biosynthesis, Pyrimidine, and Cysteine and methionine were remarkably affected after SAH. Metabolites of the above pathways are closely associated not only with immune inflammation but also with oxidative stress, endothelial cell damage, and blood-brain barrier disruption. This study provides new insights into the underlying pathologic mechanisms of secondary brain injury after SAH and further characterization of these aberrant signals could enable their application as potential therapeutic targets for SAH.
Collapse
Affiliation(s)
- Haoran Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, China
| | - Shanshan Wei
- Department of Oncology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yanhua Wang
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, China
| | - Huibing Li
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, China
| | - Baochang Luo
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, China
| | - Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xizhi Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilong Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Provencio JJ, Inkelas S, Vergouwen MDI. Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: The Role of the Complement and Innate Immune System. Transl Stroke Res 2024:10.1007/s12975-024-01290-5. [PMID: 39168941 DOI: 10.1007/s12975-024-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Specific inflammatory pathways are important in the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Understanding the specific pathways of inflammation may be critical for finding new treatments. Evidence is accumulating that innate inflammatory cells and proteins play a more important role than cells of the adaptive inflammatory system. In this work, we review the evidence from clinical and preclinical data regarding which cells of the immune system play a role in DCI with particular emphasis on the bone-marrow-derived cells monocytes and neutrophils and the brain parenchymal microglia. In addition, we will review the evidence that complement proteins, a non-cellular part of the innate immune system, play a role in the development of DCI.
Collapse
Affiliation(s)
| | - Sonya Inkelas
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Mervyn D I Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Sanchez S, Chimenti MS, Lu Y, Sagues E, Gudino A, Dier C, Hasan D, Samaniego EA. Modulation of the Immunological Milieu in Acute Aneurysmal Subarachnoid Hemorrhage: The Potential Role of Monocytes Through CXCL10 Secretion. Transl Stroke Res 2024:10.1007/s12975-024-01259-4. [PMID: 38780865 DOI: 10.1007/s12975-024-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Emerging evidence indicates that aneurysmal subarachnoid hemorrhage (aSAH) elicits a response from both innate and adaptive immune systems. An upregulation of CD8 + CD161 + cells has been observed in the cerebrospinal fluid (CSF) after aSAH, yet the precise role of these cells in the context of aSAH is unkown. CSF samples from patients with aSAH and non-aneurysmal SAH (naSAH) were analyzed. Single-cell RNA sequencing (scRNAseq) was performed on CD8 + CD161 + sorted samples from aSAH patients. Cell populations were identified using "clustering." Gene expression levels of ten previously described genes involved in inflammation were quantified from aSAH and naSAH samples using RT-qPCR. The study focused on the following genes: CCL5, CCL7, APOE, SPP1, CXCL8, CXCL10, HMOX1, LTB, MAL, and HLA-DRB1. Gene clustering analysis revealed that monocytes, NK cells, and T cells expressed CD8 + CD161 + in the CSF of patients with aSAH. In comparison to naSAH samples, aSAH samples exhibited higher mRNA levels of CXCL10 (median, IQR = 90, 16-149 vs. 0.5, 0-6.75, p = 0.02). A trend towards higher HMOX1 levels was also observed in aSAH (median, IQR = 12.6, 9-17.6 vs. 2.55, 1.68-5.7, p = 0.076). Specifically, CXCL10 and HMOX1 were expressed by the monocyte subpopulation. Monocytes, NK cells, and T cells can potentially express CD8 + CD161 + in patients with aSAH. Notably, monocytes show high levels of CXCL10. The elevated expression of CXCL10 in aSAH compared to naSAH indicates its potential significance as a target for future studies.
Collapse
Affiliation(s)
| | | | - Yongjun Lu
- Department of Neurology, University of Iowa, Iowa, IA, USA
| | - Elena Sagues
- Department of Neurology, University of Iowa, Iowa, IA, USA
| | - Andres Gudino
- Department of Neurology, University of Iowa, Iowa, IA, USA
| | - Carlos Dier
- Department of Neurology, University of Iowa, Iowa, IA, USA
| | - David Hasan
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa, Iowa, IA, USA.
- Department of Neurosurgery, University of Iowa, Iowa, IA, USA.
- Department of Radiology, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
11
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01242-z. [PMID: 38689162 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
12
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Wu Y, Xu Y, Sun J, Dai K, Wang Z, Zhang J. Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage. Exp Neurol 2024; 374:114705. [PMID: 38290652 DOI: 10.1016/j.expneurol.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Li Z, Yuan W, Yang X, Jiang J, Zhang QL, Yan XX, Zuo YC. Maresin 1 Activates LGR6 to Alleviate Neuroinflammation via the CREB/JMJD3/IRF4 Pathway in a Rat Model of Subarachnoid Hemorrhage. Neuroscience 2024; 542:21-32. [PMID: 38340785 DOI: 10.1016/j.neuroscience.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Neuroinflammation is an early event of brain injury after subarachnoid hemorrhage (SAH). Whether the macrophage mediators in resolving inflammation 1 (MaR1) is involved in SAH pathogenesis is unknown. In this study, 205 male Sprague-Dawley rats were subjected to SAH via endovascular perforation in the experimental and control groups. MaR1 was dosed intranasally at 1 h after SAH, with LGR6 siRNA and KG-501, GSK-J4 administered to determine the signaling pathway. Neurobehavioral, histological and biochemical data were obtained from the animal groups with designated treatments. The results showed: (i) The leucine-rich repeat containing G protein-coupled receptor 6 (LGR6) was decreased after SAH and reached to the lowest level at 24 h after SAH. Jumonji d3 (JMJD3) protein levels tended to increase and peaked at 24 h after SAH. LGR6 and JMJD3 expression were co-localized with microglia. (ii) MaR1 administration mitigated short-term neurological deficits, brain edema and long-term neurobehavioral performance after SAH, and attenuated microglial activation and neutrophil infiltration. (iii) Knockdown of LGR6, inhibition of CREB phosphorylation or JMJD3 activity abolished the anti-neuroinflammatory effect of MaR1 on the expression of CREB, CBP, JMJD3, IRF4, IRF5, IL-1β, IL-6 and IL-10, thus prevented microglial activation and neutrophil infiltration. Together, the results show that MaR1 can activate LGR6 and affect CREB/JMJD3/IRF4 signaling to attenuate neuroinflammation after SAH, pointing to a potential pharmacological utility in this disorder.
Collapse
Affiliation(s)
- Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine Central South University, Zhuzhou 412007, China
| | - Xian Yang
- Department of Dermatology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
15
|
Thilak S, Brown P, Whitehouse T, Gautam N, Lawrence E, Ahmed Z, Veenith T. Diagnosis and management of subarachnoid haemorrhage. Nat Commun 2024; 15:1850. [PMID: 38424037 PMCID: PMC10904840 DOI: 10.1038/s41467-024-46015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH) presents a challenge to clinicians because of its multisystem effects. Advancements in computed tomography (CT), endovascular treatments, and neurocritical care have contributed to declining mortality rates. The critical care of aSAH prioritises cerebral perfusion, early aneurysm securement, and the prevention of secondary brain injury and systemic complications. Early interventions to mitigate cardiopulmonary complications, dyselectrolytemia and treatment of culprit aneurysm require a multidisciplinary approach. Standardised neurological assessments, transcranial doppler (TCD), and advanced imaging, along with hypertensive and invasive therapies, are vital in reducing delayed cerebral ischemia and poor outcomes. Health care disparities, particularly in the resource allocation for SAH treatment, affect outcomes significantly, with telemedicine and novel technologies proposed to address this health inequalities. This article underscores the necessity for comprehensive multidisciplinary care and the urgent need for large-scale studies to validate standardised treatment protocols for improved SAH outcomes.
Collapse
Affiliation(s)
- Suneesh Thilak
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Poppy Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Tony Whitehouse
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nandan Gautam
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Errin Lawrence
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tonny Veenith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
- Department of Critical Care Medicine and Anaesthesia, The Royal Wolverhampton NHS Foundation Trust, New Cross Hospital, Wolverhampton, WV10 0QP, UK.
| |
Collapse
|
16
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2024:10.1007/s12975-024-01235-y. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
17
|
Kawabata S, Takagaki M, Nakamura H, Nishida T, Terada E, Kadono Y, Izutsu N, Takenaka T, Matsui Y, Yamada S, Fukuda T, Nakagawa R, Kishima H. Association of Gut Microbiome with Early Brain Injury After Subarachnoid Hemorrhage: an Experimental Study. Transl Stroke Res 2024; 15:87-100. [PMID: 36484924 DOI: 10.1007/s12975-022-01112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/05/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The occurrence of early brain injury (EBI) following subarachnoid hemorrhage (SAH) is crucial in the prognosis of SAH; however, no effective treatment for EBI has been developed. Gut microbiome (GM) composition influences the outcome of various diseases, including ischemic stroke. Here, we evaluated whether prior GM alteration could prevent EBI following SAH. We altered the GM of 7-week-old male rats by administering antibiotic-containing water for 2 weeks and performing fecal microbiome transplantation after antibiotic induction. Composition of the GM was profiled using 16S rRNA. We induced SAH by injecting blood in the subarachnoid space of control rats and rats with altered GM. We evaluated EBI indicators such as neurological score, brain water content, Evans blue extravasation, and neuronal injury. Additionally, we studied inflammatory cells using immunohistochemistry, immunocytochemistry, quantitative PCR, and flow cytometry. EBI was significantly averted by alterations in GM using antibiotics. The altered GM significantly prevented neutrophil infiltration into the brain among inflammatory cells, and this anti-inflammatory effect was observed immediately following SAH onset. The altered GM also prevented neutrophil extracellular trap formation in the brain and blood, indicating the systemic protective effect. The cause of the protective effect was attributed to a significant decrease in aged neutrophils (CXCR4high CD62Llow) by the altered GM. These protective effects against EBI disappeared when the altered GM was recolonized with normal flora. Our findings demonstrated that EBI following SAH is associated with GM, which regulated neutrophil infiltration.
Collapse
Affiliation(s)
- Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeo Nishida
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eisaku Terada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinori Kadono
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Izutsu
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomofumi Takenaka
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichi Matsui
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuhei Yamada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsumaru Fukuda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Nakagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Chen H, Xu C, Zeng H, Zhang Z, Wang N, Guo Y, Zheng Y, Xia S, Zhou H, Yu X, Fu X, Tang T, Wu X, Chen Z, Peng Y, Cai J, Li J, Yan F, Gu C, Chen G, Chen J. Ly6C-high monocytes alleviate brain injury in experimental subarachnoid hemorrhage in mice. J Neuroinflammation 2023; 20:270. [PMID: 37978532 PMCID: PMC10657171 DOI: 10.1186/s12974-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.
Collapse
Affiliation(s)
- Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zhihua Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Ning Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yinghan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| |
Collapse
|
19
|
de Azúa-López ZR, Pezzotti MR, González-Díaz Á, Meilhac O, Ureña J, Amaya-Villar R, Castellano A, Varela LM. HDL anti-inflammatory function is impaired and associated with high SAA1 and low APOA4 levels in aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2023; 43:1919-1930. [PMID: 37357772 PMCID: PMC10676137 DOI: 10.1177/0271678x231184806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease with high morbidity and mortality rates. Within 24 hours after aSAH, monocytes are recruited and enter the subarachnoid space, where they mature into macrophages, increasing the inflammatory response and contributing, along with other factors, to delayed neurological dysfunction and poor outcomes. High-density lipoproteins (HDL) are lipid-protein complexes that exert anti-inflammatory effects but under pathological conditions undergo structural alterations that have been associated with loss of functionality. Plasma HDL were isolated from patients with aSAH and analyzed for their anti-inflammatory activity and protein composition. HDL isolated from patients lost the ability to prevent VCAM-1 expression in endothelial cells (HUVEC) and subsequent adhesion of THP-1 monocytes to the endothelium. Proteomic analysis showed that HDL particles from patients had an altered composition compared to those of healthy subjects. We confirmed by western blot that low levels of apolipoprotein A4 (APOA4) and high of serum amyloid A1 (SAA1) in HDL were associated with the lack of anti-inflammatory function observed in aSAH. Our results indicate that the study of HDL in the pathophysiology of aSAH is needed, and functional HDL supplementation could be considered a novel therapeutic approach to the treatment of the inflammatory response after aSAH.
Collapse
Affiliation(s)
- Zaida Ruiz de Azúa-López
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - M Rosa Pezzotti
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ángela González-Díaz
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
- CHU de La Réunion, Saint-Pierre de la Réunion, France
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosario Amaya-Villar
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Antonio Castellano
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Lourdes M Varela
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
20
|
Li T, Zhuang D, Xiao Y, Chen X, Zhong Y, Ou X, Peng H, Wang S, Chen W, Sheng J. A dynamic online nomogram for predicting death in hospital after aneurysmal subarachnoid hemorrhage. Eur J Med Res 2023; 28:432. [PMID: 37828549 PMCID: PMC10571411 DOI: 10.1186/s40001-023-01417-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND This study aimed to validate the efficacy the multiplication of neutrophils and monocytes (MNM) and a novel dynamic nomogram for predicting in-hospital death in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS Retrospective study was done on 986 patients with endovascular coiling for aSAH. Independent risk factors associated with in-hospital death were identified using both univariate and multivariate logistic regression analysis. In the development cohort, a dynamic nomogram of in-hospital deaths was introduced and made available online as a straightforward calculator. To predict the in-hospital death from the external validation cohort by nomogram, calibration analysis, decision curve analysis, and receiver operating characteristic analysis were carried out. RESULTS 72/687 patients (10.5%) in the development cohort and 31/299 patients (10.4%) in the validation cohort died. MNM was linked to in-hospital death in univariate and multivariate regression studies. In the development cohort, a unique nomogram demonstrated a high prediction ability for in-hospital death. According to the calibration curves, the nomogram has a reliable degree of consistency and calibration. With threshold probabilities between 10% and 90%, the nomogram's net benefit was superior to the basic model. The MNM and nomogram also exhibited good predictive values for in-hospital death in the validation cohort. CONCLUSIONS MNM is a novel predictor of in-hospital mortality in patients with aSAH. For aSAH patients, a dynamic nomogram is a useful technique for predicting in-hospital death.
Collapse
Affiliation(s)
- Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515000, Guangdong, China
| | - Dongzhou Zhuang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital, Fuzhou, 350025, China
| | - Yong Xiao
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515000, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515000, Guangdong, China
| | - Yuan Zhong
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515000, Guangdong, China
| | - Xurong Ou
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515000, Guangdong, China
| | - Hui Peng
- Department of Neurosurgery, Affiliated Jieyang People's Hospital of Sun Yat-sen University, 107 Tianfu Road, Jieyang, 522000, China
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital, Fuzhou, 350025, China.
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, 515000, Guangdong, China.
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515000, Guangdong, China.
| |
Collapse
|
21
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
22
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
23
|
Romoli M, Giammello F, Mosconi MG, De Mase A, De Marco G, Digiovanni A, Ciacciarelli A, Ornello R, Storti B. Immunological Profile of Vasospasm after Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:ijms24108856. [PMID: 37240207 DOI: 10.3390/ijms24108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) carries high mortality and disability rates, which are substantially driven by complications. Early brain injury and vasospasm can happen after SAH and are crucial events to prevent and treat to improve prognosis. In recent decades, immunological mechanisms have been implicated in SAH complications, with both innate and adaptive immunity involved in mechanisms of damage after SAH. The purpose of this review is to summarize the immunological profile of vasospasm, highlighting the potential implementation of biomarkers for its prediction and management. Overall, the kinetics of central nervous system (CNS) immune invasion and soluble factors' production critically differs between patients developing vasospasm compared to those not experiencing this complication. In particular, in people developing vasospasm, a neutrophil increase develops in the first minutes to days and pairs with a mild depletion of CD45+ lymphocytes. Cytokine production is boosted early on after SAH, and a steep increase in interleukin-6, metalloproteinase-9 and vascular endothelial growth factor (VEGF) anticipates the development of vasospasm after SAH. We also highlight the role of microglia and the potential influence of genetic polymorphism in the development of vasospasm and SAH-related complications.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology and Stroke Unit, Department of Neuroscience, Bufalini Hospital, 47521 Cesena, Italy
| | - Fabrizio Giammello
- Translational Molecular Medicine and Surgery, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Maria Giulia Mosconi
- Emergency and Vascular Medicine, University of Perugia-Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| | - Antonio De Mase
- Neurology and Stroke Unit, AORN Cardarelli, 80131 Napoli, Italy
| | - Giovanna De Marco
- Department of Biomedical and NeuroMotor Sciences of Bologna, University of Bologna, 40126 Bologna, Italy
| | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66013 Chieti, Italy
| | - Antonio Ciacciarelli
- Stroke Unit, Department of Emergency Medicine, University of Roma La Sapienza-Umberto I Hospital, 00161 Rome, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Storti
- Cerebrovascular Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| |
Collapse
|
24
|
Cuoco JA, Guilliams EL, Adhikari S, Rogers CM, Marvin EA, Patel BM, Entwistle JJ. Systemic Immune-Inflammation Index Predicts Acute Symptomatic Hydrocephalus After Spontaneous Nonaneurysmal Subarachnoid Hemorrhage. World Neurosurg 2023; 173:e378-e390. [PMID: 36804432 DOI: 10.1016/j.wneu.2023.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE The authors sought to investigate the association between white blood cell counts and acute hydrocephalus in spontaneous nonaneurysmal subarachnoid hemorrhage (nSAH). METHODS We conducted a retrospective analysis of 105 consecutive patients with spontaneous nSAH. Univariate and multivariable logistic regression analyses were performed to investigate factors associated with hydrocephalus. Receiver operating characteristic curve analysis determined the optimal cutoff to differentiate between patients with and without hydrocephalus. The admission characteristics of hydrocephalic patients with aneurysmal and nSAH were compared. RESULTS A total of 70 patients met inclusion criteria, of which 21 (30%) presented with hydrocephalus. In univariate logistic regression, leukocytes, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, neutrophil-monocyte-to-lymphocyte ratio, and the systemic immune-inflammation (SII) index ([neutrophils × platelets/lymphocytes]/1000) were associated with hydrocephalus. After adjustments, the SII index independently predicted acute hydrocephalus with the highest odds among laboratory values (odds ratio 2.184, P = 0.006). Receiver operating characteristic curve analysis revealed the SII index differentiated between patients with and without hydrocephalus (area under the curve = 0.799, 95% CI: 0.688-0.909, P < 0.001) with an optimal cutoff of 1.385 103/μL. SII indices did not differ between aneurysmal and nSAH patients with hydrocephalus (3.5 vs. 3.6 103/μL, P = 0.795). CONCLUSIONS A SII index ≥1.385 103/μL on admission predicts acute hydrocephalus in spontaneous nSAH. Hydrocephalic patients with aneurysmal and nSAH exhibit similar SII indices, and thus, an exaggerated inflammatory and thrombotic response follows spontaneous subarachnoid hemorrhage irrespective of hemorrhage etiology.
Collapse
Affiliation(s)
- Joshua A Cuoco
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| | - Evin L Guilliams
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Srijan Adhikari
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Eric A Marvin
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Biraj M Patel
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA; Department of Radiology, Neurointerventional Radiology, Carilion Clinic, Roanoke, Virginia, USA
| | - John J Entwistle
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
25
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
26
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
27
|
Bacigaluppi S, Bragazzi NL, Ivaldi F, Benvenuto F, Uccelli A, Zona G. Systemic Inflammatory Response in Spontaneous Subarachnoid Hemorrhage from Aneurysmal Rupture versus Subarachnoid Hemorrhage of Unknown Origin. J Inflamm Res 2022; 15:6329-6342. [PMID: 36415221 PMCID: PMC9676007 DOI: 10.2147/jir.s380101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE It is well known that spontaneous non-aneurysmal subarachnoid hemorrhage (SAH), also known as sine materia SAH (smSAH), has usually a better course and prognosis than its aneurysmal counterpart (aSAH). This might depend on different inflammatory mechanisms initiated by bleeding events of different origins. The aim of the present study was to explore the systemic inflammatory response in spontaneous SAH, comparing aSAH and smSAH. METHODS We performed a prospective observational study over a consecutive series of patients with SAH. For these patients, we collected all clinical data and, furthermore, performed venous blood sampling over six time points to analyze blood cells. We further performed the analysis of lymphocytes and monocytes by means of flow cytometry to quantify common subtypes. Statistical analysis included a t-student test, Chi-square test, multivariate logistic regression, and ROC analysis. RESULTS 48 patients were included: six (12.5%) with a diagnosis of spontaneous smSAH, and forty-two patients (87.5%) with aSAH. Significant differences on Day 0 were found for neutrophils and a systemic neuro-inflammatory index, namely, systemic inflammatory response index (SIRI). At the ROC analysis, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and SIRI exhibited satisfactory predictive power on day 0. At the multivariable logistic regression analysis, the combined index (NLR, LMR, SIRI at day 0) yielded an OR of 0.59 (95% CI 0.29-1.21]). LMR at day 0 yielded an OR of 1.25 ([95% CI 0.94-1.68]), NLR at day 0 exhibited an OR of 0.68 ([95% CI 0.42-1.09]), and SIRI at day 0 displayed an OR of 0.31 ([95% CI 0.06-1.49]). CONCLUSION This preliminary study indicated a possible role of some inflammatory indices that point out the importance of innate and adaptive immunity in the etiopathogenetic mechanisms. Drugs modulating these responses could eventually counteract or, at least, reduce secondary damage associated with SAH.
Collapse
Affiliation(s)
- Susanna Bacigaluppi
- DINOGMI, University of Genoa, Genoa, Italy
- Department of Neurosurgery and Neurotraumatology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosurgery, E.O. Ospedali Galliera, Genoa, Italy
| | | | | | | | - Antonio Uccelli
- DINOGMI, University of Genoa, Genoa, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluigi Zona
- DINOGMI, University of Genoa, Genoa, Italy
- Department of Neurosurgery and Neurotraumatology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
28
|
Weng W, Cheng F, Zhang J. Specific signature biomarkers highlight the potential mechanisms of circulating neutrophils in aneurysmal subarachnoid hemorrhage. Front Pharmacol 2022; 13:1022564. [PMID: 36438795 PMCID: PMC9685413 DOI: 10.3389/fphar.2022.1022564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating hemorrhagic stroke with high disability and mortality. Neuroinflammation and the immunological response after aSAH are complex pathophysiological processes that have not yet been fully elucidated. Therefore, attention should be paid to exploring the inflammation-related genes involved in the systemic response to the rupture of intracranial aneurysms. Methods: The datasets of gene transcriptomes were downloaded from the Gene Expression Omnibus database. We constructed a gene co-expression network to identify cluster genes associated with aSAH and screened out differentially expressed genes (DEGs). The common gene was subsequently applied to identify hub genes by protein-protein interaction analysis and screen signature genes by machine learning algorithms. CMap analysis was implemented to identify potential small-molecule compounds. Meanwhile, Cibersort and ssGSEA were used to evaluate the immune cell composition, and GSEA reveals signal biological pathways. Results: We identified 602 DEGs from the GSE36791. The neutrophil-related module associated with aSAH was screened by weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis. Several small molecular compounds were predicted based on neutrophil-related genes. MAPK14, ITGAM, TLR4, and FCGR1A have been identified as crucial genes involved in the peripheral immune activation related to neutrophils. Six significant genes (CST7, HSP90AB1, PADI4, PLBD1, RAB32, and SLAMF6) were identified as signature biomarkers by performing the LASSO analysis and SVM algorithms. The constructed machine learning model appears to be robust by receiver-operating characteristic curve analysis. The immune feature analysis demonstrated that neutrophils were upregulated post-aSAH and PADI4 was positively correlated with neutrophils. The NETs pathway was significantly upregulated in aSAH. Conclusion: We identified core regulatory genes influencing the transcription profiles of circulating neutrophils after the rupture of intracranial aneurysms using bioinformatics analysis and machine learning algorithms. This study provides new insight into the mechanism of peripheral immune response and inflammation after aSAH.
Collapse
|
29
|
Heinz R, Schneider UC. TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. Int J Mol Sci 2022; 23:ijms232012618. [PMID: 36293468 PMCID: PMC9603851 DOI: 10.3390/ijms232012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage is associated with severe neurological deficits for survivors. Among survivors of the initial bleeding, secondary brain injury leads to additional brain damage. Apart from cerebral vasospasm, secondary brain injury mainly results from cerebral inflammation taking place in the brain parenchyma after bleeding. The brain’s innate immune system is activated, which leads to disturbances in brain homeostasis, cleavage of inflammatory cytokines and, subsequently, neuronal cell death. The toll-like receptor (TLR)4 signaling pathway has been found to play an essential role in the pathophysiology of acute brain injuries such as subarachnoid hemorrhage (SAH). TLR4 is expressed on the cell surface of microglia, which are key players in the cellular immune responses of the brain. The participants in the signaling pathway, such as TLR4-pathway-like ligands, the receptor itself, and inflammatory cytokines, can act as biomarkers, serving as clues regarding the inflammatory status after SAH. Moreover, protein complexes such as the NLRP3 inflammasome or receptors such as TREM1 frame the TLR4 pathway and are indicative of inflammation. In this review, we focus on the activity of the TLR4 pathway and its contributors, which can act as biomarkers of neuroinflammation or even offer potential new treatment targets for secondary neuronal cell death after SAH.
Collapse
Affiliation(s)
- Rebecca Heinz
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ulf C. Schneider
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurosurgery, Cantonal Hospital of Lucerne, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
30
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
31
|
Abstract
Subarachnoid haemorrhage (SAH) is the third most common subtype of stroke. Incidence has decreased over past decades, possibly in part related to lifestyle changes such as smoking cessation and management of hypertension. Approximately a quarter of patients with SAH die before hospital admission; overall outcomes are improved in those admitted to hospital, but with elevated risk of long-term neuropsychiatric sequelae such as depression. The disease continues to have a major public health impact as the mean age of onset is in the mid-fifties, leading to many years of reduced quality of life. The clinical presentation varies, but severe, sudden onset of headache is the most common symptom, variably associated with meningismus, transient or prolonged unconsciousness, and focal neurological deficits including cranial nerve palsies and paresis. Diagnosis is made by CT scan of the head possibly followed by lumbar puncture. Aneurysms are commonly the underlying vascular cause of spontaneous SAH and are diagnosed by angiography. Emergent therapeutic interventions are focused on decreasing the risk of rebleeding (ie, preventing hypertension and correcting coagulopathies) and, most crucially, early aneurysm treatment using coil embolisation or clipping. Management of the disease is best delivered in specialised intensive care units and high-volume centres by a multidisciplinary team. Increasingly, early brain injury presenting as global cerebral oedema is recognised as a potential treatment target but, currently, disease management is largely focused on addressing secondary complications such as hydrocephalus, delayed cerebral ischaemia related to microvascular dysfunction and large vessel vasospasm, and medical complications such as stunned myocardium and hospital acquired infections.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA.
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
32
|
Song N, Song R, Ma P. MiR-340-5p alleviates neuroinflammation and neuronal injury via suppressing STING in subarachnoid hemorrhage. Brain Behav 2022; 12:e2687. [PMID: 35957622 PMCID: PMC9480905 DOI: 10.1002/brb3.2687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder. SAH causes neuroinflammation and leads to early brain injury (EBI) and secondary injury. MicroRNAs are crucial regulators in a variety of neurological diseases. This study was performed to decipher how miR-340-5p functions in SAH. METHODS An experimental mouse model with SAH was established by the intravascular perforation, and the in vitro SAH model was constructed by exposing cocultured primary neurons and microglia to oxyhemoglobin. After overexpression of miR-340-5p in mice, the neurobehavioral disorders were evaluated by Garcia test; brain edema was evaluated by wet-dry method; blood-brain barrier (BBB) damage was detected with Evan's blue staining; levels of inflammatory cytokines were detected with enzyme-linked immunosorbent assay. After miR-340-5p was transfected in to microglia, Iba-1 expression was detected by Western blot, and neuronal apoptosis were detected with flow cytometry. The targeting relationship between miR-340-5p and STING was verified by dual-luciferase reporter gene assay and RNA immunoprecipitation assay. RESULTS MiR-340-5p was significantly inhibited in the brain tissues of mice with SAH and microglia of SAH model, and neurological impairment, brain edema, BBB injury, and neuroinflammation were significantly alleviated in mice after overexpressing miR-340-5p. STING was identified as a target of miR-340-5p, and STING overexpression could counteract the effects of miR-340-5p overexpression on neurons. CONCLUSION MiR-340-5p can attenuate EBI caused by SAH-induced neuroinflammation by inhibiting STING.
Collapse
Affiliation(s)
- Ning Song
- Department of Emergency, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Rong Song
- Department of Oral Medicine, Lanzhou University Dental Hospital, Lanzhou, Gansu, China
| | - Peiliang Ma
- Department of Orthopedics, Lanzhou PLA 96604 Military Hospital, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Hou K, Yu J. Current status of perimesencephalic non-aneurysmal subarachnoid hemorrhage. Front Neurol 2022; 13:960702. [PMID: 36119687 PMCID: PMC9475169 DOI: 10.3389/fneur.2022.960702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
Perimesencephalic nonaneurysmal subarachnoid hemorrhage (PNSAH) is a distinctive disease, representing SAH centered in perimesencephalic cisterns, with negative angiography findings. In recent years, the number of patients with PNSAH has increased significantly; however, the knowledge of PNSAH is insufficient. Therefore, we performed a review of the literature from a PubMed search and recounted our understanding of PNSAH. In this review, we summarized that current high-resolution computed tomography angiography is an acceptable replacement for digital subtraction angiography to rule out aneurysms in PNSAH with strict criteria. The current hypothesis about the etiology of PNSAH is that there is deep vein rupture from aberrant venous anatomy and increased intracranial venous pressure. PNSAH is associated with mild symptoms and lower rates of hydrocephalus and symptomatic vasospasm. For PNSAH, conservative treatment has been the mainstream treatment. PNSAH has a benign clinical course and an excellent prognosis; in long-term follow-up, re-bleeding and death were uncommon.
Collapse
|
34
|
Tan X, Zheng Y, Zeng H, Peng Y, Yu X, Cao S. Inhibition of Mer exacerbates early brain injury by regulating microglia/macrophage phenotype after subarachnoid hemorrhage in mice. J Stroke Cerebrovasc Dis 2022; 31:106659. [PMID: 35901587 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Polarization of microglia/macrophages toward the pro-inflammatory phenotype is a crucial contributor to neuroinflammation after subarachnoid hemorrhage (SAH). Mer belongs to the TAM receptor tyrosine kinases family, which is known to play a significant role in the resolution of inflammation. However, the effect and mechanism of Mer after SAH remain unclear. In this study, we explored the effect of Mer on modulating the microglia/macrophage phenotype and neuroinflammation and possible potential mechanism after SAH. METHOD Endovascular perforation model of SAH was performed. There are 3 parts in this study. Firstly, the time course of Mer expression was determined within 72 hours after SAH. Secondly, the effect of Mer downregulation on brain water content, neurological function, and microglial polarization was evaluated at 24 h after SAH. Thirdly, the neuroprotective effects of pharmacological Mer agonist were assessed. RESULT The expression of Mer increased after SAH, and was prominently localized in microglia/macrophages. Treatment with Mer siRNA increased pro-inflammatory phenotype and decreased anti-inflammatory phenotype of microglia/macrophage, thus resulted in exacerbation of neurological deficits and brain edema after SAH. Mechanistically, the downregulation of Mer inhibited the downstream anti-inflammatory signals, SOCS1/SOCS3, by decreasing phosphorylated STATs. CONCLUSION Mer is involved in the microglia/macrophage polarization and inflammation resolution after SAH, and that mechanism, at least in part, may contribute to the involvement of the STATs/SOCSs pathway.
Collapse
Affiliation(s)
- Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Prediction of adult post-hemorrhagic hydrocephalus: a risk score based on clinical data. Sci Rep 2022; 12:12213. [PMID: 35842469 PMCID: PMC9288433 DOI: 10.1038/s41598-022-16577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
There is lacking research on risk factors and prediction models associated with Post-hemorrhagic hydrocephalus (PHH). Thus, this present study aimed to analyze the risk factors of PHH and establish a risk-scoring system through a large-scale study. A retrospective study of 382 patients with intracranial hemorrhage assessed age, history and diagnosis, Glasgow coma score (GCS), and fever time. After univariate and logistic regression analysis, a risk scoring system was established according to independent risk factors and evaluated using the area under the curve (AUC). Of the 382 patients, 133 (34.8%) had PHH, 43 (11.3%) received surgical treatment. Factor classification showed that age > 60 years old [odds ratio (OR): 0.347, II = 5 points], GCS < 5 (OR: 0.09, IV = 10 points), GCS 6‒8 (OR = 0.232, III = 6 points), fever time > 9 (OR: 0.202, III = 7 points), fever time 5-9 (OR: 0.341, II = 5 points), CSF-TP x time > 14,4000 group (OR: 0.267, IV = 6 points), and CSF-TP x time 9,601‒14,400 group (OR: 0.502, III = 3 points) were independent risk factors. The result of the receiver operating characteristic (ROC) prediction showed that AUC = 0.790 (0.744‒0.836). Low-risk (IV-VII), moderate (VIII-X), and high-risk group (XI-XIII) incidence of PHH were 11.76%, 50.55%, and 70.00% (p < 0.001), respectively. The coincidence rates in the validation cohort were 26.00%, 74.07%, and 100.0% (p < 0.001), respectively. AUC value was 0.860 (0.780‒0.941). The predictive model was conducive to determining the occurrence of PHH and facilitating early intervention.
Collapse
|
36
|
Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis 2022; 171:105809. [PMID: 35781003 DOI: 10.1016/j.nbd.2022.105809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The modulation of neuroinflammation is a new direction that may alleviate the early brain injury after subarachnoid hemorrhage (SAH). Brain resident microglia/macrophages (Mi/MΦ) are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to play a neuroprotective role by activating phagocytosis and suspending inflammatory response in experimental ischemic stroke and intracerebral hemorrhage. This study was designed to investigate the role of TREM2 on neuroinflammation and neuroprotective effects in a rat SAH model. METHODS Adult male Sprague-Dawley rats were induced SAH through endovascular perforation. Lentivirus vectors were administered by i.c.v. to induce TREM2 overexpression or knockdown 7 days before SAH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the neuroprotective role of TREM2 after SAH. RESULTS The expression of TREM2 elevated in a rat SAH model with a peak at 48 h after SAH and mainly expressed in Mi/MΦ in brain. TREM2 overexpression improved short- and long-term neurological deficits induced by SAH in rats, while TREM2 knockdown worsened neurological dysfunction. The rats with TREM2 overexpressed presented less neuronal apoptosis and more neuronal survival at 48 h after SAH, while the rats with TREM2 knockdown presented on the contrary. TREM2 overexpression manifested activated phagocytosis and suppressed inflammatory response, with the increase of CD206+/CD11b+ cells and IL-10 expression as well as the decrease of the infiltration of MPO+ cells and the expression of TNF-α, IL-1β. While TREM2 knockdown abolished these effects. The protein level of IRAK3, a negative regulatory factor of inflammation, was significantly elevated after TREM2 overexpression and declined after TREM2 knockdown. CONCLUSIONS Our research suggested TREM2 played a neuroprotective role and improved the short- and long-term neurological deficits by modulating neuroinflammation after SAH. The modulation on neuroinflammation of TREM2 after SAH was related with the elevated protein level of IRAK3.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin City 214400, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
37
|
Cui Y, Wang XH, Zhao Y, Chen SY, Sheng BY, Wang LH, Chen HS. Change of Serum Biomarkers to Post-Thrombolytic Symptomatic Intracranial Hemorrhage in Stroke. Front Neurol 2022; 13:889746. [PMID: 35720096 PMCID: PMC9202348 DOI: 10.3389/fneur.2022.889746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Symptomatic intracranial hemorrhage (sICH) is a terrible complication after intravenous alteplase in stroke, and numerous biomarkers have been investigated. However, the change of biomarkers to sICH has not been well determined. Aim To investigate the association between the change of biomarkers and sICH. Methods This is a prospective cohort study, and patients with sICH within 24 h after thrombolysis were enrolled, while patients without sICH were matched by propensity score matching with a ratio of 1:1. The blood samples were collected before and 24 h after intravenous thrombolysis (IVT), and preset 49 serum biomarkers were measured by microarray analysis. Protein function enrichment analyses were performed to detect the association between the change of biomarkers and sICH. Results Of consecutive 358 patients, 7 patients with sICH in 24 h were assigned to the sICH group, while 7 matched patients without any ICH were assigned to the non-sICH group. A total of 9 biomarkers were found to significantly change before vs. after thrombolysis between groups, including increased biomarkers, such as brain-derived neurotrophic factor, C-C motif chemokine ligand (CCL)-24, interleukin (IL)-6, IL-10, IL-18, and vascular endothelial growth factor, and decreased biomarkers, such as CCL-11, intercellular adhesion molecule-1, and IL-7. Conclusions This is the first study to identify changes in serum biomarkers in patients with sICH after IVT, and found that 6 neuroinflammatory and 3 neuroprotective biomarkers may be associated with brain injury following post-thrombolytic sICH. Clinical Trial Registration https://www.clinicaltrials.gov, identifier: NCT02854592.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Xin-Hong Wang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People's Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
- *Correspondence: Hui-Sheng Chen
| |
Collapse
|
38
|
Inhibiting Microglia-Derived NLRP3 Alleviates Subependymal Edema and Cognitive Dysfunction in Posthemorrhagic Hydrocephalus after Intracerebral Hemorrhage via AMPK/Beclin-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4177317. [PMID: 35620574 PMCID: PMC9129981 DOI: 10.1155/2022/4177317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
For posthemorrhagic hydrocephalus (PHH) patients, whether occur subependymal edema indicates poor outcomes, partially manifested as cognitive impairment. In the brain, NLRP3 inflammasome mainly derived from microglia/macrophages is involved in proinflammatory and neurodeficits after hemorrhage, and autophagy is vital for neuronal homeostasis and functions. Accumulating evidence suggest that NLRP3 inflammasome and autophagy played an essential role after intracerebral hemorrhage (ICH). We aimed to dissect the mechanisms underlying subependymal edema formation and cognitive dysfunction. Here, based on the hydrocephalus secondary to ICH break into ventricular (ICH-IVH) in rats, this study investigated whether microglia/macrophage-derived NLRP3 induced subependymal edema formation and neuron apoptosis in subventricular zones (SVZ). In the acute phase of ICH-IVH, both the expression of NLRP3 inflammasome of microglia/macrophages and the autophagy of neurons were upregulated. The activated NLRP3 in microglia/macrophages promoted the release of IL-1beta to extracellular, which contributed to excessive autophagy, leading to neurons apoptosis both in vivo and in vitro through the AMPK/Beclin-1 pathway combined with transcriptomics. Administration of MCC950 (NLRP3 inflammasome specific inhibitor) after ICH-IVH significantly reduced edema formation and improved cognitive dysfunction. Thus, inhibiting NLRP3 activation in SVZ may be a promising therapeutic strategy for PHH patients that warrants further investigation.
Collapse
|
39
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
40
|
Cuoco JA, Guilliams EL, Klein BJ, Witcher MR, Marvin EA, Patel BM, Entwistle JJ. Monocyte Count on Admission Is Predictive of Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage. Front Surg 2022; 9:879050. [PMID: 35574528 PMCID: PMC9096019 DOI: 10.3389/fsurg.2022.879050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
The authors sought to evaluate whether immunologic counts on admission were associated with shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage. A retrospective analysis of 143 consecutive patients with aneurysmal subarachnoid hemorrhage over a 9-year period was performed. A stepwise algorithm was followed for external ventricular drain weaning and determining the necessity of shunt placement. Data were compared between patients with and without shunt-dependent hydrocephalus. Overall, 11.19% of the cohort developed shunt-dependent hydrocephalus. On multivariate logistic regression analysis, acute hydrocephalus (OR: 61.027, 95% CI: 3.890–957.327; p = 0.003) and monocyte count on admission (OR: 3.362, 95% CI: 1.024–11.037; p = 0.046) were found to be independent predictors for shunt dependence. Receiver operating characteristic curve analysis for the prediction of shunt-dependent hydrocephalus confirmed that monocyte count exhibited an acceptable area under the curve (AUC = 0.737, 95% CI: 0.601–0.872; p < 0.001). The best predictive cutoff value to discriminate between successful external ventricular drain weaning and shunt-dependent hydrocephalus was identified as a monocyte count ≥0.80 × 103/uL at initial presentation. These preliminary data demonstrate that a monocyte count ≥0.80 × 103/uL at admission predicts shunt-dependent hydrocephalus in patients with aneurysmal subarachnoid hemorrhage; however, further large-scale prospective trials and validation are necessary to confirm these findings.
Collapse
Affiliation(s)
- Joshua A. Cuoco
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- *Correspondence: Joshua A. Cuoco
| | - Evin L. Guilliams
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brendan J. Klein
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark R. Witcher
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Biraj M. Patel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Neurointerventional Surgery, Department of Radiology, Carilion Clinic, Roanoke, VA, United States
| | - John J. Entwistle
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Section of Neurosurgery, Carilion Clinic, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
41
|
Hu Q, Du Q, Yu W, Dong X. 2-Methoxyestradiol Alleviates Neuroinflammation and Brain Edema in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Front Cell Neurosci 2022; 16:869546. [PMID: 35558877 PMCID: PMC9087802 DOI: 10.3389/fncel.2022.869546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Numerous studies have shown that neuroinflammation and brain edema play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). 2-Methoxyestradiol (2-ME) has been shown to have anti-inflammatory and anti-angiogenic effects. This study aimed to investigate the effects of 2-ME on neuroinflammation and brain edema after SAH and its underlying mechanism of action. Methods Rats were used to produce an endovascular puncture model of SAH. 2-ME or the control agent was injected intraperitoneally 1 h after SAH induction. At 24 h after surgery, the neurological score, SAH grading, brain water content, and blood–brain barrier (BBB) permeability were examined. The microglial activation level in the rat brain tissue was determined using immunofluorescence staining, whereas the cell apoptosis in the rat brain tissue was assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, the levels of Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were measured by enzyme linked immunosorbent assay, and the expression levels of ZO-1, occludin, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP)-9 in the rat brain tissue were determined using western blotting. Results Twenty-four hours after SAH, brain water content, BBB permeability, microglial activation, and cell apoptosis were significantly increased, whereas neurological function deteriorated significantly in rats. Treatment with 2-ME significantly decreased brain water content, BBB permeability, microglial cell activation, and cell apoptosis and improved neurological dysfunction in rats. Treatment with 2-ME reduced the expression levels of inflammatory factors (IL-1β, IL-6, and TNF-α), which were significantly elevated 24 h after SAH. Treatment with 2-ME alleviated the disruption of tight junction proteins (ZO-1 and occludin), which significantly decreased 24 h after SAH. To further determine the mechanism of this protective effect, we found that 2-ME inhibited the expression of HIF-1α, MMP-9, and VEGF, which was associated with the inflammatory response to EBI and BBB disruption after SAH. Conclusion 2-ME alleviated neuroinflammation and brain edema as well as improved neurological deficits after SAH in rats. The neuroprotective effect of 2-ME on EBI after SAH in rats may be related to the inhibition of neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Wenhua Yu,
| | - Xiaoqiao Dong
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Vlachogiannis P, Hillered L, Enblad P, Ronne-Engström E. Temporal patterns of inflammation-related proteins measured in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage using multiplex Proximity Extension Assay technology. PLoS One 2022; 17:e0263460. [PMID: 35324941 PMCID: PMC8947082 DOI: 10.1371/journal.pone.0263460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The complexity of the inflammatory response post subarachnoid hemorrhage (SAH) may require temporal analysis of multiple protein biomarkers simultaneously to be more accurately described. METHODS Ventricular cerebrospinal fluid was collected at days 1, 4 and 10 after SAH in 29 patients. Levels of 92 inflammation-related proteins were simultaneously measured using Target 96 Inflammation ® assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension Assay (PEA) technology. Twenty-eight proteins were excluded from further analysis due to lack of >50% of measurable values. Temporal patterns of the remaining 64 proteins were analyzed. Repeated measures ANOVA and its nonparametric equivalent Friedman's ANOVA were used for comparisons of means between time points. RESULTS Four different patterns (Groups A-D) were visually observed with an early peak and gradually decreasing trend (11 proteins), a middle peak (10 proteins), a late peak after a gradually increasing trend (30 proteins) and no specific pattern (13 proteins). Statistically significant early peaks defined as Day 1 > Day 4 values were noticed in 4 proteins; no significant decreasing trends defined as Day 1 > Day 4 > Day 10 values were observed. Two proteins showed significant middle peaks (i.e. Day 1 < Day 4 > Day 10 values). Statistically significant late peaks (i.e. Day 4 < Day 10 values) and increasing trends (i.e. Day 1 < Day 4 < Day 10 values) were observed in 14 and 10 proteins, respectively. Four of Group D proteins showed biphasic peaks and the rest showed stable levels during the observation period. CONCLUSION The comprehensive data set provided in this explorative study may act as an illustration of an inflammatory profile of the acute phase of SAH showing groups of potential protein biomarkers with similar temporal patterns of activation, thus facilitating further research on their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Pavlos Vlachogiannis
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Lars Hillered
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
43
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
44
|
Luo C, Yao J, Bi H, Li Z, Li J, Xue G, Li K, Zhang S, Zan K, Meng W, Zhang Z, Chen H. Clinical Value of Inflammatory Cytokines in Patients with Aneurysmal Subarachnoid Hemorrhage. Clin Interv Aging 2022; 17:615-626. [PMID: 35502188 PMCID: PMC9056097 DOI: 10.2147/cia.s362854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Background Inflammation is closely associated with prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH), which is orchestrated by inflammatory cytokines. Therefore, this study aimed to investigate the levels of inflammatory cytokines in the early stage of aSAH and their predictive value for prognosis. Methods In this retrospective study, 206 patients with aSAH were recruited and assigned to a severe group (WFNS grade ≥ 4) and a mild group (WFNS grade < 4) according to the severity of patients on admission. Flow cytometry was performed to detect the levels of 12 inflammatory cytokines in the serum of patients. Then, patients were grouped into a poor prognosis group (mRS score ≥ 4) and a good prognosis group (mRS score < 4) based on their prognosis after 3 months of discharge to compare the relationship between cytokines and prognosis. Propensity score matching (PSM) was utilized to control confounding factors. The correlation between inflammatory factors and prognosis was determined using Spearman correlation, and the predictive efficacy of inflammatory factors was tested by a receiver operating characteristic curve. Results Serum IL-1β, IL-5, IL-6, IL-8, IL-10, IFN-γ, and TNF-α levels were significantly higher in the mild group than in the severe group and in the poor prognosis group than in the good prognosis group. After PSM, the differences in IL-1β, IL-5, IFN-α, and IFN-γ levels disappeared between the two groups, whereas IL-2, IL-6, IL-8, IL-10, and TNF-α levels remained higher in the poor prognosis group than in the good prognosis group. Additionally, IL-2, IL-6, IL-8, and IL-10 levels were positively correlated with mRS scores. Moreover, the predictive value was found to be the highest for IL-6 and the lowest for TNF-α. Conclusion Inflammation degree was related to the severity of aSAH. Inflammatory markers, including IL-6, IL-10, IL-8, IL-2, and TNF-α, might predict the poor prognosis of aSAH.
Collapse
Affiliation(s)
- Cong Luo
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jiaxin Yao
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Haoran Bi
- Department of Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zhen Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Ju Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Guosong Xue
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Ke Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Shenyang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Wenqing Meng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Correspondence: Zunsheng Zhang; Hao Chen, Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, People’s Republic of China, Tel +86-13913473179; +86-15252006510, Email ;
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Perimesencephalic subarachnoid hemorrhage has a unique peripheral blood leukocyte profile compared to aneurysmal subarachnoid hemorrhage. World Neurosurg 2022; 163:e471-e481. [DOI: 10.1016/j.wneu.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
|
46
|
Jin L, Jin F, Guo S, Liu W, Wei B, Fan H, Li G, Zhang X, Su S, Li R, Fang D, Duan C, Li X. Metformin Inhibits NLR Family Pyrin Domain Containing 3 (NLRP)-Relevant Neuroinflammation via an Adenosine-5′-Monophosphate-Activated Protein Kinase (AMPK)-Dependent Pathway to Alleviate Early Brain Injury After Subarachnoid Hemorrhage in Mice. Front Pharmacol 2022; 13:796616. [PMID: 35370693 PMCID: PMC8969021 DOI: 10.3389/fphar.2022.796616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/09/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a key role in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have shown that metformin exerts anti-inflammatory effects and promotes functional recovery in various central nervous system diseases. We designed this study to investigate the effects of metformin on EBI after SAH. Our results indicate that the use of metformin alleviates the brain edema, behavioral disorders, cell apoptosis, and neuronal injury caused by SAH. The SAH-induced NLRP3-associated inflammatory response and the activation of microglia are also suppressed by metformin. However, we found that the blockade of AMPK with compound C weakened the neuroprotective effects of metformin on EBI. Collectively, our findings indicate that metformin exerts its neuroprotective effects by inhibiting neuroinflammation in an AMPK-dependent manner, by modulating the production of NLRP3-associated proinflammatory factors and the activation of microglia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xifeng Li
- *Correspondence: Chuanzhi Duan, ; Xifeng Li,
| |
Collapse
|
47
|
Hou C, Liu Q, Zhang H, Wang W, Wang B, Cui X, Li J, Ren W, Yang X. Nimodipine Attenuates Early Brain Injury by Protecting the Glymphatic System After Subarachnoid Hemorrhage in Mice. Neurochem Res 2022; 47:701-712. [PMID: 34792752 DOI: 10.1007/s11064-021-03478-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
The glymphatic system (GS) plays an important role in subarachnoid hemorrhage (SAH). Nimodipine treatment provides SAH patients with short-term neurological benefits. However, no trials have been conducted to quantify the relationship between nimodipine and GS. We hypothesized that nimodipine could attenuate early brain injury (EBI) after SAH by affecting the function of the GS. In this study, we assessed the effects of nimodipine, a dihydropyridine calcium channel antagonist, on mice 3 days after SAH. The functions of GS were assessed by immunofluorescence and western blot. The effects of nimodipine were assessed behaviorally. Concurrently, correlation analysis was performed for the functions of GS, immunofluorescence and behavioral function. Our results indicated that nimodipine improved GS function and attenuated neurological deficits and brain edema in mice with SAH. Activation of the cAMP/PKA pathway was involved in this process. GS function was closely associated with perivascular AQP4 polarization, cortical GFAP/AQP4 expression, brain edema and neurobehavioral function. In conclusion, this study shows for the first time that nimodipine plays a neuroprotective role in the period of EBI after SAH in mice through the GS.
Collapse
Affiliation(s)
- Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Xiaopeng Cui
- Department of Neurosurgery, Tianjin Fifth Central Hospital, 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, People's Republic of China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Wen Ren
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
48
|
Torregrossa F, Grasso G. Therapeutic Approaches for Cerebrovascular Dysfunction After Aneurysmal Subarachnoid Hemorrhage: An Update and Future Perspectives. World Neurosurg 2022; 159:276-287. [PMID: 35255629 DOI: 10.1016/j.wneu.2021.11.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe subtype of stroke occurring at a relatively young age with a significant socioeconomic impact. Treatment of aSAH includes early aneurysm exclusion, intensive care management, and prevention of complications. Once the aneurysm rupture occurs, blood spreading within the subarachnoid space triggers several molecular pathways causing early brain injury and delayed cerebral ischemia. Pathophysiologic mechanisms underlying brain injury after aSAH are not entirely characterized, reflecting the difficulties in identifying effective therapeutic targets for patients with aSAH. Although the improvements of the last decades in perioperative management, early diagnosis, aneurysm exclusion techniques, and medical treatments have increased survival, vasospasm and delayed cerebral infarction are associated with high mortality and morbidity. Clinical practice can rely on a few specific therapeutic agents, such as nimodipine, a calcium-channel blocker proved to reduce severe neurologic deficits in these patients. Therefore, new pharmacologic approaches are needed to improve the outcome of this life-threatening condition, as well as a tailored rehabilitation plan to maintain the quality of life in aSAH survivors. Several clinical trials are investigating the efficacy and safety of emerging drugs, such as magnesium, clazosentan, cilostazol, interleukin 1 receptor antagonists, deferoxamine, erythropoietin, and nicardipine, and continuous lumbar drainage in the setting of aSAH. This narrative review focuses on the most promising therapeutic interventions after aSAH.
Collapse
Affiliation(s)
- Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
49
|
Chen XX, Tao T, Gao S, Wang H, Zhou XM, Gao YY, Hang CH, Li W. Knock-Down of CD24 in Astrocytes Aggravates Oxyhemoglobin-Induced Hippocampal Neuron Impairment. Neurochem Res 2022; 47:590-600. [PMID: 34665391 DOI: 10.1007/s11064-021-03468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/28/2023]
Abstract
Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.
Collapse
Affiliation(s)
- Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
- Department of Neurosurgery, The First School of Medicine, Jinling Hospital, Southern Medicine University (Guangzhou), Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
50
|
Xu CR, Li JR, Jiang SW, Wan L, Zhang X, Xia L, Hua XM, Li ST, Chen HJ, Fu XJ, Jing CH. CD47 Blockade Accelerates Blood Clearance and Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage. Front Immunol 2022; 13:823999. [PMID: 35281006 PMCID: PMC8915201 DOI: 10.3389/fimmu.2022.823999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Aims Subarachnoid hemorrhage (SAH) is a devastating stroke subtype. Following SAH, erythrocyte lysis contributes to cell death and brain injuries. Blockage of the anti-phagocytic receptor Cluster of Differentiation 47 (CD47) enhances phagocyte clearance of erythrocytes, though it has not been well-studied post-SAH. The current study aims to determine whether anti-CD47 treatment can enhance blood clearance after experimental SAH. Methods The prechiasmatic blood injection model of SAH was used in mice. Mice were either treated with the CD47-blocking antibody or IgG as control. The effect of the anti-CD47 antibody on blood clearance and neurological function following SAH was determined. Neuroinflammation and neuronal injury were compared between the treatment and control samples on day 1 and day 7 after SAH using flow cytometry, immunofluorescence, Fluoro-Jade C, and Nissl staining, RT-PCR, and Western blot analysis. Results CD47-blocking antibody sped-up blood clearance after SAH, and resulted in less neuronal injury and neurological deficits than control samples. Microglia played a role in the anti-CD47 blockade. Following SAH Following SAH, CD47 antibody-treated mice had less neuroinflammation and lower levels of apoptosis compared to controls and both one and 7 days. Conclusions CD47 antibody treatment has a neuroprotective effect following SAH, by increasing blood clearance rate and reducing brain injury. These findings suggest CD47 antibody treatment may improve SAH patient outcomes.
Collapse
Affiliation(s)
- Chao-ran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-ru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shao-wei Jiang
- Department of Emergency, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu-ming Hua
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shi-ting Li
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huai-jun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiong-jie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao-hui Jing
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Chao-hui Jing,
| |
Collapse
|