1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Wu L, He J, Shen N, Chen S. Molecular and cellular mechanisms underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neurosci Rep 2025; 18:120-129. [PMID: 39877591 PMCID: PMC11773043 DOI: 10.1016/j.ibneur.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life. Accordingly, the continued pursuit of more efficacious treatments is of paramount importance. In this paper, a review of the relevant literature from recent years was conducted to identify the key cell types involved after peripheral nerve injury. These included Schwann cells, macrophages, neutrophils, endothelial cells, and fibroblasts. The review was conducted in depth. This paper analyses the phenotypic changes of these cells after injury, the relevant factors affecting these changes, and how they coordinate with neurons and other cell types. In addition, it explores the potential mechanisms that mediate the behaviour of these cells. Understanding the interactions between these cells and their mutual regulation with neurons is of great significance for the discovery of new neuroregenerative treatments and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Limao Wu
- School of Clinical Medicine, Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Jinglan He
- Affiliated Hospital of Hebei University of Engineering, No. 80, Jianshe Street, Fuxing District, Handan City, Hebei Province 056003, China
| | - Na Shen
- Department of Science and Education, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Song Chen
- Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China
| |
Collapse
|
3
|
Baum P, Ebert T, Klöting N, Krupka S, König M, Paeschke S, Stock P, Bulc M, Blüher M, Palus K, Nowicki M, Kosacka J. Inflammation and autophagy in peripheral nerves of rodent models with metabolic syndrome and type 2 diabetes mellitus. Neurosci Res 2025:S0168-0102(25)00070-7. [PMID: 40252698 DOI: 10.1016/j.neures.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2D) are associated with inflammation and the accumulation of macrophages in peripheral nerves, which increases the risk of developing peripheral neuropathy (PN). We have previously investigated that macrophage infiltration in the peripheral nerves of animals with T2D (leptin-deficient ob/ob mice, leptin receptor-deficient db/db) correlated with PN, whereas this process in animals with MetS (Wistar Ottawa Karlsburg W (RT1u) WOKW rat) did not lead to neuropathic changes. Additional data presented in this study suggest an association between increased mRNA expression of the anti-inflammatory marker IL-10 and autophagy in the prevention of neuropathy.
Collapse
Affiliation(s)
- Petra Baum
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Thomas Ebert
- University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Liebigstr. 20, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sabine Paeschke
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Peggy Stock
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Michal Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Polen
| | - Matthias Blüher
- University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Polen
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Joanna Kosacka
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany.
| |
Collapse
|
4
|
Chang MM, Chu DT, Lin SC, Lee JS, Vu TD, Vu HT, Ramasamy TS, Lin SP, Wu CC. Enhanced mitochondrial function and delivery from adipose-derived stem cell spheres via the EZH2-H3K27me3-PPARγ pathway for advanced therapy. Stem Cell Res Ther 2025; 16:129. [PMID: 40069892 PMCID: PMC11899936 DOI: 10.1186/s13287-025-04164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Microenvironmental alterations induce significant genetic and epigenetic changes in stem cells. Mitochondria, essential for regenerative capabilities, provide the necessary energy for stem cell function. However, the specific roles of histone modifications and mitochondrial dynamics in human adipose-derived stem cells (ASCs) during morphological transformations remain poorly understood. In this study, we aim to elucidate the mechanisms by which ASC sphere formation enhances mitochondrial function, delivery, and rescue efficiency. METHODS ASCs were cultured on chitosan nano-deposited surfaces to form 3D spheres. Mitochondrial activity and ATP production were assessed using MitoTracker staining, Seahorse XF analysis, and ATP luminescence assays. Single-cell RNA sequencing, followed by Ingenuity Pathway Analysis (IPA), was conducted to uncover key regulatory pathways, which were validated through molecular techniques. Pathway involvement was confirmed using epigenetic inhibitors or PPARγ-modulating drugs. Mitochondrial structural integrity and delivery efficiency were evaluated after isolation. RESULTS Chitosan-induced ASC spheres exhibited unique compact mitochondrial morphology, characterized by condensed cristae, enhanced mitochondrial activity, and increased ATP production through oxidative phosphorylation. High expressions of mitochondrial complex I genes and elevated levels of mitochondrial complex proteins were observed without an increase in reactive oxygen species (ROS). Epigenetic modification of H3K27me3 and PPARγ involvement were discovered and confirmed by inhibiting H3K27me3 with the specific EZH2 inhibitor GSK126 and by adding the PPARγ agonist Rosiglitazone (RSG). Isolated mitochondria from ASC spheres showed improved structural stability and delivery efficiency, suppressed the of inflammatory cytokines in LPS- and TNFα-induced inflamed cells, and rescued cells from damage, thereby enhancing function and promoting recovery. CONCLUSION Enhancing mitochondrial ATP production via the EZH2-H3K27me3-PPARγ pathway offers an alternative strategy to conventional cell-based therapies. High-functional mitochondria and delivery efficiency show significant potential for regenerative medicine applications.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Dinh Toi Chu
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, 1000, Vietnam
| | - Sheng-Che Lin
- Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, 70965, Taiwan
| | - Jung-Shun Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, 701401, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Thuy Duong Vu
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, 1000, Vietnam
| | - Hue Thi Vu
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, 1000, Vietnam
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, 10672, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Chang CH, Peng IC, Huang YH. Recombinant Thrombomodulin Domain 1 Modulates Macrophage Polarization and Enhances Healing in Corneal Alkali Burns. Invest Ophthalmol Vis Sci 2025; 66:21. [PMID: 39786758 PMCID: PMC11725990 DOI: 10.1167/iovs.66.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization. Methods A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1. The effects of rTMD1 on macrophage polarization, inflammatory response, tissue repair, fibrosis, and neovascularization were assessed through histological analysis, immunohistochemistry, and molecular studies targeting key signaling pathways such as ERK/HIF-1α and vascular endothelial growth factor (VEGF) expression. Results Administration of rTMD1 significantly modulated macrophage polarization, promoting a transition from the pro-inflammatory M1 phenotype to the reparative M2 phenotype via inhibition of the ERK/HIF-1α pathway. This shift resulted in reduced inflammation, enhanced tissue repair, and controlled fibrosis. Furthermore, rTMD1 inhibited neovascularization by downregulating VEGF expression, aiding in the preservation of corneal clarity. Conclusions rTMD1 demonstrates substantial therapeutic potential in treating corneal alkali burns by reducing inflammation, promoting tissue repair, controlling fibrosis, and inhibiting neovascularization. These findings support the further development of rTMD1 as a promising treatment for corneal burns and possibly other inflammatory ocular conditions.
Collapse
Affiliation(s)
- Chun-Hsiang Chang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chen Peng
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsun Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Neuman K, Zhang X, Lejeune BT, Pizzarella D, Vázquez M, Lewis LH, Koppes AN, Koppes RA. Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth. Adv Healthc Mater 2025; 14:e2403956. [PMID: 39568232 PMCID: PMC11773108 DOI: 10.1002/adhm.202403956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Axonal growth is heavily influenced by topography and biophysical stimuli including magnetic and electrical fields. Despite extensive investigation, the degree of influence and the underlying genetic mechanisms remain poorly understood. Here, a novel approach to guide neurite growth is undertaken using an innovative ferromagnetic composite material - glass-coated magnetic microwire - to furnish a synergistic combination of magnetic and topographical cues. Whole rat dorsal root ganglia (DRG) are cultured under five different conditions: control, static magnetic field, magnetic microwire, static magnetic field + glass fiber, and static magnetic field + magnetic microwire. DRG outgrowth responses under each condition, including total neurite outgrowth and directionality, are compared. The combination of both magnetic stimulation and topography significantly increases total neurite outgrowth compared to the controls. The combination of magnetic stimulation and magnetic microwire lead to a strong directional bias of growth along the microwire, double what is observed with the glass fiber. Next generation RNA sequencing of DRG exposed to static magnetic field + magnetic microwire reveals the downregulation of genes relating to the immune response, interleukin signaling, and signal transduction. These results set the stage for contemplating future biophysical stimulation for axonal guidance and improved understanding of material-tissue interactions.
Collapse
Affiliation(s)
- Katelyn Neuman
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Xiaoyu Zhang
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Brian. T. Lejeune
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Manuel Vázquez
- Instituto de Ciencia de Materiales de MadridCSICMadrid28049Spain
| | - Laura H. Lewis
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Abigail N. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of BioengineeringNortheastern UniversityBostonMA02115USA
- Dept. of BiologyNortheastern UniversityBostonMA02115USA
| | - Ryan A. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
7
|
Wang Q, Zeng F, Fang C, Sun Y, Zhao X, Rong X, Zhang H, Xu Y. Galectin-3 alleviates demyelination by modulating microglial anti-inflammatory polarization through PPARγ-CD36 axis. Brain Res 2024; 1842:149106. [PMID: 38986827 DOI: 10.1016/j.brainres.2024.149106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Demyelination is characterized by disruption of myelin sheath and disorders in myelin formation. Currently, there are no effective therapeutic treatments available. Microglia, especially anti-inflammatory phenotype microglia are critical for remyelination. Galectin-3 (Gal-3), which is known to modulate microglia activation, is correlated with myelination. In this study, we aimed to elucidate the roles of Gal-3 during myelin formation and explore the efficiency and mechanism of rGal-3 administration in remyelination. We enrolled Gal-3 knockout (Lgals3 KO) mice and demonstrated Lgals3 KO causes demyelination during spontaneous myelinogenesis. We performed a cuprizone (CPZ) intoxication model and found Lgals3 KO aggravates demyelinated lesions and favors microglial pro-inflammatory phenotype polarization. Recombinant Gal-3 (rGal-3) administration alleviates CPZ intoxication and drives microglial towards anti-inflammatory phenotype. Additionally, RNA sequencing results reveal the correlation between Gal-3 and the PPARγ-CD36 axis. Thus, we performed SSO and GW9662 administration to inhibit the activation of the PPARγ-CD36 axis and found that rGal-3 administration modulates microglial phenotype polarization by regulating the PPARγ-CD36 axis. Together, our findings highlight the importance of Gal-3 in myelination and provide insights into rGal-3 administration for modulating microglial anti-inflammatory phenotype polarization through the PPARγ-CD36 axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China; Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Fansen Zeng
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Chunxiao Fang
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yi Sun
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Huayan Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| | - Yi Xu
- Department of Infectious and Liver Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
8
|
Rasouli A, Roshangar L, Hosseini M, Pourmohammadfazel A, Nikzad S. Beyond boundaries: The therapeutic potential of exosomes in neural microenvironments in neurological disorders. Neuroscience 2024; 553:98-109. [PMID: 38964450 DOI: 10.1016/j.neuroscience.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Neurological disorders are a diverse group of conditions that can significantly impact individuals' quality of life. The maintenance of neural microenvironment homeostasis is essential for optimal physiological cellular processes. Perturbations in this delicate balance underlie various pathological manifestations observed across various neurological disorders. Current treatments for neurological disorders face substantial challenges, primarily due to the formidable blood-brain barrier and the intricate nature of neural tissue structures. These obstacles have resulted in a paucity of effective therapies and inefficiencies in patient care. Exosomes, nanoscale vesicles that contain a complex repertoire of biomolecules, are identifiable in various bodily fluids. They hold substantial promise in numerous therapeutic interventions due to their unique attributes, including targeted drug delivery mechanisms and the ability to cross the BBB, thereby enhancing their therapeutic potential. In this review, we investigate the therapeutic potential of exosomes across a range of neurological disorders, including neurodegenerative disorders, traumatic brain injury, peripheral nerve injury, brain tumors, and stroke. Through both in vitro and in vivo studies, our findings underscore the beneficial influence of exosomes in enhancing the neural microenvironment following neurological diseases, offering promise for improved neural recovery and management in these conditions.
Collapse
Affiliation(s)
- Arefe Rasouli
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammadbagher Hosseini
- Department of Pediatrics, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pourmohammadfazel
- Department of Anatomical Sciences, School of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Turan A, Tarique M, Zhang L, Kazmi S, Ulker V, Tedla MG, Badal D, Yolcu ES, Shirwan H. Engineering Pancreatic Islets to Transiently Codisplay on Their Surface Thrombomodulin and CD47 Immunomodulatory Proteins as a Means of Mitigating Instant Blood-Mediated Inflammatory Reaction following Intraportal Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1971-1980. [PMID: 38709159 PMCID: PMC11160431 DOI: 10.4049/jimmunol.2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1β, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mohammad Tarique
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Lei Zhang
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Shadab Kazmi
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Vahap Ulker
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mebrahtu G Tedla
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Darshan Badal
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Esma S Yolcu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Haval Shirwan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
10
|
Smail SW, Abdulqadir SZ, Alalem LSS, Rasheed TK, Khudhur ZO, Mzury AFA, Awla HK, Ghayour MB, Abdolmaleki A. Enhancing sciatic nerve regeneration with osteopontin-loaded acellular nerve allografts in rats: Effects on macrophage polarization. Tissue Cell 2024; 88:102379. [PMID: 38678741 DOI: 10.1016/j.tice.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Osteopontin (OPN) is a multifunctional matrix glycoprotein with neuroprotective and immunomodulatory properties. This study explored the potential of OPN-loaded acellular nerve allografts (ANAs) to repair sciatic nerves in male Wistar rats. The research also delved into the impact of OPN on macrophage phenotypes. We reconstructed a 10 mm nerve gap with ANAs containing OPN at 2 nM and 4 nM. The sciatic functional index (SFI) and paw withdrawal reflex latency (WRL) showed the significant efficacy of ANA/OPN (2 nM) in enhancement of target organ reinnervation and subsequent sensorimotor recovery compared to other groups. Electrophysiological and histomorphometric analyses further supported the regenerative properties of ANA/OPN (2 nM). Additionally, ANA/OPN (2 nM) promoted macrophage polarization towards an M2 phenotype and reduced proinflammatory cytokines at the injury site. In conclusion, the study suggested that ANA loaded with 2 nM OPN effectively repaired transected sciatic nerves in rats, potentially through enhancing axonal sprouting and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq.
| | | | | | - Taban Kamal Rasheed
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | | | | | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
11
|
Hindle J, Williams A, Kim Y, Kim D, Patil K, Khatkar P, Osgood Q, Nelson C, Routenberg DA, Howard M, Liotta LA, Kashanchi F, Branscome H. hTERT-Immortalized Mesenchymal Stem Cell-Derived Extracellular Vesicles: Large-Scale Manufacturing, Cargo Profiling, and Functional Effects in Retinal Epithelial Cells. Cells 2024; 13:861. [PMID: 38786083 PMCID: PMC11120263 DOI: 10.3390/cells13100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.
Collapse
Affiliation(s)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Kajal Patil
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Collin Nelson
- Meso Scale Diagnostics, L.L.C., Rockville, MD 20850, USA (D.A.R.)
| | | | - Marissa Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Heather Branscome
- ATCC, Manassas, VA 20110, USA
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| |
Collapse
|
12
|
Wang Y, Mao J, Wang Y, Jiang N, Shi X. Multifunctional Exosomes Derived from M2 Macrophages with Enhanced Odontogenesis, Neurogenesis and Angiogenesis for Regenerative Endodontic Therapy: An In Vitro and In Vivo Investigation. Biomedicines 2024; 12:441. [PMID: 38398043 PMCID: PMC10886856 DOI: 10.3390/biomedicines12020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Exosomes derived from M2 macrophages (M2-Exos) exhibit tremendous potential for inducing tissue repair and regeneration. Herein, this study was designed to elucidate the biological roles of M2-Exos in regenerative endodontic therapy (RET) compared with exosomes from M1 macrophages (M1-Exos). METHODS The internalization of M1-Exos and M2-Exos by dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) was detected by uptake assay. The effects of M1-Exos and M2-Exos on DPSC and HUVEC behaviors, including migration, proliferation, odonto/osteogenesis, neurogenesis, and angiogenesis were determined in vitro. Then, Matrigel plugs incorporating M2-Exos were transplanted subcutaneously into nude mice. Immunostaining for vascular endothelial growth factor (VEGF) and CD31 was performed to validate capillary-like networks. RESULTS M1-Exos and M2-Exos were effectively absorbed by DPSCs and HUVECs. Compared with M1-Exos, M2-Exos considerably facilitated the proliferation and migration of DPSCs and HUVECs. Furthermore, M2-Exos robustly promoted ALP activity, mineral nodule deposition, and the odonto/osteogenic marker expression of DPSCs, indicating the powerful odonto/osteogenic potential of M2-Exos. In sharp contrast with M1-Exos, which inhibited the neurogenic capacity of DPSCs, M2-Exos contributed to a significantly augmented expression of neurogenic genes and the stronger immunostaining of Nestin. Consistent with remarkably enhanced angiogenic markers and tubular structure formation in DPSCs and HUVECs in vitro, the employment of M2-Exos gave rise to more abundant vascular networks, dramatically higher VEGF expression, and widely spread CD31+ tubular lumens in vivo, supporting the enormous pro-angiogenic capability of M2-Exos. CONCLUSIONS The multifaceted roles of M2-Exos in ameliorating DPSC and HUVEC functions potentially contribute to complete functional pulp-dentin complex regeneration.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
13
|
Wang R, Zhang S, Liu Y, Li H, Guan S, Zhu L, Jia L, Liu Z, Xu H. The role of macrophage polarization and related key molecules in pulmonary inflammation and fibrosis induced by coal dust dynamic inhalation exposure in Sprague-Dawley rats. Cytokine 2024; 173:156419. [PMID: 37976700 DOI: 10.1016/j.cyto.2023.156419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1β, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-β. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Siyi Zhang
- Wuxi Center For Disease Control And Prevention, Wuxi, Jiangsu 214000, China
| | - Yifei Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Hongmei Li
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Leina Jia
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
14
|
Oshima E, Hayashi Y, Xie Z, Sato H, Hitomi S, Shibuta I, Urata K, Ni J, Iwata K, Shirota T, Shinoda M. M2 macrophage-derived cathepsin S promotes peripheral nerve regeneration via fibroblast-Schwann cell-signaling relay. J Neuroinflammation 2023; 20:258. [PMID: 37946211 PMCID: PMC10636844 DOI: 10.1186/s12974-023-02943-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.
Collapse
Affiliation(s)
- Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hitoshi Sato
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| |
Collapse
|
15
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
16
|
Feng R, Zhang P. The significance of M1 macrophage should be highlighted in peripheral nerve regeneration. Histol Histopathol 2023; 38:975-987. [PMID: 36734334 DOI: 10.14670/hh-18-591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macrophage influences peripheral nerve regeneration. According to the classical M1/M2 paradigm, the M1 macrophage is an inhibitor of regeneration, while the M2 macrophage is a promoter. However, several studies have shown that M1 macrophages are indispensable for peripheral nerve repair and facilitate many critical processes in axonal regeneration. In this review, we summarized the information on macrophage polarization and focused on the activities of M1 macrophages in regeneration. We also provided some examples where the macrophage phenotypes were regulated to help regeneration. We argued that the coordination of both macrophage phenotypes might be effective in peripheral nerve repair, and a more comprehensive view of macrophages might contribute to macrophage-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Ruiqin Feng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Ministry of Education and National Center for Trauma Medicine, Beijing, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Ministry of Education and National Center for Trauma Medicine, Beijing, China.
| |
Collapse
|
17
|
Yao Y, Zhang L, Cheng F, Jiang Q, Ye Y, Ren Y, He Y, Su D, Cheng L, Shi G, Dai L, Deng H. PPARγ-dependent hepatic macrophage switching acts as a central hub for hUCMSC-mediated alleviation of decompensated liver cirrhosis in rats. Stem Cell Res Ther 2023; 14:184. [PMID: 37501214 PMCID: PMC10375757 DOI: 10.1186/s13287-023-03416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Decompensated liver cirrhosis (DLC), a terminal-stage complication of liver disease, is a major cause of morbidity and mortality in patients with hepatopathies. Human umbilical cord mesenchymal stem cell (hUCMSC) therapy has emerged as a novel treatment alternative for the treatment of DLC. However, optimized therapy protocols and the associated mechanisms are not entirely understood. METHODS We constructed a DLC rat model consistent with the typical clinical characteristics combined use of PB and CCL4. Performing dynamic detection of liver morphology and function in rats for 11 weeks, various disease characteristics of DLC and the therapeutic effect of hUCMSCs on DLC in experimental rats were thoroughly investigated, according to ascites examination, histopathological, and related blood biochemical analyses. Flow cytometry analysis of rat liver, immunofluorescence, and RT-qPCR was performed to examine the changes in the liver immune microenvironment after hucMSCs treatment. We performed RNA-seq analysis of liver and primary macrophages and hUCMSCs co-culture system in vitro to explore possible signaling pathways. PPARγ antagonist, GW9662, and clodronate liposomes were used to inhibit PPAR activation and pre-exhaustion of macrophages in DLC rats' livers, respectively. RESULTS We found that changing the two key issues, the frequency and initial phase of hUCMSCs infusion, can affect the efficacy of hUCMSCs, and the optimal hUCMSCs treatment schedule is once every week for three weeks at the early stage of DLC progression, providing the best therapeutic effect in reducing mortality and ascites, and improving liver function in DLC rats. hUCMSCs treatment skewed the macrophage phenotype from M1-type to M2-type by activating the PPARγ signaling pathway in the liver, which was approved by primary macrophages and hUCMSCs co-culture system in vitro. Both inhibition of PPARγ activation with GW9662 and pre-exhaustion of macrophages in DLC rats' liver abolished the regulation of hUCMSCs on macrophage polarization, thus attenuating the beneficial effect of hUCMSCs treatment in DLC rats. CONCLUSIONS These data demonstrated that the optimal hUCMSCs treatment effectively inhibits the ascites formation, prolongs survival and significantly improves liver structure and function in DLC rats through the activation of the PPARγ signaling pathway within liver macrophages. Our study compared the efficacy of different hUCMSCs infusion regimens for DLC, providing new insights on cell-based therapies for regenerative medicine.
Collapse
Affiliation(s)
- Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, People's Republic of China
| | - Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Yuting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dongsheng Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No.1, Gao-peng Street, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
18
|
Wei Y, Jiang H, Chai C, Liu P, Qian M, Sun N, Gao M, Zu H, Yu Y, Ji G, Zhang Y, Yang S, He J, Cheng J, Tian J, Zhao Q. Endothelium-Mimetic Surface Modification Improves Antithrombogenicity and Enhances Patency of Vascular Grafts in Rats and Pigs. JACC Basic Transl Sci 2023; 8:843-861. [PMID: 37547067 PMCID: PMC10401295 DOI: 10.1016/j.jacbts.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
We first identified thrombomodulin (TM) and endothelial nitric oxide (NO) synthase as key factors for the antithrombogenic function of the endothelium in human atherosclerotic carotid arteries. Then, recombinant TM and an engineered galactosidase responsible for the conversion of an exogenous NO prodrug were immobilized on the surface of the vascular grafts. Surface modification by TM and NO cooperatively enhanced the antithrombogenicity and patency of vascular grafts. Importantly, we found that the combination of TM and NO also promoted endothelialization, whereas it reduced adverse intimal hyperplasia, which is critical for the maintenance of vascular homeostasis, as confirmed in rat and pig models.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Pei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia (Ministry of Education), Harbin, China
| | - Man Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Honglin Zu
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai, China
| | - Guangbo Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yating Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia (Ministry of Education), Harbin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Turan A, Zhang L, Tarique M, Ulker V, Arguc FN, Badal D, Yolcu ES, Shirwan H. Engineering pancreatic islets with a novel form of thrombomodulin protein to overcome early graft loss triggered by instant blood-mediated inflammatory reaction. Am J Transplant 2023; 23:619-628. [PMID: 36863480 PMCID: PMC10318623 DOI: 10.1016/j.ajt.2023.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Lei Zhang
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Mohammad Tarique
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Vahap Ulker
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Feyza Nur Arguc
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Darshan Badal
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA
| | - Esma S Yolcu
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| | - Haval Shirwan
- Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
| |
Collapse
|
20
|
He S, Tian R, Zhang X, Yao Q, Chen Q, Liu B, Liao L, Gong Y, Yang H, Wang D. PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. Clin Immunol 2023; 250:109293. [PMID: 36934848 DOI: 10.1016/j.clim.2023.109293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
The role of Peroxisome Proliferator-Activated Receptor-γ (PPARγ) in alveolar macrophages(AMs) polarization homeostasis is closely associated with airway remodeling in COPD, but the definite mechanism remains unclear. In this study, elevated percentage of M1-type AMs and the expression of functionally cytokines were found in COPD patients and mice, which closely related to the disease severity. PPARγ was markedly up-regulated in M2-type AMs and down-regulated in M1-type AMs, and was associated with disease severity in COPD. Co-cultured with M1- or M2-type AMs promoted the epithelial-mesenchymal transition (EMT) of airway epithelial cells and the proliferation of airway smooth muscle cells. Moreover, airway remodeling and functional damage were observed in both IL4R-/- COPD mice with runaway M1-type AMs polarization and TLR4-/- COPD mice with runaway M2-type AMs polarization. Cigarette extract (CS) or lipopolysaccharide (LPS) stimulated PPARγ-/- AMs showed more serious polarization disorder towards M1, as well as CS induced PPARγ-/- COPD mice, which led to more severe airway inflammation, lung function damage, and airway remodeling. Treatment with PPARγ agonist significantly improved the polarization disorder and function activity in CS/LPS stimulated-AMs by inhibiting the JAK-STAT, MAPK and NF-κB pathways, and alleviated the airway inflammation, restored the lung function and suppressed airway remodeling in CS induced-COPD mice. Our research demonstrates that polarization homeostasis of AMs mediated by PPARγ has the protective effect in airway remodeling, and may be a novel therapeutic target for the intervention and treatment of airway remodeling in COPD.
Collapse
Affiliation(s)
- Sirong He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ruoyuan Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinying Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingmei Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Quan Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Bicui Liu
- Department of Respiratory and Critical Care Medicine, The Bishan Hospital of Chongqing, Chongqing 404000, PR China
| | - Lele Liao
- Department of Respiratory Medicine, The Second Hospital of Jiulongpo District, Chongqing 400050, PR China
| | - Yuxuan Gong
- International medical college, Chongqing Medical University, Chongqing 401334, PR China
| | - Hua Yang
- Respiratory Department, Minda Hospital of Hubei Minzu University, Enshi 445000, PR China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
21
|
Bianchini M, Micera S, Redolfi Riva E. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020640. [PMID: 36839962 PMCID: PMC9965241 DOI: 10.3390/pharmaceutics15020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Collapse
Affiliation(s)
- Marta Bianchini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
22
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|
23
|
del Olmo I, Verdes A, Álvarez‐Campos P. Distinct patterns of gene expression during regeneration and asexual reproduction in the annelid Pristina leidyi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:405-420. [PMID: 35604322 PMCID: PMC9790225 DOI: 10.1002/jez.b.23143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Regeneration, the ability to replace lost body parts, is a widespread phenomenon in the animal kingdom often connected to asexual reproduction or fission, since the only difference between the two appears to be the stimulus that triggers them. Both developmental processes have largely been characterized; however, the molecular toolkit and genetic mechanisms underlying these events remain poorly unexplored. Annelids, in particular the oligochaete Pristina leidyi, provide a good model system to investigate these processes as they show diverse ways to regenerate, and can reproduce asexually through fission under laboratory conditions. Here, we used a comparative transcriptomics approach based on RNA-sequencing and differential gene expression analyses to understand the molecular mechanisms involved in anterior regeneration and asexual reproduction. We found 291 genes upregulated during anterior regeneration, including several regeneration-related genes previously reported in other annelids such as frizzled, paics, and vdra. On the other hand, during asexual reproduction, 130 genes were found upregulated, and unexpectedly, many of them were related to germline development during sexual reproduction. We also found important differences between anterior regeneration and asexual reproduction, with the latter showing a gene expression profile more similar to that of control individuals. Nevertheless, we identified 35 genes that were upregulated in both conditions, many of them related to cell pluripotency, stem cells, and cell proliferation. Overall, our results shed light on the molecular mechanisms that control anterior regeneration and asexual reproduction in annelids and reveal similarities with other animals, suggesting that the genetic machinery controlling these processes is conserved across metazoans.
Collapse
Affiliation(s)
- Irene del Olmo
- Department of Biology (Zoology)Universidad Autónoma de MadridMadridSpain
| | - Aida Verdes
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de MadridMadridSpain
| | | |
Collapse
|
24
|
Yadav A, Ramasamy TS, Lin SC, Chen SH, Lu J, Liu YH, Lu FI, Hsueh YY, Lin SP, Wu CC. Autologous Platelet-Rich Growth Factor Reduces M1 Macrophages and Modulates Inflammatory Microenvironments to Promote Sciatic Nerve Regeneration. Biomedicines 2022; 10:biomedicines10081991. [PMID: 36009539 PMCID: PMC9406033 DOI: 10.3390/biomedicines10081991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The failure of peripheral nerve regeneration is often associated with the inability to generate a permissive molecular and cellular microenvironment for nerve repair. Autologous therapies, such as platelet-rich plasma (PRP) or its derivative platelet-rich growth factors (PRGF), may improve peripheral nerve regeneration via unknown mechanistic roles and actions in macrophage polarization. In the current study, we hypothesize that excessive and prolonged inflammation might result in the failure of pro-inflammatory M1 macrophage transit to anti-inflammatory M2 macrophages in large nerve defects. PRGF was used in vitro at the time the unpolarized macrophages (M0) macrophages were induced to M1 macrophages to observe if PRGF altered the secretion of cytokines and resulted in a phenotypic change. PRGF was also employed in the nerve conduit of a rat sciatic nerve transection model to identify alterations in macrophages that might influence excessive inflammation and nerve regeneration. PRGF administration reduced the mRNA expression of tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and IL-6 in M0 macrophages. Increased CD206 substantiated the shift of pro-inflammatory cytokines to the M2 regenerative macrophage. Administration of PRGF in the nerve conduit after rat sciatic nerve transection promoted nerve regeneration by improving nerve gross morphology and its targeted gastrocnemius muscle mass. The regenerative markers were increased for regrown axons (protein gene product, PGP9.5), Schwann cells (S100β), and myelin basic protein (MBP) after 6 weeks of injury. The decreased expression of TNFα, IL-1β, IL-6, and CD68+ M1 macrophages indicated that the inflammatory microenvironments were reduced in the PRGF-treated nerve tissue. The increase in RECA-positive cells suggested the PRGF also promoted angiogenesis during nerve regeneration. Taken together, these results indicate the potential role and clinical implication of autologous PRGF in regulating inflammatory microenvironments via macrophage polarization after nerve transection.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sheng-Che Lin
- Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 709, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5327); Fax: +886-6-209-3007
| |
Collapse
|
25
|
Claro-Cala CM, Grao-Cruces E, Toscano R, Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Acyclic Diterpene Phytol from Hemp Seed Oil ( Cannabis sativa L.) Exerts Anti-Inflammatory Activity on Primary Human Monocytes-Macrophages. Foods 2022; 11:foods11152366. [PMID: 35954130 PMCID: PMC9367727 DOI: 10.3390/foods11152366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10–100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage.
Collapse
Affiliation(s)
- Carmen M. Claro-Cala
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-954556083
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain
| |
Collapse
|
26
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
27
|
Wang W, Liu H, Liu T, Yang H, He F. Insights into the Role of Macrophage Polarization in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2485959. [PMID: 35707276 PMCID: PMC9192196 DOI: 10.1155/2022/2485959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide suffer from osteoporosis, which causes bone fragility and increases the risk of fractures. Osteoporosis is closely related to the inhibition of osteogenesis and the enhancement of osteoclastogenesis. In addition, chronic inflammation and macrophage polarization may contribute to osteoporosis as well. Macrophages, crucial to inflammatory responses, display different phenotypes under the control of microenvironment. There are two major phenotypes, classically activated macrophages (M1) and alternatively activated macrophages (M2). Generally, M1 macrophages mainly lead to bone resorption, while M2 macrophages result in osteogenesis. M1/M2 ratio reflects the "fluid" state of macrophage polarization, and the imbalance of M1/M2 ratio may cause disease such as osteoporosis. Additionally, antioxidant drugs, such as melatonin, are applied to change the state of macrophage polarization and to treat osteoporosis. In this review, we introduce the mechanisms of macrophage polarization-mediated bone resorption and bone formation and the contribution to the clinical strategies of osteoporosis treatment.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
28
|
An Integrative Bioinformatics Analysis of the Potential Mechanisms Involved in Propofol Affecting Hippocampal Neuronal Cells. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4911773. [PMID: 35515499 PMCID: PMC9064519 DOI: 10.1155/2022/4911773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
The aim of this study is to probe the possible molecular mechanisms underlying the effects of propofol on HT22 cells. HT22 cells treated with different concentrations were sequenced, and then the results of the sequencing were analyzed for dynamic trends. Expression pattern clustering analysis was performed to demonstrate the expression of genes in the significant trend modules in each group of samples. We first chose the genes related to the trend module for WGCNA analysis, then constructed the PPI network of module genes related to propofol treatment group, and screened the key genes. Finally, GSEA analysis was performed on the key genes. Overall, 2,506 genes showed a decreasing trend with increasing propofol concentration, and 1,871 genes showed an increasing trend with increasing propofol concentration. WGCNA analysis showed that among them, turquoise panel genes were negatively correlated with propofol treatment, and genes with Cor R >0.9 in the turquoise panel were selected for PPI network construction. The MCC algorithm screened a total of five key genes (CD86, IL10RA, PTPRC, SPI1, and ITGAM). GSEA analysis showed that CD86, IL10RA, PTPRC, SPI1, and ITGAM are involved in the PRION_DISEASES pathway. Our study showed that propofol sedation can affect mRNA expression in the hippocampus, providing new ideas to identify treatment of nerve injury induced by propofol anesthesia.
Collapse
|
29
|
Liu J, Zhang Z, Yang Y, Di T, Wu Y, Bian T. NCOA4-Mediated Ferroptosis in Bronchial Epithelial Cells Promotes Macrophage M2 Polarization in COPD Emphysema. Int J Chron Obstruct Pulmon Dis 2022; 17:667-681. [PMID: 35386390 PMCID: PMC8978690 DOI: 10.2147/copd.s354896] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background Macrophage polarization plays an important role in the pathogenesis of COPD emphysema. Changes in macrophage polarization in COPD remain unclear, while polarization and ferroptosis are essential factors in its pathogenesis. Therefore, this study investigated the relationship between macrophage polarization and ferroptosis in COPD emphysema. Methods We measured macrophage polarization and the levels of matrix metalloproteinases (MMPs) in the lung tissues of COPD patients and cigarette smoke (CS)-exposed mice. Flow cytometry was used to determine macrophage (THP-M cell) polarization changes. Ferroptosis was examined by FerroOrange, Perls' DAB, C11-BODIPY and 4-HNE staining. Nuclear receptor coactivator 4 (NCOA4) was measured in the lung tissues of COPD patients and CS-exposed mice by western blotting. A cell study was performed to confirm the regulatory effect of NCOA4 on macrophage polarization. Results Increased M2 macrophages and MMP9 and MMP12 levels were observed in COPD patients, CS-exposed mice and THP-M cells cocultured with CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased NCOA4 levels and ferroptosis were confirmed in COPD. Treatment with NCOA4 siRNA and the ferroptosis inhibitor ferrostatin-1 revealed an association between ferroptosis and M2 macrophages. These findings support a role for NCOA4, which induces an increase in M2 macrophages, in the pathogenesis of COPD emphysema. Conclusion In our study, CS led to the dominance of the M2 phenotype in COPD. We identified NCOA4 as a regulator of M2 macrophages and emphysema by mediating ferroptosis, which offers a new direction for research into COPD diagnostics and treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Zixiao Zhang
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yue Yang
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tingting Di
- Department of Respiratory Medicine, First People’s Hospital of Nantong, Nantong, Jiangsu, 226006, People’s Republic of China
| | - Yan Wu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
30
|
Bai J, Liu C, Kong L, Tian S, Yu K, Tian D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Regeneration and Prevents Fibrosis in a Rat Sciatic Nerve Transection Model. Front Surg 2022; 9:842540. [PMID: 35372465 PMCID: PMC8971199 DOI: 10.3389/fsurg.2022.842540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Functional recovery after peripheral nerve injury repair is typically unsatisfactory. An anastomotically poor microenvironment and scarring at the repair site are important factors impeding nerve regeneration. In this study, an electrospun poly-e-caprolactone (PCL)-amnion nanofibrous membrane comprising an amnion membrane and nonwoven electrospun PCL was used to wrap the sciatic nerve repair site in the rat model of a sciatic nerve transection. The effect of the PCL-amnion nanofibrous membrane on improving nerve regeneration and preventing scarring at the repair site was evaluated by expression of the inflammatory cytokine, sciatic functional index (SFI), electrophysiology, and histological analyses. Four weeks after repair, the degree of nerve adhesion, collagen deposition, and intraneural macrophage invasion of the PCL-amnion nanofibrous membrane group were significantly decreased compared with those of the Control group. Moreover, the PCL-amnion nanofibrous membrane decreased the expression of pro-inflammatory cytokines such as interleukin(IL)-6, Tumor Necrosis Factor(TNF)-a and the number of pro-inflammatory M1 macrophages, and increased the expression of anti-inflammatory cytokine such as IL-10, IL-13 and anti-inflammatory M2 macrophages. At 16 weeks, the PCL-amnion nanofibrous membrane improved functional recovery, including promoting nerve Schwann cell proliferation, axon regeneration, and reducing the time of muscle denervation. In summary, the PCL-amnion nanofibrous membrane effectively improved nerve regeneration and prevent fibrosis after nerve repair, which has good clinical application prospect for tissue repair.
Collapse
Affiliation(s)
- Jiangbo Bai
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunjie Liu
- Department of Orthopedics, Tangshan Workers Hospital, Tangshan, China
| | - Lingde Kong
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siyu Tian
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kunlun Yu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dehu Tian
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dehu Tian
| |
Collapse
|
31
|
Lee YJ, Kim K, Kim M, Ahn YH, Kang JL. Inhibition of STAT6 Activation by AS1517499 Inhibits Expression and Activity of PPARγ in Macrophages to Resolve Acute Inflammation in Mice. Biomolecules 2022; 12:447. [PMID: 35327639 PMCID: PMC8946515 DOI: 10.3390/biom12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Kiyoon Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Minsuk Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| |
Collapse
|
32
|
Yamamoto Y, Ikeda T, Uchiyama M, Iguchi K, Imazuru T, Shimokawa T. Effects of Each Domain in Recombinant Human Soluble Thrombomodulin on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:487-491. [DOI: 10.1016/j.transproceed.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
33
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
34
|
Zou Y, Zhang J, Xu J, Fu L, Xu Y, Wang X, Li Z, Zhu L, Sun H, Zheng H, Guo J. SIRT6 inhibition delays peripheral nerve recovery by suppressing migration, phagocytosis and M2-polarization of macrophages. Cell Biosci 2021; 11:210. [PMID: 34906231 PMCID: PMC8672560 DOI: 10.1186/s13578-021-00725-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Silent information regulator 6 (SIRT6) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Prior evidences suggested that the anti-inflammatory function of SIRT6 after spinal cord and brain injury, and it plays a crucial role in macrophages polarization of adipose tissue and skin. However, the role of SIRT6 in macrophages involved peripheral nerve injury is still unknown. Given the prominent role of macrophages in peripheral nerve recovery, we aim to investigate the role of SIRT6 in the regulation of phenotypes shift and functions in macrophages after peripheral nerve injury. Results In the present study, we first identified a significant increase of SIRT6 expression during nerve degeneration and macrophages phagocytosis. Next, we found nerve recovery was delayed after SIRT6 silencing by injected shRNA lentivirus into the crushed sciatic nerve, which exhibited a reduced expression of myelin-related proteins (e.g., MAG and MBP), severer myoatrophy of target muscles, and inferior nerve conduction compared to the shRNA control injected mice. In vitro, we found that SIRT6 inhibition by being treated with a selective inhibitor OSS_128167 or lentivirus transfection impairs migration and phagocytosis capacity of bone marrow-derived macrophages (BMDM). In addition, SIRT6 expression was discovered to be reduced after M1 polarization, but SIRT6 was enhanced after M2 polarization in the monocyte-macrophage cell line RAW264.7 and BMDM. Moreover, SIRT6 inhibition increased M1 macrophage polarization with a concomitant decrease in M2 polarization both in RAW264.7 and BMDM via activating NF-κB and TNF-α expression, and SIRT6 activation by UBCS039 treatment could shift the macrophages from M1 to M2 phenotype. Conclusion Our findings indicate that SIRT6 inhibition impairs peripheral nerve repair through suppressing the migration, phagocytosis, and M2 polarization of macrophages. Therefore, SIRT6 may become a favorable therapeutic target for peripheral nerve injury.
Collapse
Affiliation(s)
- Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China. .,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Li L, Du X, Ling H, Li Y, Wu X, Jin A, Yang M. Gene correlation network analysis to identify regulatory factors in sciatic nerve injury. J Orthop Surg Res 2021; 16:622. [PMID: 34663380 PMCID: PMC8522103 DOI: 10.1186/s13018-021-02756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sciatic nerve injury (SNI), which frequently occurs under the traumatic hip and hip fracture dislocation, induces serious complications such as motor and sensory loss, muscle atrophy, or even disabling. The present work aimed to determine the regulating factors and gene network related to the SNI pathology. METHODS Sciatic nerve injury dataset GSE18803 with 24 samples was divided into adult group and neonate group. Weighted gene co-expression network analysis (WGCNA) was carried out to identify modules associated with SNI in the two groups. Moreover, differentially expressed genes (DEGs) were determined from every group, separately. Subsequently, co-expression network and protein-protein interaction (PPI) network were overlapped to identify hub genes, while functional enrichment and Reactome analysis were used for a comprehensive analysis of potential pathways. GSE30165 was used as the test set for investigating the hub gene involvement within SNI. Gene set enrichment analysis (GSEA) was performed separately using difference between samples and gene expression level as phenotype label to further prove SNI-related signaling pathways. In addition, immune infiltration analysis was accomplished by CIBERSORT. Finally, Drug-Gene Interaction database (DGIdb) was employed for predicting the possible therapeutic agents. RESULTS 14 SNI status modules and 97 DEGs were identified in adult group, while 15 modules and 21 DEGs in neonate group. A total of 12 hub genes was overlapping from co-expression and PPI network. After the results from both test and training sets were overlapped, we verified that the ten real hub genes showed remarkably up-regulation within SNI. According to functional enrichment of hub genes, the above genes participated in the immune effector process, inflammatory responses, the antigen processing and presentation, and the phagocytosis. GSEA also supported that gene sets with the highest significance were mostly related to the cytokine-cytokine receptor interaction. Analysis of hub genes possible related signaling pathways using gene expression level as phenotype label revealed an enrichment involved in Lysosome, Chemokine signaling pathway, and Neurotrophin signaling pathway. Immune infiltration analysis showed that Macrophages M2 and Regulatory T cells may participate in the development of SNI. At last, 25 drugs were screened from DGIdb to improve SNI treatment. CONCLUSIONS The gene expression network is determined in the present work based on the related regulating factors within SNI, which sheds more light on SNI pathology and offers the possible biomarkers and therapeutic targets in subsequent research.
Collapse
Affiliation(s)
- Liuxun Li
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Du
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Haiqian Ling
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuhang Li
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin Wu
- Department of Endocrinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| | - Anmin Jin
- Department of Spine Surgery, ZhuJiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.
| |
Collapse
|
36
|
Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, Lu FI, Liu YH, Wu CC. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation 2021; 18:238. [PMID: 34656124 PMCID: PMC8520633 DOI: 10.1186/s12974-021-02273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. Methods We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. Results Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. Conclusions Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02273-1.
Collapse
Affiliation(s)
- Anjali Yadav
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuan-Yu Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
37
|
Wang Y, Liang R, Lin J, Chen J, Zhang Q, Li J, Wang M, Hui X, Tan H, Fu Q. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. J Mater Chem B 2021; 9:7979-7990. [PMID: 34612287 DOI: 10.1039/d1tb01236c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs) can replace autogenous nerve grafting in the treatment of peripheral nerve system (PNS) injury. However, the modulus of polyurethane NGCs that affects the outcome of PNS repair has been rarely elucidated in vivo. In this study, we developed biodegradable waterborne polyurethane (BWPU) NGCs with an outer BWPU membrane and an inner three-dimensional scaffold structure. The mechanical properties of BWPU NGCs can be modified by adjusting the molar content of polyethylene glycol (PEG) in the soft segments within the BWPU. Two types of BWPU NGCs with different moduli were prepared, containing 17% and 25% PEG in BWPU (termed as BWPU 17 NGCs and BWPU 25 NGCs, respectively). In rat sciatic nerves with 10-mm transected injury, mechanically stronger BWPU 17 NGCs exhibited superior nerve repair, which was similar to that obtained by the current gold standard autograft implantation, whereas weaker BWPU 25 NGCs displayed an unsatisfactory effect. Histological results revealed that both BWPU NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. The analysis of growth-associated protein 43 expression, which regulates axon growth, revealed that the mechanical properties of BWPU NGCs influence the outcome of PNS regeneration by affecting the formation and extension of axons. These findings suggest that the mechanical properties of NGCs could play a key role in regulating PNS repair and should be considered in future biomaterial NGC designs.
Collapse
Affiliation(s)
- Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
38
|
Zhang WJ, Luo C, Huang C, Liu SC, Luo HL. Microencapsulated Neural Stem Cells Inhibit Sciatic Nerve Injury-Induced Pain by Reducing P2 × 4 Receptor Expression. Front Cell Dev Biol 2021; 9:656780. [PMID: 34621735 PMCID: PMC8491744 DOI: 10.3389/fcell.2021.656780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The purpose of this study is to investigate the effects of transplantation of microencapsulated neural stem cells (MC-NSCs), which downregulate the P2 × 4 receptor (P2 × 4R) overexpression and relieve neuropathic pain (NPP). Methods: Neural stem cells (NSCs) and MC-NSCs were transplanted to the injured sciatic nerve. Transmission electron microscope and immunofluorescence were used to observe the changes of injured sciatic nerve. Behavioral methods were used to detect mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL) of rats. Expression levels of P2 × 4Rs and p-p65 in the spinal cord segment of rats were measured by using molecular biology methods. The concentrations of IL-1β and TNF-α were detected in serum of rats by ELISA. Results: After sciatic nerve injury, the sciatic nerve fibers had the myelinated lamina separated, and disintegrated fragments could be seen. The fluorescence intensity of myelin MBP was weakened. The MWT and TWL were significantly decreased, the expression of P2 × 4Rs and p-p65 were significantly increased, and the concentrations of IL-1β and TNF-α were increased. After NSC and MC-NSC transplantation, the myelin sheath of the sciatic nerve was relatively intact, some demyelination changes could be seen, and the injured sciatic nerve has been improved. The fluorescence intensity of myelin MBP was increased. The MWT and TWL were increased, expression levels of P2 × 4Rs and p-p65 were decreased, and the concentrations of IL-1β and TNF-α were significantly decreased. Compared with NSC transplantation, transplantation of MC-NSCs could better repair the damaged sciatic nerve, decrease the expression of P2 × 4Rs and p-p65, decrease the level of IL-1β and TNF-α, and relieve pain (all p-values < 0.05). Conclusion: NSCs and MC-NSCs transplantation may alleviate pain by reducing the expression of P2 × 4Rs and inhibiting the activation of NF-KB signaling, while MC-NSCs transplantation has a better effect of suppressing pain. Our experimental results provide new data support for the treatment of NPP.
Collapse
Affiliation(s)
| | | | | | | | - Hong-liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
39
|
STAT6 Signaling Mediates PPARγ Activation and Resolution of Acute Sterile Inflammation in Mice. Cells 2021; 10:cells10030501. [PMID: 33652833 PMCID: PMC7996818 DOI: 10.3390/cells10030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) transcription factor promotes activation of the peroxisome proliferator-activated receptor gamma (PPARγ) pathway in macrophages. Little is known about the effect of proximal signal transduction leading to PPARγ activation for the resolution of acute inflammation. Here, we studied the role of STAT6 signaling in PPARγ activation and the resolution of acute sterile inflammation in a murine model of zymosan-induced peritonitis. First, we showed that STAT6 is aberrantly activated in peritoneal macrophages after zymosan injection. Utilizing STAT6−/− and wild-type (WT) mice, we found that STAT6 deficiency further enhanced zymosan-induced proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6, and macrophage inflammatory protein-2 in peritoneal lavage fluid (PLF) and serum, neutrophil numbers and total protein amount in PLF, but reduced proresolving molecules, such as IL-10 and hepatocyte growth factor, in PLF. The peritoneal macrophages and spleens of STAT6−/− mice exhibited lower mRNA and protein levels of PPARγ and its target molecules over the course of inflammation than those of WT mice. The deficiency of STAT6 was shown to impair efferocytosis by peritoneal macrophages. Taken together, these results suggest that enhanced STAT6 signaling results in PPARγ-mediated macrophage programming, contributing to increased efferocytosis and inflammation resolution.
Collapse
|