1
|
Shi L, Li LJ, Sun XY, Chen YY, Luo D, He LP, Ji HJ, Gao WP, Shen HX. Er-Dong-Xiao-Ke decoction regulates lipid metabolism via PPARG-mediated UCP2/AMPK signaling to alleviate diabetic meibomian gland dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118484. [PMID: 38925318 DOI: 10.1016/j.jep.2024.118484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Meibomian gland dysfunction (MGD), complicated by type 2 diabetes, is associated with a high incidence of ocular surface disease, and no effective drug treatment exists. Diabetes mellitus (DM) MGD shows a notable disturbance in lipid metabolism. Er-Dong-Xiao-Ke decoction (EDXKD) has important functions in nourishing yin, clearing heat, and removing blood stasis, which are effective in the treatment of DM MGD. AIM OF THE STUDY To observe the therapeutic effect of EDXKD on DM MGD and its underlying molecular mechanism. MATERIALS AND METHODS After establishing a type 2 DM (T2DM)-induced MGD rat model, different doses of EDXKD and T0070907 were administered. The chemical constituents of EDXKD were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the molecular mechanism of EDXKD in treating DM MGD was predicted using network pharmacology. Lipid metabolism in DM meibomian glands (MGs) was analyzed using LC-MS/MS, and lipid biomarkers were screened and identified. Histological changes and lipid accumulation in MGs were detected by staining, and Peroxisome proliferator-activated receptor gamma (PPARG) expression in MG acinar cells was detected by immunofluorescence. The expression of lipid metabolism-related factors was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or western blotting. RESULTS EDXKD reduced lipid accumulation in the MGs and improved the ocular surface index in DM MGD rats. The main active components of EDXKD had advantages in lipid regulation. Additionally, the PPARG signaling pathway was the key pathway of EDXKD in the treatment of DM MGD. Twelve lipid metabolites were biomarkers of EDXKD in the treatment of DM MGD, and glycerophospholipid metabolism was the main pathway of lipid regulation. Moreover, EDXKD improved lipid deposition in the acini and upregulated the expression of PPARG. Further, EDXKD regulated the PPARG-mediated UCP2/AMPK signaling network, inhibited lipid production, and promoted lipid transport. CONCLUSION EDXKD is an effective treatment for MGD in patients with T2DM. EDXKD can regulate lipids by regulating the PPARG-mediated UCP2/AMPK signaling network, as it reduced lipid accumulation in the MGs of DM MGD rats, promoted lipid metabolism, and improved MG function and ocular surface indices.
Collapse
Affiliation(s)
- Li Shi
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Liu-Jiao Li
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xin-Yi Sun
- Department of Endocrinology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yi-Ying Chen
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Dan Luo
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lu-Ping He
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Hui-Jie Ji
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Wei-Ping Gao
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Hu-Xing Shen
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Guo M, Liu T, Miao Y, Pan X, Liu B. Role of NADPH Oxidase 4 on Dry Eye Syndrome in Mice. J Ocul Pharmacol Ther 2024; 40:452-458. [PMID: 38669123 DOI: 10.1089/jop.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Objective: This study aims to investigate the effect of NADPH oxidase 4 (NOX4)-mediated inflammation on concanavalin A (ConA)-induced dry eye syndrome (DES) in mice. Methods: Thirty-six mice were randomly divided into Control, Model, no-load Control, and NOX4 interference group. Adenovirus was injected (10 μL) into the lacrimal glands of both eyes of mice in no-load Control group and NOX4 interference group. Four days after adenovirus injection, the Control group was injected with phosphate-buffered saline, and the other groups were injected with ConA (200 μg) in the lacrimal glands of mice to establish DES models. The tear secretion rate was estimated by phenol red thread test. Lissamine green eye staining was used to evaluate conjunctival damage. The corneal surface was observed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). The morphology and quantity of conjunctival epithelial cells and goblet cells were observed by Periodic acid-Schiff staining. The expression of NOX4, NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), interleukin-1β (IL-1β), and mucin 5 subtype AC (MUC5AC) was detected by immunohistochemistry. Results: Compared with the Control group, the Model group showed a significant decrease in tear secretion and an upregulation in microscopic image score. The HE staining and SEM showed corneal and conjunctiva damage in the Model group. The protein expression of NOX4, NLRP3, and IL-1β was upregulated, but MUC5AC was downregulated in the Model group. After interfering with NOX4, all these indicators were reversed. Conclusion: The pathological process of concanavalin A-induced DES appears to be related to NOX4.
Collapse
Affiliation(s)
- Mian Guo
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi, Guizhou Province, China
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taixiang Liu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi, Guizhou Province, China
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, Guizhou Province, China
| | - Yuan Miao
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Eye Hospital, Zunyi, Guizhou Province, China
- Guizhou Provincial Branch of National Eye Disease Clinical Research Center, Zunyi, Guizhou Province, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, Guizhou Province, China
| | - Xiaoli Pan
- Department of Rheumatology and Immunology, Afliated Hospital of Zunyi Medical University, Huichuan District, Zunyi, China
| | - Bo Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Chen T, Zhou N, Liang Q, Li Q, Li B, Chu Y, Zhang D, Chen Z, Tsao JR, Feng X, Hu K. Biochanin A: Disrupting the inflammatory vicious cycle for dry eye disease. Eur J Pharmacol 2024; 977:176583. [PMID: 38679123 DOI: 10.1016/j.ejphar.2024.176583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Dry eye disease (DED) is a complex disorder driven by several factors like reduced tear production, increased evaporation, or poor tear quality. Oxidative stress plays a key role by exacerbating the inflammatory cycle. Previous studies explored antioxidants for DED treatment due to the link between oxidative damage and inflammation. Biochanin A (BCA) is a bioisoflavone from red clover with potent anti-inflammatory effects. This study investigated BCA's therapeutic potential for DED. Human corneal epithelial cells were cultured under hyperosmotic conditions to mimic DED. BCA treatment increased cell viability and decreased apoptosis and inflammatory cytokine expression. A DED mouse model was developed using female C57BL/6 mice in a controlled low-humidity environment combined with scopolamine injections. Mice received eye drops containing phosphate-buffered saline, low-dose BCA, or high-dose BCA. The effectiveness was evaluated by measuring tear volume, fluorescein staining, eye-closing ratio, corneal sensitivity and PAS staining. The levels of inflammatory components in corneas and conjunctiva were measured to assess DED severity. Maturation of antigen-presenting cells in cervical lymph nodes was analyzed by flow cytometry. BCA eye drops effectively reduced inflammation associated with DED in mice. BCA also decreased oxidative stress levels by reducing reactive oxygen species and enhancing the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2). These findings demonstrate that BCA ameliorates oxidative stress and ocular surface inflammation, indicating potential as a DED treatment by relieving oxidative damage and mitigating inflammation.
Collapse
Affiliation(s)
- Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Nan Zhou
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, Zhejiang, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boda Li
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Yiran Chu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Di Zhang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Zeying Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
4
|
Situ P, Begley C, Simpson T. The roles of neural adaptation and sensitization in contact lens discomfort. Ocul Surf 2024; 34:132-139. [PMID: 39047906 DOI: 10.1016/j.jtos.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To investigate the roles of neural adaptation and sensitization in contact lens discomfort (CLD). METHODS Cooling stimuli (20 °C) were applied to the cornea in a group comprising 24 symptomatic and 25 asymptomatic contact lens (CL) wearers as well as 15 non-CL wearing controls, using a computerized Belmonte esthesiometer. The adaptation paradigm consisted of 20 repetitive stimuli at threshold, sub- and supra-threshold levels. The sensitization paradigm involved five levels of suprathreshold stimuli ranging between 1x to 2x threshold. Following each stimulus, participants rated the sensation magnitude regarding intensity, coolness and irritation. Measurements were taken with habitual CL (BL_CL), after 2 weeks of no-CL (No_CL) and after restarting habitual CL wear (ReSt_CL). RESULTS The symptomatic subjects exhibited a lower threshold but reported enhanced sensations during the adaptation and sensitization paradigm, compared to the asymptomatic and control groups (all p ≤ 0.021). At the BL_CL and ReSt_CL visits, they showed increased ratings to repeated subthreshold stimuli (p = 0.025) and greater irritation during the sensitization paradigm (p ≤ 0.032). Ratings in asymptomatic and control groups were relatively unchanged over time (p ≥ 0.181). Logistic regression revealed a link between the augmented sensory responses and increased likelihood with CLD. CONCLUSION The maladaptive sensory responses seen in CLD subjects, with reduced adaptation and heightened sensitization to ocular surface stimulation, suggest an imbalance between sensitization and adaptation in CLD. As CLD may represent a reversible subcategory of dry eye, it can serve as a human dry eye model for studying the neurosensory effect of ocular surface stimulation.
Collapse
Affiliation(s)
- Ping Situ
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Carolyn Begley
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Trefford Simpson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Wang Z, Song X, Wei Y, Wu X, Jie Y. Cytisine eye drops for benzalkonium chloride-induced dry eye: safety and efficacy evaluation. Pharm Dev Technol 2024; 29:457-467. [PMID: 38629738 DOI: 10.1080/10837450.2024.2345148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
This experiment aimed to investigate the feasibility of cytisine (CYT) in treating eye diseases with ocular topical application. An in vitro cytotoxicity test, a hen's egg test-chorioallantoic membrane (HET-CAM), and a mouse eye tolerance test were used to fully reveal the ocular safety profiles of CYT. For the efficacy evaluations, CYT's effects on cell wound healing, against H2O2-induced oxidative stress damages on cells, and on benzalkonium chloride (BAC)-induced dry eye disease (DED) in mice were evaluated. Results showed that CYT did not show any cytotoxicities at concentrations no higher than 250 μg/ml, while lipoic acid (α-LA) at 250 μg/ml and BAC at 1.25 μg/ml showed significant cytotoxicities within 48 h incubation. The HET-CAM and mouse eye tolerance test confirmed that 0.5% CYT eye drops demonstrated good safety characteristics. Efficacy evaluations showed that CTY significantly promoted cell migration and wound healing. CYT significantly improved cell survival against H2O2-induced oxidative stress damage by reversing the imbalance between the reactive oxygen species (ROS) and antioxidant defense mechanisms. The animal evaluation of the BAC-induced dry eye model revealed that CYT demonstrated a strong treatment effect, including reversing ocular surface damages, recovering corneal sensitivity, and inhibiting neovascularization; HMGB1/NF-κB signaling was involved in this DED treatment by CTY. In conclusion, CYT had strong experimental treatment efficacy against DED with good ocular safety profiles, and it might be a novel and promising drug for DED.
Collapse
Affiliation(s)
- Zijian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xixi Song
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Viwit Pharmaceutical Co., Ltd, Zaozhuang, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Viwit Pharmaceutical Co., Ltd, Zaozhuang, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wu J, Yuan T, Fu D, Xu R, Zhang W, Li S, Ding J, Feng L, Xia Y, Wang J, Li W, Han Y. An experimental model for primary neuropathic corneal pain induced by long ciliary nerve ligation in rats. Pain 2024; 165:1391-1403. [PMID: 38227559 DOI: 10.1097/j.pain.0000000000003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/28/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Neuropathic corneal pain (NCP) is a new and ill-defined disease characterized by pain, discomfort, aching, burning sensation, irritation, dryness, and grittiness. However, the mechanism underlying NCP remain unclear. Here, we reported a novel rat model of primary NCP induced by long ciliary nerve (LCN) ligation. After sustained LCN ligation, the rats developed increased corneal mechanical and chemical sensitivity, spontaneous blinking, and photophobia, which were ameliorated by intraperitoneal injection of morphine or gabapentin. However, neither tear reduction nor corneal injury was observed in LCN-ligated rats. Furthermore, after LCN ligation, the rats displayed a significant reduction in corneal nerve density, as well as increased tortuosity and beading nerve ending. Long ciliary nerve ligation also notably elevated corneal responsiveness under resting or menthol-stimulated conditions. At a cellular level, we observed that LCN ligation increased calcitonin gene-related peptide (neuropeptide)-positive cells in the trigeminal ganglion (TG). At a molecular level, upregulated mRNA levels of ion channels Piezo2, TRPM8, and TRPV1, as well as inflammatory factors TNF-α, IL-1β, and IL-6, were also detected in the TG after LCN ligation. Meanwhile, consecutive oral gabapentin attenuated LCN ligation-induced corneal hyperalgesia and increased levels of ion channels and inflammation factors in TG. This study provides a reliable primary NCP model induced by LCN ligation in rats using a simple, minimally invasive surgery technique, which may help shed light on the underlying cellular and molecular bases of NCP and aid in developing a new treatment for the disease.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Tianjie Yuan
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Danyun Fu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Wenna Zhang
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Shuangshuang Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Jiahui Ding
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Lili Feng
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Xuhui District, Shanghai, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| |
Collapse
|
7
|
Pizzano M, Vereertbrugghen A, Cernutto A, Sabbione F, Keitelman IA, Shiromizu CM, Vera Aguilar D, Fuentes F, Giordano MN, Trevani AS, Galletti JG. Transient Receptor Potential Vanilloid-1 Channels Facilitate Axonal Degeneration of Corneal Sensory Nerves in Dry Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:810-827. [PMID: 38325553 DOI: 10.1016/j.ajpath.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.
Collapse
Affiliation(s)
- Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene A Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Mirta N Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía S Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Velasco E, Zaforas M, Acosta MC, Gallar J, Aguilar J. Ocular surface information seen from the somatosensory thalamus and cortex. J Physiol 2024; 602:1405-1426. [PMID: 38457332 DOI: 10.1113/jp285008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Neuroscience in Physiotherapy (NiP), Independent Research Group, Elche, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
- Grupo de Investigación Multidisciplinar en Cuidados, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
9
|
Xie M, Long H, Tian S, Zhu Z, Meng P, Du K, Wang Y, Guo D, Wang H, Peng Q. Saikosaponin F ameliorates depression-associated dry eye disease by inhibiting TRIM8-induced TAK1 ubiquitination. Int Immunopharmacol 2024; 130:111749. [PMID: 38430804 DOI: 10.1016/j.intimp.2024.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
AIMS Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1β, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China
| | - Sainan Tian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengqing Zhu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pan Meng
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China; College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ke Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yajing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750003, China.
| | - Qinghua Peng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha 410002, China.
| |
Collapse
|
10
|
Li X, Peng H, Kang J, Sun X, Liu J. IL-1β induced down-regulation of miR-146a-5p promoted pyroptosis and apoptosis of corneal epithelial cell in dry eye disease through targeting STAT3. BMC Ophthalmol 2024; 24:144. [PMID: 38553670 PMCID: PMC10981279 DOI: 10.1186/s12886-024-03396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
AIM To elaborate the underlying mechanisms by which IL-1β promote progression of Dry eye disease(DED) through effect on pyroptosis and apoptosis of corneal epithelial cells(CECs). METHODS 400 mOsM solutions were used to establish the DED model (hCECs- DED). RT-qPCR was performed to measure IL-1β mRNA and miR-146a-5p in CECs. Western blotting was performed to measure STAT3, GSDMD, NLRP3, and Caspase-1 levels. Cell counting kit-8 assay was adopted to check cell viability. Apoptosis was detected by flow cytometry. ELISAs were performed to determine IL-18, IL-33 and LDH. The luciferase test detects targeting relationships. RESULTS After treatment with 400 mOsM solution, cell viability decreased and apoptosis increased. Compared with hCECs, IL-1β was increased and miR-146a-5p was decreased in hCECs-DED. At the same time, GSDMD, NLRP3, Caspase-1, IL-18, IL-33 and LDH were significantly higher in hCECs-DED than in hCECs, while IL-1β silencing reversed this effect. In addition, IL-1β negatively regulated miR-146a-5p. MiR-146a-5p mimics eliminated the inhibition of hCECs-DED pyroptosis and apoptosis caused by IL-1β silencing. At the same time, miR-146a-5p reduced STAT3 levels in hCECs. CONCLUSION Highly expressed IL-1β promoted pyroptosis and apoptosis of hCECs- DED through downregulated miR-146a-5p and inhibited STAT3.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Hua Peng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Jianshu Kang
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Xiaomei Sun
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Jian Liu
- Department of Ophthalmology, China Academy of C.M.S. Eye Hospital, NO. 33 Lugu Road, Shijingshan District, 100040, Beijing, China.
| |
Collapse
|
11
|
Chen M, Seo S, Simmons X, Maroud Y, Wong T, Schubert W, Yiu SC. Precise longitudinal monitoring of corneal change through in vivo confocal microscopy in a rat dry eye disease model. Mol Vis 2024; 30:150-159. [PMID: 39076769 PMCID: PMC11286106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose While lacrimal gland removal is commonly used in animal models to replicate dry eye disease, research into systematically monitoring dry eye disease's longitudinal pathological changes is limited. In vivo confocal microscopy (Heidelberg Retina Tomograph 3 with a Rostock Cornea Module, Heidelberg Engineering Inc., Franklin, MA) can non-invasively reveal corneal histopathological structures. To monitor dry-eye-disease-related changes in corneal structures, we developed a precise monitoring method using in vivo confocal microscopy in a rat double lacrimal gland removal model. Methods Five Sprague-Dawley rats (age 8-9 weeks, male) underwent double lacrimal gland removal. Modified Schirmer's tear test, blink tests, and in vivo confocal microscopy images were acquired pre-surgery and at 1, 2, and 4 weeks post-surgery. Three individual stromal nerves were selected per eye as guide images, and images of the corresponding sub-basal nerve plexus area were acquired via volume acquisition. The same area was re-imaged in subsequent weeks. Results After double lacrimal gland removal, tear production was reduced by 60%, and the blink rate increased 10 times compared to pre-surgery. Starting from 1 week after surgery, in vivo confocal microscopy showed increased sub-basal nerve plexus nerve fiber density with inflammatory cell infiltration at the sub-basal nerve plexus layer and remained at an elevated level at 2 and 4 weeks post-surgery. Conclusions We demonstrated that our precise monitoring method revealed detailed changes in the corneal nerves, the epithelium, and the stroma.
Collapse
Affiliation(s)
- Minjie Chen
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stefanie Seo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xianni Simmons
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Youssef Maroud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Trystin Wong
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Samuel C Yiu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
12
|
Wan MM, Fu ZY, Jin T, Wang ZY, Sun XY, Gao WP. Electroacupuncture regulates the P2X 7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. Purinergic Signal 2024:10.1007/s11302-024-09991-0. [PMID: 38467962 DOI: 10.1007/s11302-024-09991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yi Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Yeh SI, Ho TC, Chu TW, Chen SL, Tsao YP. Potential Benefits of Integrin αvβ3 Antagonists in a Mouse Model of Experimental Dry Eye. Cornea 2024; 43:378-386. [PMID: 38015979 DOI: 10.1097/ico.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE The purpose of this study was to extensively evaluate the efficacy of integrin αvβ3 antagonists for the treatment of experimental dry eye (EDE). METHODS Vitronectin, an αvβ3 ligand, was used to induce tumor necrosis factor-α gene expression in human THP-1 macrophages. To induce EDE, C57BL/6 mice were housed in a low-humidity controlled environment chamber and injected subcutaneously with scopolamine for 7 days. Subsequently, αvβ3 antagonists, including RGDfD, c(RGDfD), c(RGDiD), c(RGDfK), ATN-161, SB273005, and cilengitide, were administered topically to EDE animals under controlled environment chamber conditions. Corneal epithelial damage in EDE was assessed by fluorescein staining. The density of conjunctival goblet cells and secretion of tears was measured by period acid-Schiff staining and phenol red-impregnated cotton threads, respectively. Inflammation markers, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-17A, and metalloproteinase (MMP)-9, in the pooled cornea and conjunctiva tissues were examined by real-time polymerase chain reaction. RESULTS The inhibitory effects of αvβ3 antagonists on the vitronectin-induced tumor necrosis factor-α gene expression and integrin-mediated inflammatory signaling were validated in THP-1 macrophages. αvβ3 antagonists ameliorated the impairment of the corneal epithelial barrier with varying therapeutic efficacies, compared with vehicle-treated mice. c(RGDfD) and c(RGDiD) significantly protected against goblet cell loss, tear reduction, and proinflammatory gene expression in EDE. CONCLUSIONS Topical applications of αvβ3 antagonists yield therapeutic benefits in EDE by promoting corneal epithelial defect healing and reducing inflammation. Antagonistic targeting αvβ3 may be a novel promising strategy to treat patients with dry eye disease.
Collapse
Affiliation(s)
- Shu-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan; and
| | - Ting-Wen Chu
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan; and
| |
Collapse
|
14
|
Bonelli F, Campestre F, Lasagni Vitar RM, Demirsoy IH, Fonteyne P, Ferrari G. Aprepitant Restores Corneal Sensitivity and Reduces Pain in DED. Transl Vis Sci Technol 2024; 13:9. [PMID: 38345550 PMCID: PMC10866158 DOI: 10.1167/tvst.13.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose This study aims to assess the efficacy of two aprepitant formulations (X1 and X2), in a preclinical model of dry eye disease (DED) induced by benzalkonium chloride (BAK). Methods Two aprepitant formulations were tested on 7 to 8-week-old male mice for their efficacy. In vivo corneal fluorescein staining assessed epithelial damage as the primary end point on days 0, 3, 5, 7, 9, 12, and 14 using slit-lamp microscopy. The DED model was induced with 0.2% BAK twice daily for the first week and once daily for the next week. Mice were randomly assigned to 5 treatment groups: Aprepitant X1 (n = 10) and X2 (n = 10) formulation, 2 mg/mL dexamethasone (n = 10), control vehicle X (n = 10), 0.2% hyaluronic acid (n = 10), or no treatment (n = 10). Eye wiping, phenol red, and Cochet Bonnet tests assessed ocular pain, tear fluid secretion, and nerve function. After 7 days, the mice were euthanized to quantify leukocyte infiltration and corneal nerve density. Results Topical aprepitant X1 reduced BAK-induced corneal damage and pain compared to gel vehicle X (P = 0.007) and dexamethasone (P = 0.021). Aprepitant X1 and X2 improved corneal sensitivity versus gel vehicle X and dexamethasone (P < 0.001). Aprepitant X1 reduced leukocyte infiltration (P < 0.05) and enhanced corneal nerve density (P < 0.001). Tear fluid secretion remained statistically unchanged in both the X1 and X2 groups. Conclusions Aprepitant formulation X1 reduced pain, improved corneal sensitivity and nerve density, ameliorated epitheliopathy, and reduced leukocyte infiltration in male mouse corneas. Translational Relevance Aprepitant emerges as a safe, promising therapeutic prospect for the amelioration of DED's associated symptoms.
Collapse
Affiliation(s)
- Filippo Bonelli
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology–Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Fabiola Campestre
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ibrahim Halil Demirsoy
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Sánchez-Fernández C, Del Olmo-Aguado S, Artime E, Barros A, Fernández-Vega Cueto L, Merayo-Lloves J, Alcalde I. Immunocytochemical Analysis of Crocin against Oxidative Stress in Trigeminal Sensory Neurons Innervating the Cornea. Molecules 2024; 29:456. [PMID: 38257369 PMCID: PMC10818698 DOI: 10.3390/molecules29020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Corneal diseases are a major cause of vision loss, often associated with aging, trauma and disease. Damage to corneal sensory innervation leads to discomfort and pain. Environmental stressors, such as short-wavelength light, can induce oxidative stress that alters mitochondrial function and affects cell and tissue homeostasis, including corneal innervation. Cellular antioxidant mechanisms may attenuate oxidative stress. This study investigates crocin, a derivative of saffron, as a potential antioxidant therapy. In vitro rat trigeminal sensory ganglion neurons were exposed to both sodium azide and blue light overexposure as a model of oxidative damage. Crocin was used as a neuroprotective agent. Mitochondrial and cytoskeletal markers were studied by immunofluorescence analysis to determine oxidative damage and neuroprotection. In vivo corneal innervation degeneration was evaluated in cornea whole mount preparations using Sholl analyses. Blue light exposure induces oxidative stress that affects trigeminal neuron mitochondria and alters sensory axon dynamics in vitro, and it also affects corneal sensory innervation in an in vivo model. Our results show that crocin was effective in preserving mitochondrial function and protecting corneal sensory neurons from oxidative stress. Crocin appears to be a promising candidate for the neuroprotection of corneal innervation.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Del Olmo-Aguado
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alberto Barros
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
| | - Luis Fernández-Vega Cueto
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (C.S.-F.); (S.D.O.-A.); (E.A.); (A.B.); (L.F.-V.C.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
16
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Wan MM, Jin T, Fu ZY, Lai SH, Gao WP. Electroacupuncture Alleviates Dry Eye Ocular Pain Through TNF-ɑ Mediated ERK1/2/P2X 3R Signaling Pathway in SD Rats. J Pain Res 2023; 16:4241-4252. [PMID: 38107367 PMCID: PMC10725190 DOI: 10.2147/jpr.s436258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to examine electroacupuncture's influence on ocular pain and its potential modulation of the TNF-ɑ mediated ERK1/2/P2X3R signaling pathway in dry eye-induced rat models. Methods Male Sprague-Dawley rats with induced dry eye, achieved through extraorbital lacrimal gland removal, were treated with electroacupuncture. Comprehensive metrics such as the corneal mechanical perception threshold, palpebral fissure height, eyeblink frequency, eye wiping duration, behavioral changes in the open field test, and the forced swimming test were employed. Additionally, morphological changes in microglia and neurons were observed. Expression patterns of key markers, TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R, in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) regions, were studied with etanercept serving as a control to decipher the biochemistry of electroacupuncture's therapeutic effects. Results Electroacupuncture treatment demonstrated a notable decrease in the corneal mechanical perception threshold, improvement in palpebral fissure height, and significant reductions in both eyeblink frequency and eye wiping duration. Moreover, it exhibited a promising role in anxiety alleviation. Notably, the technique effectively diminished ocular pain by curbing microglial and neuronal activation in the TG and SpVc regions. Furthermore, it potently downregulated TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R expression within these regions. Conclusion Electroacupuncture attenuated damage to sensory nerve pathways, reduced pain, and eased anxiety in dry eye-afflicted rats. The findings suggest a crucial role of TNF-ɑ mediated ERK1/2/P2X3R signaling pathway inhibition by electroacupuncture in these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, People’s Republic of China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Si-Hua Lai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
18
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Zhang J, Dai Y, Li Y, Xu J. Integrative analysis of gene expression datasets in corneal endothelium samples of Fuchs endothelial corneal dystrophy. Exp Eye Res 2023; 237:109712. [PMID: 37918501 DOI: 10.1016/j.exer.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
FECD is an age-related progressive ocular disorder characterized by the gradual loss of corneal endothelial cells. Although the exact pathogenesis of FECD remains incompletely understood, differentially expressed genes in the corneal endothelium of FECD patients compared to controls have been reported in several studies. However, a consensus regarding consistently affected genes in FECD has not been established. To address this issue, we conducted a comprehensive meta-analysis incorporating five studies with data that met our predefined inclusion criteria. The combined dataset included 41 FECD patients and 26 controls. We conducted study-level analyses, followed by a meta-analysis, and subsequent functional enrichment analysis targeting the topmost DEGs. Our findings revealed a total of 1537 consistently dysregulated genes in the corneal endothelium of FECD patients. Notably, only 14.6% (224/1537) of these DEGs had been previously identified as statistically significant in individual datasets. Functional enrichment analysis revealed that the upregulated DEGs were significantly enriched in immune-related signaling pathways, with a particularly high enrichment in "The NLRP3 inflammasome" and "Inflammasomes" pathways. In conclusion, we successfully identify a set of consistently dysregulated genes in FECD, which are associated with both established and novel biological pathways. This study highlights the importance of further investigating the role of inflammasomes in FECD pathogenesis and exploring strategies to modulate inflammasome activation for the management of this debilitating condition.
Collapse
Affiliation(s)
- Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
20
|
Huang H, Li Y, Wang X, Zhang Q, Zhao J, Wang Q. Electroacupuncture pretreatment protects against anesthesia/surgery-induced cognitive decline by activating CREB via the ERK/MAPK pathway in the hippocampal CA1 region in aged rats. Aging (Albany NY) 2023; 15:11227-11243. [PMID: 37857016 PMCID: PMC10637818 DOI: 10.18632/aging.205124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Hongjie Huang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Hebei 050031, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050011, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| |
Collapse
|
21
|
Araujo ASL, Simões MDJ, Araujo-Jr OP, Simões RS, Baracat EC, Nader HB, Soares-Jr JM, Gomes RCT. Hyperprolactinemia modifies extracellular matrix components associated with collagen fibrillogenesis in harderian glands of non- and pregnant female mice. Exp Eye Res 2023; 235:109612. [PMID: 37580001 DOI: 10.1016/j.exer.2023.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
The harderian gland (HG) is a gland located at the base of the nictating membrane and fills the inferomedial aspect of the orbit in rodents. It is under the influence of the hypothalamic-pituitary-gonadal axis and, because of its hormone receptors, it is a target tissue for prolactin (PRL) and sex steroid hormones (estrogen and progesterone). In humans and murine, the anterior surface of the eyes is protected by a tear film synthesized by glands associated with the eye. In order to understand the endocrine changes caused by hyperprolactinemia in the glands responsible for the formation of the tear film, we used an animal model with metoclopramide-induced hyperprolactinemia (HPRL). Given the evidences that HPRL can lead to a process of cell death and tissue fibrosis, the protein expression of small leucine-rich proteoglycans (SLRPs) was analyzed through immunohistochemistry in the HG of the non- and the pregnant female mice with hyperprolactinemia. The SRLPs are related to collagen fibrillogenesis and they participate in pro-apoptotic signals. Our data revealed that high prolactin levels and changes in steroid hormones (estrogen and progesterone) can lead to an alteration in the amount of collagen, and in the structure of type I and III collagen fibers through changes in the amounts of lumican and decorin, which are responsible for collagen fibrillogenesis. This fact can lead to the impaired functioning of the HG by excessive apoptosis in the HG of the non- and the pregnant female mice with HPRL and especially in the HG of pregnancy-associated hyperprolactinemia.
Collapse
Affiliation(s)
- Ariadne S L Araujo
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Manuel de J Simões
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Osvaldo P Araujo-Jr
- Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Ricardo S Simões
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Edmund C Baracat
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Helena B Nader
- Molecular Biology Division of the Department of Biochemistry, Federal University of São Paulo, Brazil
| | - José M Soares-Jr
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Regina C T Gomes
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil.
| |
Collapse
|
22
|
Ouyang W, Wang S, Yan D, Wu J, Zhang Y, Li W, Hu J, Liu Z. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduct Target Ther 2023; 8:371. [PMID: 37735446 PMCID: PMC10514335 DOI: 10.1038/s41392-023-01624-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
The innate immune response is the main pathophysiological process of ocular surface diseases exposed to multiple environmental stresses. The epithelium is central to the innate immune response, but whether and how innate immunity is initiated by ocular epithelial cells in response to various environmental stresses in ocular surface diseases, such as dry eye, is still unclear. By utilizing two classic experimental dry eye models-a mouse ocular surface treated with benzalkonium chloride (BAC) and a mouse model with surgically removed extraorbital lachrymal glands, as well as dry eye patient samples-along with human corneal epithelial cells (HCE) exposed to hyperosmolarity, we have discovered a novel innate immune pathway in ocular surface epithelial cells. Under stress, mitochondrial DNA (mtDNA) was released into the cytoplasm through the mitochondrial permeability transition pore (mPTP) and further activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, aggravating downstream inflammatory responses and ocular surface damage. Genetic deletion or pharmacological suppression of STING and inhibition of mtDNA release reduced inflammatory responses, whereas mtDNA transfection supported cytoplasmic mtDNA-induced inflammatory responses by activating the cGAS-STING pathway. Our study clarified the cGAS-STING pathway-dependent sensing of mitochondrial DNA-mediated ocular surface inflammation, which elucidated a new mechanism of ocular surface diseases in response to multiple environmental stresses.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Shoubi Wang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Jieli Wu
- Changsha Aier Eye Hospital, Changsha, Hunan, 410016, China
| | - Yunuo Zhang
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Li
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
23
|
Bai Y, Di G, Ge H, Li B, Zhang K, Zhang D, Wang D, Chen P. Regulation of Axon Guidance by Slit2 and Netrin-1 Signaling in the Lacrimal Gland of Aqp5 Knockout Mice. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37707834 PMCID: PMC10506685 DOI: 10.1167/iovs.64.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III β-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.
Collapse
Affiliation(s)
- Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dianqiang Wang
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Baranauskas V, Daukantaitė J, Galgauskas S. Rabbit models of dry eye disease: comparative analysis. Int J Ophthalmol 2023; 16:1177-1185. [PMID: 37602345 PMCID: PMC10398514 DOI: 10.18240/ijo.2023.08.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
AIM To report ocular changes in rabbits after the implementation of three different induction methods to create dry eye (DE) conditions and provides evidence of DE-related disease evolution. METHODS Experimental methods were divided into 3 models. The first model used involved triple injection of complete Freund's adjuvant, 50 µL each, also called the meibomian gland dysfunction (MGD) model. In the second model, DE conditions were created by the resection of nictitating membranes (NM), Harderian glands (HG), and main lacrimal glands (LG), also called the LGR model. The third model involved the topical administration of benzalkonium chloride (BAK) 0.1% solution. The Schirmer test, ocular surface staining with fluorescein, and tear break-up time tests were implemented before and after excision. After euthanasia, the ocular tissues were dissected. Cornea, conjunctiva, and meibomian glands were treated with periodic acid-Schiff (PAS) staining and haematoxylin-eosin staining. RESULTS The MGD model triggered inflammation of meibomian glands. It detected changes in the lipid layer of the tear film. The bilateral resection of NM, HG, and LG reduced the watering layer of the tear film. The topical administration of BAK of 0.1% solution impacted the mucosal layer of the tear film. CONCLUSION Different changes are observed with different DE syndrome models. The composition of the tear film differ depending on which part of the eye is targeted. More studies need to be done to confirm whether an increased thickness of the cornea has any impact on the DE disease.
Collapse
Affiliation(s)
- Vytautas Baranauskas
- Vilnius University Institute of Biochemistry, Life Science Centre, Sauletekio av 7, Vilnius, LT 10257, Lithuania
| | - Julija Daukantaitė
- Vilnius University Faculty of Medicine, M. K. Čiurlionio str. 21, Vilnius, LT 03101, Lithuania
| | - Saulius Galgauskas
- Vilnius University Faculty of Medicine, M. K. Čiurlionio str. 21, Vilnius, LT 03101, Lithuania
| |
Collapse
|
25
|
Mateo-Orobia AJ, Del Prado Sanz E, Blasco-Martínez A, Pablo-Júlvez LE, Farrant S, Chiambaretta F. Efficacy of artificial tears containing trehalose and hyaluronic acid for dry eye disease in women aged 42-54 versus ≥ 55 years. Cont Lens Anterior Eye 2023; 46:101845. [PMID: 37117131 DOI: 10.1016/j.clae.2023.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Dry eye disease (DED) is common in postmenopausal women. This study evaluated efficacy of a 3-month daily treatment with artificial tears containing trehalose and hyaluronic acid (HA) in women aged 42-54 years (mixed-hormonal status) versus ≥ 55 years (postmenopausal) and with moderate and severe DED. METHODS This was a post-hoc analysis of three clinical trials assessing the efficacy of artificial tears containing trehalose (3%) and HA (0.15%) in women with an Ocular Surface Disease Index (OSDI) ≥ 18. Patients instilled one drop of the artificial tears in each eye 3 to 6 times daily and were evaluated at baseline and after 84 ± 7 days for DED symptom severity (OSDI), hyperemia (McMonnies scale), tear break-up time (TBUT), corneal and conjunctival staining (Oxford and Van Bjisterveld scales), tear production (Schirmer I test), and ocular symptoms. RESULTS A total of 273 women were evaluated, 61 of age 42-54 years; 212 of ≥ 55 years. DED symptoms, as measured by the OSDI, decreased significantly with the treatment in both age groups (p < 0.0001). Conjunctival hyperemia decreased significantly and TBUT increased significantly in both groups, especially in women of age 42-54 (both p < 0.0001). The global (corneal and conjunctival) staining score decreased significantly in both groups, but also more in women of age 42-54 years. No differences were observed between age groups for any of the variables measured, except for visual acuity. DED symptoms were consistently reported more frequently by the mixed hormonal status women, but also the effect of the treatment was more pronounced in this group. CONCLUSIONS Artificial tears with trehalose and HA significantly improved the symptoms of DED in women aged 42-54 and ≥ 55 years. The decrease in symptoms was more pronounced in women of age 42-54 years, suggesting better mechanisms of recovery from inflammation and loss of ocular surface homeostasis.
Collapse
Affiliation(s)
- Antonio J Mateo-Orobia
- Department of Ophthalmology, Hospital Universitario Miguel Servet, Zaragoza, Spain; Grupo de Investigación e Innovación Miguel Servet Oftalmología, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Instituto Oftalmológico Quirón-salud (Biotech Vision), Zaragoza, Spain.
| | | | | | - Luis E Pablo-Júlvez
- Department of Ophthalmology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Sarah Farrant
- Earlam and Christopher Optometrists and Contact Lens Specialists, Taunton, United Kingdom
| | - Frédéric Chiambaretta
- Department of Ophthalmology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
26
|
Yuan T, Fu D, Xu R, Ding J, Wu J, Han Y, Li W. Corticosterone mediates FKBP51 signaling and inflammation response in the trigeminal ganglion in chronic stress-induced corneal hyperalgesia mice. J Steroid Biochem Mol Biol 2023; 231:106312. [PMID: 37062346 DOI: 10.1016/j.jsbmb.2023.106312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Stress-induced hyperalgesia is a health-threatening condition that lacks effective therapeutic intervention, impairing the quality of life. Interestingly, a high prevalence of corneal pain symptoms was also found in patients experienced severe stressors. Excessive secretion corticosterone in rodents has been shown to contribute to the development of visceral and mechanical hyperalgesia under stressful conditions. The co-chaperone protein FK506-binding protein 5 (FKBP5) was reported to modulate steroid sensitivity and inhibition of FKBP51 possessed anxiolytic and anti-hyperalgesic in the stressed-mice model. However, whether corticosterone and FKBP5 play a role in chronic stress-induced corneal hyperalgesia remains unknown. The aim of this study was to evaluate the corneal sensitivity after exposure to chronic restraint stress (CRS) and investigate the potential role of corticosterone and FKBP5 mediated proinflammatory cytokines release in trigeminal ganglion (TG) in corneal hyperalgesia under chronic stressful situations. Firstly, mice displayed increased corneal sensitivity without changes in tear production and corneal injury after CRS for 4 hours/day for 14 days. Meanwhile, corticosterone deficiency via adrenalectomy could prevent CRS-induced corneal hyperalgesia, whereas chronic corticosterone feeding increased the corneal sensitivity accompanied by increasing proinflammatory cytokines levels of phospho-NF-κB (p-NF-κB), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the TG on d14. Notably, we found that FKBP51 was significantly upregulated in the TG in the stressed-mice. Intraperitoneal injection of FKBP51 inhibitor significantly alleviated CRS-induced corneal hyperalgesia, and reversed calcitonin gene related peptide (CGRP) increase and proinflammatory cytokines production in the TG. Moreover, FKBP51 inhibitor could also exert its anti-hyperalgesic effect on corneal pain through intra-TG injection. Our study proves that CRS can induce corneal hyperalgesia in mice and uncovers the role of corticosterone and FKBP51 in modulating corneal sensitivity, providing a novel treatment strategy for stress-induced corneal hyperalgesia. AVAILABILITY OF DATA AND MATERIALS: All data and additional file are available upon request from the corresponding author.
Collapse
Affiliation(s)
- Tianjie Yuan
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Danyun Fu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Jiahui Ding
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Jinhong Wu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China.
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China.
| |
Collapse
|
27
|
Li Y, Li J, Wei SS, Du J. Lipopolysaccharide-induced Trigeminal Ganglion Nerve Fiber Damage is Associated with Autophagy Inhibition. Curr Med Sci 2023:10.1007/s11596-023-2739-0. [PMID: 37278832 DOI: 10.1007/s11596-023-2739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE This study aimed to determine whether lipopolysaccharide (LPS) induces the loss of corneal nerve fibers in cultured trigeminal ganglion (TG) cells, and the underlying mechanism of LPS-induced TG neurite damage. METHODS TG neurons were isolated from C57BL/6 mice, and the cell viability and purity were maintained for up to 7 days. Then, they were treated with LPS (1 µg/mL) or the autophagy regulator (autophibib and rapamycin) alone or in combination for 48 h, and the length of neurites in TG cells was examined by the immunofluorescence staining of the neuron-specific protein β3-tubulin. Afterwards, the molecular mechanisms by which LPS induces TG neuron damage were explored. RESULTS The immunofluorescence staining revealed that the average length of neurites in TG cells significantly decreased after LPS treatment. Importantly, LPS induced the impairment of autophagic flux in TG cells, which was evidenced by the increase in the accumulation of LC3 and p62 proteins. The pharmacological inhibition of autophagy by autophinib dramatically reduced the length of TG neurites. However, the rapamycin-induced activation of autophagy significantly lessened the effect of LPS on the degeneration of TG neurites. CONCLUSION LPS-induced autophagy inhibition contributes to the loss of TG neurites.
Collapse
Affiliation(s)
- Yong Li
- Refractive Surgery Center, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Li
- Refractive Surgery Center, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sheng-Sheng Wei
- Refractive Surgery Center, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Du
- Refractive Surgery Center, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
28
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
29
|
Vereertbrugghen A, Pizzano M, Sabbione F, Keitelman IA, Shiromizu CM, Aguilar DV, Fuentes F, de Paiva CS, Giordano M, Trevani A, Galletti JG. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation 2023; 20:120. [PMID: 37217914 PMCID: PMC10201717 DOI: 10.1186/s12974-023-02800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mirta Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Yao Y, Lin D, Chen Y, Liu L, Wu Y, Zheng X. Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice. Inflamm Res 2023:10.1007/s00011-023-01738-8. [PMID: 37188940 DOI: 10.1007/s00011-023-01738-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE AND DESIGN Postoperative cognitive dysfunction (POCD) is a common complication following surgery among elderly patients. Emerging evidence demonstrates that neuroinflammation plays a pivotal role in the pathogenesis of POCD. This study tested the hypothesis that fluoxetine can protect against POCD by suppressing hippocampal neuroinflammation through attenuating TLR4/MyD88/NF-κB signaling pathway activation. SUBJECTS Aged C57BL/6 J male mice (18 months old) were studied. TREATMENT Aged mice were intraperitoneally injected with fluoxetine (10 mg/kg) or saline for seven days before splenectomy. In addition, aged mice received an intracerebroventricular injection of a TLR4 agonist or saline seven days before splenectomy in the rescue experiment. METHODS On postoperative days 1, 3, and 7, we assessed hippocampus-dependent memory, microglial activation status, proinflammatory cytokine levels, protein levels related to the TLR4/MyD88/NF-κB signaling pathway, and hippocampal neural apoptosis in our aged mouse model. RESULTS Splenectomy induced a decline in spatial cognition, paralleled by parameters indicating exacerbation of hippocampal neuroinflammation. Fluoxetine pretreatment partially restored the deteriorated cognitive function, downregulated proinflammatory cytokine levels, restrained microglial activation, alleviated neural apoptosis, and suppressed the increase in TLR4, MyD88, and p-NF-κB p65 in microglia. Intracerebroventricular injection of LPS (1 μg, 0.5 μg/μL) before surgery weakened the effect of fluoxetine. CONCLUSION Fluoxetine pretreatment suppressed hippocampal neuroinflammation and mitigated POCD by inhibiting microglial TLR4/MyD88/NF-κB pathway activation in aged mice.
Collapse
Affiliation(s)
- Yusheng Yao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China
| | - Daoyi Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Yuzhi Chen
- Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Linwei Liu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Yushang Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134, Dongjie, Fuzhou, 350001, Fujian, China.
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Zhang J, Lin H, Li F, Wu K, Yang S, Zhou S. Involvement of endoplasmic reticulum stress in trigeminal ganglion corneal neuron injury in dry eye disease. Front Mol Neurosci 2023; 16:1083850. [PMID: 37033374 PMCID: PMC10080667 DOI: 10.3389/fnmol.2023.1083850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disease with a high prevalence worldwide. Uncomfortable corneal sensations severely affect daily life in DED patients. Hence, corneal neuron injury is a vital pathogenesis in DED. Notably, endoplasmic reticulum stress (ERS) plays a role in peripheral neuron injury. However, the role of ERS in DED corneal neuron injury is still far from being clear. In this study, we established an environmental DED (eDED) model in vivo and a hyperosmotic DED model in vitro. Subsequently, trigeminal ganglion (TG) corneal neurons were retrograde labeled by WGA-Alexa Fluor 555, and fluorescence-activated cell sorting was used to collect targeted corneal neurons for RNA sequencing in mice. Our results revealed that TG corneal neuron injury but not apoptosis in DED. ERS-related genes and proteins were upregulated in TG corneal neurons of the eDED mice. ERS inhibition alleviated TG corneal neuron's ERS-related injury. Therefore, ERS-induced TG corneal neuron injury may be an important pathomechanism and provide a promising therapeutic approach to DED.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hongbin Lin
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuangjian Yang
- Guangdong Institute for Vision and Eye Research, Guangzhou, China
| | - Shiyou Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
32
|
Xu R, Zhang YW, Gu Q, Yuan TJ, Fan BQ, Xia JM, Wu JH, Xia Y, Li WX, Han Y. Alteration of neural activity and neuroinflammatory factors in the insular cortex of mice with corneal neuropathic pain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12842. [PMID: 36889983 PMCID: PMC10067426 DOI: 10.1111/gbb.12842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/10/2023]
Abstract
Dry eye disease (DED) affects nearly 55% of people worldwide; several studies have proposed that central sensitization and neuroinflammation may contribute to the developing corneal neuropathic pain of DED, while the underlying mechanisms of this contribution remain to be investigated. Excision of extra orbital lacrimal glands established the dry eye model. Corneal hypersensitivity was examined through chemical and mechanical stimulation, and open field test measured the anxiety levels. Restingstate fMRI is a method of functional magnetic resonance imaging (rs-fMRI) was performed for anatomical involvement of the brain regions. The amplitude of low-frequency fluctuation (ALFF) determined brain activity. Immunofluorescence testing and Quantitative real-time polymerase chain reaction were also performed to further validate the findings. Compared with the Sham group, ALFF signals in the supplemental somatosensory area, secondary auditory cortex, agranular insular cortex, temporal association areas, and ectorhinal cortex brain areas were increased in the dry eye group. This change of ALFF in the insular cortex was linked with the increment in corneal hypersensitivity (p < 0.01), c-Fos (p < 0.001), brain-derived neurotrophic factor (p < 0.01), TNF-α, IL-6, and IL-1β (p < 0.05). In contrast, IL-10 levels (p < 0.05) decreased in the dry eye group. DED-induced corneal hypersensitivity and upregulation of inflammatory cytokines could be blocked by insular cortex injection of Tyrosine Kinase receptor B agonist cyclotraxin-B (p < 0.01) without affecting anxiety levels. Our study reveals that the functional activity of the brain associated with corneal neuropathic pain and neuroinflammation in the insular cortex might contribute to dry eye-related corneal neuropathic pain.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Gu
- Department of Anesthesia, Children's Hospital of Fudan University, Shanghai, China
| | - Tian-Jie Yuan
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Bing-Qian Fan
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jun-Ming Xia
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jin-Hong Wu
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Jin T, Liu X, Li Y, Li PC, Wan MM, Li LJ, Shi L, Fu ZY, Gao WP. Electroacupuncture Reduces Ocular Surface Neuralgia in Dry-Eyed Guinea Pigs by Inhibiting the Trigeminal Ganglion and Spinal Trigeminal Nucleus Caudalis P2X 3R-PKC Signaling Pathway. Curr Eye Res 2023; 48:546-556. [PMID: 36803321 DOI: 10.1080/02713683.2023.2176886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PURPOSE To observe the effects of electroacupuncture on ocular surface neuralgia and the P2X3R-PKC signaling pathway in guinea pigs with dry eye. METHODS A dry eye guinea pig model was established by subcutaneous injection of scopolamine hydrobromide. Guinea pigs were monitored for body weight, palpebral fissure height, number of blinks, corneal fluorescein staining score, phenol red thread test, and corneal mechanical perception threshold. Histopathological changes and mRNA expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis were observed. We performed a second part of the experiment, which involved the P2X3R-specific antagonist A317491 and the P2X3R agonist ATP in dry-eyed guinea pigs to further validate the involvement of the P2X3R-protein kinase C signaling pathway in the regulation of ocular surface neuralgia in dry eye. The number of blinks and corneal mechanical perception threshold were monitored before and 5 min after subconjunctival injection and the protein expression of P2X3R and protein kinase C was detected in the trigeminal ganglion and spinal trigeminal nucleus caudalis of guinea pigs. RESULTS Dry-eyed guinea pigs showed pain-related manifestations and the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis was upregulated. Electroacupuncture reduced pain-related manifestations and inhibited the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis. Subconjunctival injection of A317491 attenuated corneal mechanoreceptive nociceptive sensitization in dry-eyed guinea pigs, while ATP blocked the analgesic effect of electroacupuncture. CONCLUSIONS Electroacupuncture reduced ocular surface sensory neuralgia in dry-eyed guinea pigs, and the mechanism of action may be associated with the inhibition of the P2X3R-protein kinase C signaling pathway in the trigeminal ganglion and spinal trigeminal nucleus caudalis by electroacupuncture.
Collapse
Affiliation(s)
- Tuo Jin
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Liu
- Department of Ophthalmology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ying Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei-Chen Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu-Jiao Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Trotta MC, Herman H, Balta C, Rosu M, Ciceu A, Mladin B, Gesualdo C, Lepre CC, Russo M, Petrillo F, Pieretti G, Simonelli F, Rossi S, D’Amico M, Hermenean A. Oral Administration of Vitamin D3 Prevents Corneal Damage in a Knock-Out Mouse Model of Sjögren's Syndrome. Biomedicines 2023; 11:biomedicines11020616. [PMID: 36831152 PMCID: PMC9953695 DOI: 10.3390/biomedicines11020616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Vitamin D deficiency has been associated with dry eye development during Sjögren's syndrome (SS). Here, we investigated whether repeated oral vitamin D3 supplementation could prevent the corneal epithelium damage in an SS mouse model. METHODS 30 female mouse knock-out for the thrombospondin 1 gene were randomized (six per group) in untreated mice euthanized at 6 weeks as negative control (C-) or at 12 weeks as the positive control for dry eye (C+). Other mice were sacrificed after 6 weeks of oral vitamin D3 supplementation in the drinking water (1000, 8000, and 20,000 IU/kg/week, respectively). RESULTS The C+ mice showed alterations in their corneal epithelial morphologies and thicknesses (p < 0.01 vs. C-), while the mice receiving 8000 (M) and 20,000 (H) IU/kg/week of vitamin D3 showed preservation of the corneal epithelium morphology and thickness (p < 0.01 vs. C+). Moreover, while the C+ mice exhibited high levels and activity of corneal tumor necrosis factor alpha converting enzyme (TACE), neovascularization and fibrosis markers; these were all reduced in the M and H mice. CONCLUSIONS Oral vitamin D3 supplementation appeared to counteract the negative effect of TACE on corneal epithelium in a mouse model of SS-associated dry eye.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Petrillo
- PhD Course in Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
- Correspondence:
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| |
Collapse
|
35
|
Xie M, Wang H, Gao T, Peng J, Meng P, Zhang X, Guo D, Liu G, Shi J, Peng Q. The protective effect of luteolin on the depression-related dry eye disorder through Sirt1/NF-κB/NLRP3 pathway. Aging (Albany NY) 2023; 15:261-275. [PMID: 36641776 PMCID: PMC9876631 DOI: 10.18632/aging.204479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/16/2023]
Abstract
Luteolin has been reported to exhibit therapeutic effect on depressive-like behaviors in mice. Nevertheless, the therapeutic effect of luteolin on the depression-related dry eye disorder remains inconclusive. In this study, C57 mice were subjected to chronic unpredictable mild stress in a dry environment (relative humidity in the cage <40%). The behavioral test and phenol red cotton thread test were employed to select the mice with both dry eye and depression-like behavior. The mechanism of luteolin on depression-related dry eye disorder was assessed by the Sirt1 selective inhibitor EX-527. Luteolin alleviated depressive-like behaviors induced by CUMS, increased tear secretion and restored corneal defects in mice. The secretions of pro-inflammatory factors IL-1β, IL-6, IL-18 and TNF-α were decreased in hippocampi and corneal tissues by Luteolin treatment. Luteolin treatment up-regulated Sirt1 expression and down-regulated Ac-NF-κB, NLRP3, Ac-Caspase-1, GSDMD-N, Cleaved IL-1β, and Cleaved IL-18 expressions. In addition, the selective inhibition of Sirt1 could weaken the therapeutic effect of luteolin on depression-related dry eye disorder. The beneficial effect of luteolin through Sirt1/NF-κB/NLRP3 signaling pathway might be a therapeutic strategy for the depression-related dry eye disorder.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder and Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tiantian Gao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jun Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Pan Meng
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder and Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Guangya Liu
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Jian Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Qinghua Peng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
36
|
Sekhon AS, He B, Iovieno A, Yeung SN. Pathophysiology of Corneal Endothelial Cell Loss in Dry Eye Disease and Other Inflammatory Ocular Disorders. Ocul Immunol Inflamm 2023; 31:21-31. [PMID: 34678119 DOI: 10.1080/09273948.2021.1980808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Dry eye disease (DED) and other inflammatory ocular disorders have been reported to be associated with decreased corneal endothelial cell density (CECD), however the mechanism of underlying endothelial cell loss remains unknown. METHODS We conducted a comprehensive literature search of English-written publications on dry eye disease, corneal endothelial cell loss, Sjögren's syndrome, and Graft Vs Host Disease (GVHD), to review the effects of DED and other inflammatory ocular surface conditions on CECD. RESULTS A total of 78 studies were included in our study. Loss of corneal neurotrophic support, cytotoxic stress, and a heightened immune response, all of which may occur secondarily to a common causative agent such as inflammation, are major contributors to reduced CECD. CONCLUSION More studies are needed to determine how the interrelated pathways of altered corneal nerve function and upregulated expression of inflammatory activity influence corneal endothelial cell loss.
Collapse
Affiliation(s)
- Amardeep S Sekhon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Bonnie He
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Sanchez V, Cohen NK, Felix E, Galor A. Factors affecting the prevalence, severity, and characteristics of ocular surface pain. EXPERT REVIEW OF OPHTHALMOLOGY 2022; 18:19-32. [PMID: 37009062 PMCID: PMC10062703 DOI: 10.1080/17469899.2023.2157813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Introduction Ocular surface pain has been traditionally lumped under the umbrella term "dry eye" (DE) but is now understood as its own entity and can occur in the absence or presence of tear dysfunction. Identifying patients at risk for the development of chronic ocular surface pain, and factors contributing to its severity are important in providing precision medicine to patients. Areas covered In this review, we discuss factors linked to the presence and severity of ocular surface pain, including eye related features, systemic characteristics, and environmental findings. We discuss corneal nerves, whose anatomic and functional integrity can be characterized through in vivo confocal microscopy images and testing of corneal sensitivity. We review systemic diseases that are co-morbid with ocular surface pain, including physical and mental health diagnoses. Finally, we identify environmental contributors, including air pollution, previous surgeries, and medications, associated with ocular surface pain. Expert opinion Intrinsic and extrinsic factors contribute to ocular surface pain and must be considered when evaluating an individual patient. These factors can inform the suspected etiology of the pain, and guide management decisions such as tear replacement or medications targeting nerve pain.
Collapse
Affiliation(s)
- Victor Sanchez
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Noah K Cohen
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
| | - Elizabeth Felix
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
- Surgical services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
- Surgical services, Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| |
Collapse
|
38
|
Gautier B, Meneux L, Feret N, Audrain C, Hudecek L, Kuony A, Bourdon A, Le Guiner C, Blouin V, Delettre C, Michon F. AAV2/9-mediated gene transfer into murine lacrimal gland leads to a long-term targeted tear film modification. Mol Ther Methods Clin Dev 2022; 27:1-16. [PMID: 36156877 PMCID: PMC9463184 DOI: 10.1016/j.omtm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Corneal blindness is the fourth leading cause of blindness worldwide. Since corneal epithelium is constantly renewed, non-integrative gene transfer cannot be used to treat corneal diseases. In many of these diseases, the tear film is defective. Tears are a complex biological fluid secreted by the lacrimal apparatus. Their composition is modulated according to the context. After a corneal wound, the lacrimal gland secretes reflex tears, which contain growth factors supporting the wound healing process. In various pathological contexts, the tear composition can support neither corneal homeostasis nor wound healing. Here, we propose to use the lacrimal gland as bioreactor to produce and secrete specific factors supporting corneal physiology. In this study, we use an AAV2/9-mediated gene transfer to supplement the tear film. First, we demonstrate that a single injection of AAV2/9 is sufficient to transduce all epithelial cell types of the lacrimal gland efficiently and widely. Second, we detect no adverse effect after AAV2/9-mediated nerve growth factor expression in the lacrimal gland. Only a transitory increase in tear flow is measured. Remarkably, AAV2/9 induces an important and long-lasting secretion of this growth factor in the tear film. Altogether, our findings provide a new clinically applicable approach to tackle corneal blindness.
Collapse
Affiliation(s)
- Benoit Gautier
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Benoit Gautier, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| | - Léna Meneux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Christine Audrain
- TarGeT, Nantes University, INSERM UMR 1089, CHU Nantes, Nantes, France
| | - Laetitia Hudecek
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Cell Adhesion and Mechanics Lab, Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Audrey Bourdon
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Véronique Blouin
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Cécile Delettre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Frédéric Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Frédéric Michon, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
39
|
The Inflammation Level and a Microbiological Analysis of the Anophthalmic Cavities of Unilateral Ocular Prosthesis Users: A Blind, Randomized Observational Study. Antibiotics (Basel) 2022; 11:antibiotics11111486. [PMID: 36358141 PMCID: PMC9686759 DOI: 10.3390/antibiotics11111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Irritation and biofilm adhesion are complaints associated with ocular prosthesis use. This study aimed to evaluate the effects of prosthesis repolishing on several conditions of anophthalmic volunteers. Participants were divided into two groups: intervention (IG, n = 10) and nonintervention (NIG, n = 6) groups. The anophthalmic cavity, contralateral eye, and prosthesis surface were evaluated at initial, day 15, and day 30 after repolishing. Microbiological analysis (colony-forming units), exfoliative cytology (conjunctiva inflammatory cells), sensory analysis (quantitative mechanical sensory test), tear production (Schirmer’s test), and conjunctival inflammation (clinical evaluation) were performed. Nonparametric tests were used to compare groups in the initial period and to analyze periods for the IG (p < 0.05). More microorganisms were formed in the anophthalmic socket and prosthesis than in the contralateral eye in the initial period. For IG, the anophthalmic cavity exhibited more microorganisms and inflammatory clinical signs in the initial period than at 15 and 30 after repolishing. The prosthesis showed greater accumulations of total bacteria and Candida albicans in the initial period than at 15 and 30 days after repolishing. The anophthalmic cavity had more palpebral inflammation than the contralateral eye. In conclusion, repolishing reduced the number of microorganisms and inflammatory signs over time.
Collapse
|
40
|
Xie M, Wang H, Peng J, Qing D, Zhang X, Guo D, Meng P, Luo Z, Wang X, Peng Q. Acacetin protects against depression-associated dry eye disease by regulating ubiquitination of NLRP3 through gp78 signal. Front Pharmacol 2022; 13:984475. [PMID: 36299901 PMCID: PMC9588975 DOI: 10.3389/fphar.2022.984475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that commonly occurs with depression. However, therapies targeting depression-related dry eye disease are rare. In the current study, we studied the beneficial effect of a natural flavone, acacetin, in depression-associated dry eye disease by utilizing the chronic unpredictable mild stress (CUMS) depression model. Our data showed that acacetin improved the depressive behaviors in sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST); relieved the dry eye symptoms including corneal epithelial impairments, tear production decrease and goblet cell loss in CUMS mice. Acacetin also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome expression levels and suppressed inflammatory responses via enhancing glycoprotein 78 (gp78)/Insulin induced gene-1 (Insig-1)-controlled NLRP3 ubiquitination in CUMS mice. Furthermore, knockdown of gp78 compromised acacetin-conferred protective efficacy in depression-related dry eye disease. In summary, our findings indicated that acacetin exerts beneficial effect in depression-associated dry eye disease, which is tightly related to gp78-mediated NLRP3 ubiquitination.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hanqing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongqin Qing
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pan Meng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihong Luo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoye Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| | - Qinghua Peng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| |
Collapse
|
41
|
Nakano K, Nakazawa H, He Q, Uwada J, Kiyoi T, Ishibashi T, Masuoka T. Voluntary wheel-running activities ameliorate depressive-like behaviors in mouse dry eye models. Front Behav Neurosci 2022; 16:925128. [PMID: 36160683 PMCID: PMC9500320 DOI: 10.3389/fnbeh.2022.925128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Recent clinical studies indicate that dry eye is closely associated with psychiatric disorders such as depression and anxiety. Here, we investigated whether two types of mouse dry eye models showed depressive-like behavior in forced swim and sucrose preference tests, and whether voluntary wheel-running helped ameliorate depressive states. To reproduce the dry eye models, the exorbital lacrimal glands (ELG) or exorbital and intraorbital lacrimal glands (ELG+ILG) were bilaterally excised from male C57BL/6J mice. Tear volume was persistently reduced in both models, but the ELG+ILG excision mice exhibited more severe corneal damage than the ELG excision mice. In the forced swim and sucrose preference tests, the gland excision mice showed longer immobility and shorter climbing times, and lower sucrose preference than sham-operated mice, respectively, which appeared earlier in the ELG+ILG excision mice. Wheel-running activities were significantly lower in the ELG+ILG excision mice, but not in the ELG excision mice. After short-period wheel-running, the longer immobility times and the shorter climbing times in the forced swim completely disappeared in both models. Our results suggest that dry eyes might directly cause a depressive disorder that depends on the severity and duration of the ocular surface damage, and that voluntary motor activity could help recovery from a depressive state induced by dry eye.
Collapse
Affiliation(s)
- Katsuya Nakano
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Clinical Research and Trials Center, Kanazawa Medical University Hospital, Uchinada, Japan
| | - Hitomi Nakazawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Qiang He
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takeshi Kiyoi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- *Correspondence: Takayoshi Masuoka
| |
Collapse
|
42
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
43
|
Kim KW, Hwang JS, Chang J, Shin YJ. Association of Dry Eye Diseases and Auditory Sensitivity. J Clin Med 2022; 11:jcm11144171. [PMID: 35887934 PMCID: PMC9318287 DOI: 10.3390/jcm11144171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the association between dry eye and inner ear diseases in a Korean population. Methods: Data from the Korean National Health and Nutrition Survey (KNHANES V, 2010−2012), a national cross-sectional health examination and survey, were collected by the Korea Centers for Disease Control and Prevention. The association between dry eye and inner ear disease was determined using the chi-square test and logistic regression analysis. The individuals were divided into two age groups (<60 and ≥60 years). Results: In total, 17,542 individuals (n = 11,932 in the <60 years group and n = 5610 in the ≥60 years group) were enrolled. After adjusting for confounding factors, the logistic regression model revealed that the associated factors were dizziness and loss of balance experience (OR, 1.315; 95% CI, 1.143−1.513), self-awareness of abnormal voice (OR, 1.372; 95% CI, 1.120−1.679), subjective hearing discomfort (OR, 1.278; CI, 1.084−1.506), and tinnitus (OR, 1.265; 95% CI, 1.101−1.453). The inversely associated factor for dry eye was bilateral hearing loss (OR, 0.497; 95% CI, 0.367−0.672). The hearing threshold was lower in the dry eye group than in the non-dry eye group (p < 0.05). Conclusions: Tinnitus was associated with dry eye and bilateral hearing loss was inversely associated with dry eye. These results suggest that hypersensitivity of the senses and nerves, which is neuropathic hyperesthesia, is one of the main mechanisms of dry eye. Treatment of neuropathy may help in treating dry eye associated with dizziness or tinnitus.
Collapse
Affiliation(s)
- Kyung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (K.W.K.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea;
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (K.W.K.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea;
| | - Jiwon Chang
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea;
- Department of Otorhinolaryngology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (K.W.K.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea;
- Correspondence: ; Tel.: +82-2-6960-1240
| |
Collapse
|
44
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
45
|
Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf 2022; 25:142-153. [PMID: 35779793 DOI: 10.1016/j.jtos.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023]
Abstract
Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. SP is predominantly released by neurons and exerts its biological and immunological effects through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-inflammatory effects through autocrine or paracrine action on the immune cells in various ocular surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface diseases and several new approaches developed to counter the immune-mediated effects of SP either through modulating its production or blocking its target receptor.
Collapse
|
46
|
Yousefi-Manesh H, Aghamollaei H, Dehpour AR, Sheibani M, Tavangar SM, Bagheri M, Shirooie S, Daryabari SH, Noori T. The role of saffron in improvement of ocular surface disease in a mouse model of Lacrimal Gland Excision-induced dry eye disease. Exp Eye Res 2022; 221:109127. [DOI: 10.1016/j.exer.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
47
|
Sullivan C, Lee J, Bushey W, Demers D, Dinsdale S, Lowe K, Olmeda J, Meng ID. Evidence for a phenotypic switch in corneal afferents after lacrimal gland excision. Exp Eye Res 2022; 218:109005. [PMID: 35240196 PMCID: PMC9993327 DOI: 10.1016/j.exer.2022.109005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/22/2022] [Accepted: 02/19/2022] [Indexed: 01/07/2023]
Abstract
Dry eye is a common cause of ocular pain. The aim of this study was to investigate corneal innervation, ongoing pain, and alterations in corneal afferent phenotypes in a mouse model of severe aqueous tear deficiency. Chronic dry eye was produced by ipsilateral excision of the extra- and intraorbital lacrimal glands in male and female mice. Tearing was measured using a phenol thread and corneal epithelial damage assessed using fluorescein. Changes in corneal ongoing ocular pain was evaluated by measuring palpebral opening ratio. Corneal axons were visualized using Nav1.8-Cre;tdTomato reporter mice. Immunohistochemistry was performed to characterize somal expression of calcitonin gene-related peptide (CGRP), the capsaicin sensitive transient receptor potential vanilloid 1 (TRPV1), and activating transcription factor-3 (ATF-3) in tracer labeled corneal neurons following lacrimal gland excision (LGE). LGE decreased tearing, created severe epithelial damage, and decreased palpebral opening, indicative of chronic ocular irritation, over the 28-day observation period. Corneal axon terminals exhibited an acute decrease in density after LGE, followed by a regenerative process over the course of 28 days that was greater in male animals. Corneal neurons expressing CGRP, TRPV1, and ATF3 increased following injury, corresponding to axonal injury and regeneration processes observed during the same period. CGRP and TRPV1 expression was notably increased in IB4-positive cells following LGE. These results indicate that dry eye-induced damage to corneal afferents can result in alterations in IB4-positive neurons that may enhance neuroprotective mechanisms to create resiliency after chronic injury.
Collapse
Affiliation(s)
- Cara Sullivan
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Jun Lee
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Complete Denture Prosthodontics, School of Dentistry, Nihon University, Tokyo, 101-8310, Japan
| | - William Bushey
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - Danielle Demers
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Samantha Dinsdale
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Katy Lowe
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Jessica Olmeda
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA.
| |
Collapse
|
48
|
Bereiter DA, Rahman M, Ahmed F, Thompson R, Luong N, Olson JK. Title: P2x7 Receptor Activation and Estrogen Status Drive Neuroinflammatory Mechanisms in a Rat Model for Dry Eye. Front Pharmacol 2022; 13:827244. [PMID: 35479310 PMCID: PMC9037241 DOI: 10.3389/fphar.2022.827244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Dry eye disease (DED) is recognized as a chronic inflammatory condition with an increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by adverse ocular symptoms which are more prevalent in females than males. The basis for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland excision, was used to determine if activation of the purinergic receptor subtype 7, P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-treated sham females, while expression in DED males and DED females not given estradiol displayed minor changes. No evidence of immune cell infiltration into the trigeminal brainstem was seen in DED rats; however, markers for microglia activation (Iba1) were increased in all groups. Isolated microglia expressed increased levels of P2X7R and P2X4R, IL-1β (Ιnterleukin-1β), NLRP3, and iNOS (nitric oxide synthase). Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1β and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in all DED groups compared to sham rats. Local microinjection in the caudal trigeminal brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg activity in all DE groups, while responses in sham groups were not affected. Intra-trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked OOemg activity in all DED groups, while evoked responses in sham animals were not affected. These results indicated that activation of P2X7R at central and peripheral sites in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and microglia activation in DED males and females. Estrogen treatment in females further amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous deficient DED.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Fabeeha Ahmed
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Nhungoc Luong
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Julie K Olson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Xiong Y, Ruan YT, Zhao J, Yang YW, Chen LP, Mai YR, Yu Q, Cao ZY, Liu FF, Liao W, Liu J. Magnesium-L-threonate exhibited a neuroprotective effect against oxidative stress damage in HT22 cells and Alzheimer’s disease mouse model. World J Psychiatry 2022; 12:410-424. [PMID: 35433327 PMCID: PMC8968501 DOI: 10.5498/wjp.v12.i3.410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oxidative stress results in the production of excess reactive oxygen species (ROS) and triggers hippocampal neuronal damage as well as occupies a key role in the pathological mechanisms of neurodegenerative disorders such as Alzheimer’s disease (AD). A recent study confirmed that magnesium had an inhibitory effect against oxidative stress-related malondialdehyde in vitro. However, whether Magnesium-L-threonate (MgT) is capable of suppressing oxidative stress damage in amyloid β (Aβ)25-35-treated HT22 cells and the AD mouse model still remains to be investigated.
AIM To explore the neuroprotective effect of MgT against oxidative stress injury in vitro and in vivo, and investigate the mechanism.
METHODS Aβ25-35-induced HT22 cells were preconditioned with MgT for 12 h. APPswe/PS1dE9 (APP/PS1) mice were orally administered with MgT daily for 3 mo. After MgT treatment, the viability of Aβ25-35-treated HT22 cells was determined via conducting cell counting kit-8 test and the cognition of APP/PS1 mice was measured through the Morris Water Maze. Flow cytometry experiments were applied to assess the ROS levels of HT22 cells and measure the apoptosis rate of HT22 cells or hippocampal neurons. Expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), hypoxia-inducible factor (HIF)-1α, NADPH oxidase (NOX) 4, Aβ1-42 and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway proteins was quantified by Western blot.
RESULTS In vitro data confirmed that Aβ25–35-induced HT22 cells had a significantly lower cell viability, higher ROS level and higher apoptosis rates compared with those of control cells (all P < 0.001). MgT prevented the Aβ25-35-triggered oxidative stress damage by elevating viability and decreasing ROS formation and apoptosis of HT22 cells (all P < 0.001). APP/PS1 mice exhibited worse cognitive performance and higher apoptosis rate of hippocampal neurons than wild-type (WT) mice (all P < 0.01). Meanwhile, significant higher expression of Aβ1-42 and NOX4 proteins was detected in APP/PS1 mice than those of WT mice (both P < 0.01). MgT also ameliorated the cognitive deficit, suppressed the apoptosis of hippocampal neuron and downregulated the expression of Aβ1-42 and NOX4 proteins in APP/PS1 mouse (all P < 0.05). Moreover, MgT intervention significantly downregulated HIF-1α and Bax, upregulated Bcl-2 and activated the PI3K/Akt pathway both in vitro and in vivo (all P < 0.05).
CONCLUSION MgT exhibits neuroprotective effects against oxidative stress and hippocampal neuronal apoptosis in Aβ25-35-treated HT22 cells and APP/PS1 mice.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Yu-Ting Ruan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Yu-Wen Yang
- Department of Medical Ultrasound, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| | - Li-Ping Chen
- Department of Medical Ultrasound, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| | - Ying-Ren Mai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Qun Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Zhi-Yu Cao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Fei-Fei Liu
- Department of Medical Ultrasound, Xiang’an Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
| | - Wang Liao
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
50
|
Hamity MV, Kolker SJ, Hegarty DM, Blum C, Langmack L, Aicher SA, Hammond DL. Nicotinamide Riboside Alleviates Corneal and Somatic Hypersensitivity Induced by Paclitaxel in Male Rats. Invest Ophthalmol Vis Sci 2022; 63:38. [PMID: 35084430 PMCID: PMC8802023 DOI: 10.1167/iovs.63.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Patients receiving chemotherapy may experience ocular discomfort and dry eye-like symptoms; the latter may be neuropathic in nature. This study assessed corneal and somatic hypersensitivity in male rats treated with paclitaxel and whether it was relieved by nicotinamide riboside (NR). Methods Corneal sensitivity to tactile and chemical stimulation, basal tear production, and sensitivity of the hindpaw to tactile and cool stimuli were assessed before and after paclitaxel in the absence and presence of sustained treatment with 500 mg/kg per os NR. Corneal nerve density and hindpaw intraepidermal nerve fiber (IENF) density were also examined. Results Paclitaxel-treated rats developed corneal hypersensitivity to tactile stimuli, enhanced sensitivity to capsaicin but not hyperosmolar saline, and increased basal tear production. Corneal nerve density visualized with anti-β-tubulin or calcitonin gene-related peptide (CGRP) was unaffected. Paclitaxel induced tactile and cool hypersensitivity of the hindpaw and a loss of nonpeptidergic hindpaw IENFs visualized with anti-protein gene product (PGP) 9.5 and CGRP. NR reversed tactile hypersensitivity of the cornea without suppressing tear production or chemosensitivity; it did not alter corneal afferent density. NR also reversed tactile and cool hypersensitivity of the hindpaw without reversing the loss of hindpaw IENFs. Conclusions These findings suggest that paclitaxel may be a good translational model for chemotherapy-induced ocular discomfort and that NR may be useful for its relief. The ability of NR to relieve somatic tactile hypersensitivity independent of changes in sensory nerve innervation suggests that reversal of terminal arbor degeneration is not critical to the actions of NR.
Collapse
Affiliation(s)
- Marta V. Hamity
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sandra J. Kolker
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Deborah M. Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Christopher Blum
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Lucy Langmack
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Donna L. Hammond
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|