1
|
Xu ZX, Zhang JL, Li FZ, Xu B, Xia J, Wang P, Xie GJ. AnMei decoction ameliorates cognitive impairment in rats with chronic sleep deprivation by mitigating hippocampal neuroinflammation and restoring synaptic architecture. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119101. [PMID: 39537118 DOI: 10.1016/j.jep.2024.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE OF ETHNOPHARMACOLOGY AnMei Decoction (AMD) is a renowned herbal prescription that has been widely demonstrated to have positive therapeutic effects on sleep disorders, depression, and cognitive impairments. However, the molecular mechanisms underlying AMD's resistance to sleep deprivation-induced cognitive impairment remain to be further investigated. RESEARCH OBJECTIVE To clarify whether AMD may alleviate neuroinflammation by inhibiting NLRP3/Caspase1 signaling pathway and repair neuronal damage by regulating BDNF/TrkB pathway, thereby improving cognitive dysfunction in rats with chronic sleep deprivation. MATERIALS AND METHODS LC-MS/MS was used to detect the active components in AMD. After behavioral tests, HE staining, Nissl staining, immunofluorescence, immunohistochemistry, transmission electron microscopy, and Golgi staining were performed to assess the effects of AMD on chronic sleep deprivation. Western blot was used to detect the expression of hippocampal proteins NLRP3, Caspase-1, BDNF, p-TrkB, TrkB, Bax, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2. Hippocampal transcriptome sequencing was employed to observe differentially expressed genes after AMD intervention. RESULTS A total of 15 active components were identified from the AMD extract. AMD effectively improved the exploration and learning and memory abilities of sleep-deprived rats. AMD reduced neuroinflammation by inhibiting the NLRP3/Caspase-1 pathway and repaired neuronal damage by regulating the BDNF/TrkB pathway. Simultaneously, AMD upregulated the expression of BDNF, p-TrkB, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2 proteins and inhibited the expression of NLRP3, Caspase-1, and Bax proteins. Analysis of GO and KEGG pathway enrichment for the differentially expressed inflammation-related pathways may be involved in the therapeutic mechanism of AMD on sleep deprivation. CONCLUSION AMD can effectively inhibit the NLRP3/Caspase1 signaling pathway to alleviate neuroinflammation, regulate the BDNF/TrkB pathway to maintain hippocampal neuronal viability, repair synaptic structural damage, and improve cognitive impairment in the sleep deprivation model.
Collapse
Affiliation(s)
- Zi-Xuan Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Jun-Lu Zhang
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Fei-Zhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430006, China.
| | - Bo Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Jing Xia
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Ping Wang
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Guang-Jing Xie
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China; College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Guo X, Wang F, Zheng M, Li L, Li L, Wang J, Miao S, Ma S, Shi X. Network pharmacology and molecular docking to study the potential molecular mechanism of Qi Fu Yin for diabetic encephalopathy. J Biomol Struct Dyn 2025; 43:917-931. [PMID: 38047625 DOI: 10.1080/07391102.2023.2289038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 12/05/2023]
Abstract
Diabetic encephalopathy is a chronic complication of diabetes that lacks an optimized treatment strategy. The present study sought to elucidate the potential molecular mechanism of Qi Fu Yin in improving diabetic encephalopathy through network pharmacology. The active components and target information of Qi Fu Yin were obtained from the TCMSP and Swiss target databases, while the target information of diabetic encephalopathy was sourced from Gene cards, OMIM, and Pharm Gkb databases. Enrichment analyses of KEGG and GO were conducted utilizing drug-disease common targets, while protein-protein interactions were predicted through the utilization of the STRING database platform. Subsequently, molecular docking was executed via Auto Dock Vina to authenticate the interaction between core components and core targets. The findings revealed that Qi Fu Yin exhibited 178 common targets with diabetic encephalopathy, and the enrichment analyses demonstrated that these targets were associated with lipid and atherosclerosis, AGE-RAGE signaling pathways, and other related pathways. The findings of the molecular docking indicated a favorable binding affinity between the active components of drug and the core targets, with EGF and quercetin exhibiting the most notable docking score. Additionally, the molecular dynamics simulation corroborated this high affinity. These results suggested that the active ingredients of Qi Fu Yin, including quercetin and kaempferol, may modulated the expression of genes such as IL10, TNF, EGF, and MMP2, thereby activating the AGE-RAGE signaling pathways and potentially serving as a therapeutic intervention for diabetic encephalopathy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodi Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
- The College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Feiyan Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Meiling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Liang Li
- Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
3
|
Zhuang GD, Deng SM, Chen MD, Deng CF, Gu WT, Wang SM, Tang D. Huang-Lian-Jie-Du Decoction alleviates diabetic encephalopathy by regulating inflammation and pyroptosis via suppression of AGEs/RAGE/NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118787. [PMID: 39244173 DOI: 10.1016/j.jep.2024.118787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated. AIM OF THE STUDY To explore the beneficial effects of HLJDD on improving cognitive dysfunction in DE mice. STUDY DESIGN AND METHODS A diabetic mouse was established through a high-fat diet and subsequent administration of streptozotocin over five consecutive days. After the animals were confirmed to have diabetes, they were treated with HLJDD. After oral administration of HLJDD or metformin for 14 weeks, behavioral tests were used to assess their cognitive capacity. Biochemical analyses were then performed to detect levels of glucose metabolism, followed by histological analyses to assess pathological damage. Furthermore, AGEs/RAGE/NF-κB axis related proteins were detected by Western blot or immunofluorescence techniques. An advanced UPLC-Q-Orbitrap HRMS/MS analytical technique utilizing a chemical derivatization strategy was employed for comprehensive metabolic profiling of carbonyl compounds in the plasma of DE mice. RESULTS Pharmacological assessment revealed that HLJDD effectively mitigated cognitive dysfunction, normalized glucose metabolic imbalances, and repaired neuronal damage in DE mice. It reduced neuroinflammation by attenuating carbonyl stress, deactivating astrocytes and microglia, and preserving dopaminergic neurons. Additionally, metabolomics analysis revealed 18 carbonyl compounds with marked disparities between DE and control mice, with 12 metabolites approaching normal levels post-HLJDD intervention. Further investigations showed that HLJDD regulated inflammation and pyroptosis through suppressing AGEs/RAGE/NF-κB pathways. CONCLUSION Our study indicated that HLJDD could ameliorate carbonyl stress via the regulation of carbonyl compound metabolism profiling, and inhibiting the AGEs/RAGE/NF-κB pathway, thereby alleviating inflammation and pyroptosis to exert beneficial effects on DE.
Collapse
Affiliation(s)
- Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Yang S, Song J, Deng M, Cheng S. Identification of Drug-Targetable Genes for Eczema and Dermatitis Using Integrated Genomic and Proteomic Approaches. Dermatitis 2025. [PMID: 39786806 DOI: 10.1089/derm.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: Eczema and dermatitis are common inflammatory skin conditions with significant morbidity. Identifying drug-targetable genes can facilitate the development of effective treatments. Methods: This study analyzed data obtained by meta-analysis of 2 genome-wide association studies on eczema/dermatitis (57,311 cases and 896,779 controls, European ancestry). We identified drug-targetable genes from the Drug-Gene Interaction Database and Finan et al's findings. Cis-expression quantitative trait loci (eQTL) data from human blood and skin tissues were used for Mendelian randomization (MR) analysis. Bayesian colocalization, proteomic MR, and meta-analysis validated the causal relationships. Finally, protein-protein interactions (PPIs) and correlation analysis of potential drug targets and cytokines were performed. Results: We identified 2532 drug-targetable genes; 3378 Single Nucleotide Polymorphism (SNPs) were associated with 1531 genes in blood cis-eQTLs, 664 SNPs with 667 genes in sun-exposed skin eQTLs, and 572 SNPs with 574 genes in nonsun-exposed skin eQTLs. Five genes (SLC22A5, NOTCH4, AGER, HLA-DRB5, and EHMT2) showed causal relationships with eczema/dermatitis across multiple datasets. Single-variable and multi-variable Mendelian randomization (SMR) and multi-SNP SMR analysis identified 8 genes (PIK3R4, DHODH, CXCR2, Interleukin (IL)18, LGALS9, RPS6KB2, SLC22A5, and AGER) across all tissues. Functional Summary Information for Variants in the Online Network (FUSION) analysis confirmed associations for SLC22A5 and AGER. Bayesian colocalization indicated AGER (PPH4: 0.95) as a shared causal variant. Proteomic MR and meta-analysis showed that increased AGER protein levels were associated with a lower risk of eczema or dermatitis (odds ratio: 0.995, 95% confidence interval: 0.997-0.993, P = 0.0002). A PPI network revealed interactions of AGER with NOTCH4 and multiple cytokines, whereas SLC22A5 showed no cytokine interactions. Conclusions: This study identified potential drug-targetable genes, with AGER showing strong potential as a target for reducing eczema/dermatitis risk. These findings provide a basis for developing targeted therapies.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, China
| | - Jianning Song
- Interventional Department, GuiQian International General Hospital, GuiYang, China
| | - Min Deng
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Si Cheng
- From the Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Ning Z, Zhong X, Wang Y, Hu D, Tang X, Deng M. Cerebral ischemic injury impairs autophagy and exacerbates cognitive impairment in APP/PS1 mice. Int Immunopharmacol 2024; 143:113581. [PMID: 39522311 DOI: 10.1016/j.intimp.2024.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Autophagy plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Oxidative stress and neuroinflammation involved in autophagy are associated with the cerebral ischemia-induced exacerbation of cognitive deficits in individuals with AD. APP/PS1 mice underwent bilateral common carotid artery clamping for 15 min. The degrees of Aβ deposition, oxidative stress, neuroinflammation, and neuronal and synaptic loss after cerebral ischemia were detected. Autophagy levels were assessed by RT-qPCR, western blotting, immunofluorescence staining, and transmission electron microscopy. DPEs occurring in the hippocampus of APP/PS1 mice after cerebral ischemia were analyzed via label-free proteomics. The present study demonstrated that cerebral ischemia exacerbates learning and memory deficits in APP/PS1 mice. Cerebral ischemia aggravated the cognitive impairment in APP/PS1 mice by worsening neuronal and synaptic loss through damage to intracellular autophagy, increased oxidative stress, and neuroinflammation. Notably, cerebral ischemia interfered with mitochondrial and nuclear transport functions in APP/PS1 transgenic mice, thereby aggravating cognitive deficits. Cellular transport functions may be a target for preventing AD progression. In summary, autophagy is impaired in APP/PS1 mice compared with WT mice, and oxidative stress and neuroinflammation caused by cerebral ischemia exacerbate autophagy-induced damage and are responsible for cognitive decline. Label-free proteomics indicated that cerebral ischemia results in abnormal Abcb8, Sestd1, TPR, and Rab8a protein expression in the hippocampus of APP/PS1 transgenic mice and that an imbalance of mitochondrial transport and nuclear transport functions exacerbates cognitive deficits. Improving autophagy and restoring organelle transport may be targets for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Zhenqiu Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, China, Guangzhou 510120, PR China
| | - Xiaoqin Zhong
- Department of Rheumatology, Baoan Hospital of Traditional Chinese Medicine Affiliated with Guangzhou University of Chinese Medicine, Shenzhen 518100, PR China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Dafeng Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Xialin Tang
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| |
Collapse
|
7
|
Yang F, Gao W, Wang J, Li X, Li H. Progress of Chinese Medicine in Regulating Microglial Polarization against Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2255-2275. [PMID: 39721955 DOI: 10.1142/s0192415x24500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics. Microglia (MG), the resident immune cells of the CNS, exhibit a bifurcated role in AD pathogenesis. Functioning in a neuroprotective capacity, MGs express scavenger receptors, facilitating the clearance of [Formula: see text]-amyloid protein (A[Formula: see text]) and cellular debris. Conversely, aberrant activation of MGs can lead to the secretion of pro-inflammatory cytokines, thereby propagating neuroinflammatory responses that are detrimental to neuronal integrity. The dynamics of MG activation and the ensuing neuroinflammation are pivotal in the evolution of AD. Chinese medicine (CM), a treasure trove of traditional Chinese cultural practices, has demonstrated significant potential in the therapeutic management of AD. Over the past triennium, CM has garnered considerable research attention for its multifaceted approaches to AD, including the regulation of MG polarization. This review synthesizes current knowledge on the origins, polarization dynamics, and mechanistic interplay of MG with AD pathology. It further explores the nexus between MG polarization and cardinal pathological hallmarks of AD, such as A[Formula: see text] plaque deposition, hyperphosphorylation of tau, synaptic plasticity impairments, neuroinflammation, and brain-gut-axis dysregulation. The review also encapsulates the therapeutic strategies of CM, which encompass monomers, formulae, and acupuncture. These strategies modulate MG polarization in the context of AD treatment, thereby providing a robust theoretical framework in which to conduct future investigative endeavors in both the clinical and preclinical realms.
Collapse
Affiliation(s)
- Fengge Yang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Wei Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- Jiangsu College of Nursing Jiangsu, Huaian, Huaiyin 223001, P. R. China
| | - Junting Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| | - Xue Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Honglin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
8
|
Lv F, Sun M, Qin C, Du D, Zheng X, Li W. Study of the multitarget mechanism of Astragalus (HUANGQI) in the treatment of Alzheimer's disease based on network pharmacology and molecular docking technology. PHARMACEUTICAL BIOLOGY 2024; 62:634-647. [PMID: 39066667 DOI: 10.1080/13880209.2024.2382962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT In China, HUANGQI is widely used for the treatment of Alzheimer's disease (AD). However, a comprehensive understanding of its mechanism of anti-AD effects is lacking. OBJECTIVE To explore the active ingredients of HUANGQI and its potential targets and mechanisms of action in AD. MATERIALS AND METHODS The active ingredients and targets of HUANGQI were screened from databases (TCSMP, ETCM, and BATMan), and AD-related genes were obtained from DrugBank and GeneCards. The same target genes were screened, and a drug-target disease network was constructed. The PPI network was constructed and GO and KEGG pathway enrichment analyses of the targets. The Cell Counting Kit-8 (CCK-8) assay was used to determine suitable HUANGQI treatment concentrations for HT-22 cells between 0-480 μg/mL. CCK-8, FITC-phalloidin and propidium iodide (PI) assays were used to examine the protective effect of (0, 60, 120, 240 μg/mL) of HUANGQI on 20 μM Aβ1-42-induced HT-22 cell cytotoxicity. RESULTS Twelve active ingredients of HUANGQI were selected, with 679 common targets associated with AD. GO and KEGG analysis revealed that the therapeutic mechanisms of HUANGQI involve TNF, AGE, the NF-κB pathway, and nuclear receptor activity-related processes. The CCK-8 assay indicated that HUANGQI was not cytotoxic to HT-22 cells at concentrations less than 240 μg/mL and was able to attenuate Aβ1-42-induced cellular damage (EC50 = 83.46 μg/mL). FITC-phalloidin and PI assays suggested that HUANGQI could alleviate 20 μM Aβ1-42-induced neuronal cell cytotoxicity in a dose-dependent manner. CONCLUSION HUANGQI has a protective effect on Aβ1-42-induced nerve cell injury; further mechanism research was needed.
Collapse
Affiliation(s)
- Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
10
|
Xie DM, Li ZY, Ren BK, Gong R, Yang D, Huang S. Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway. Chin J Integr Med 2024:10.1007/s11655-024-4118-5. [PMID: 39499413 DOI: 10.1007/s11655-024-4118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP). METHODS The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot. RESULTS In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01). CONCLUSION Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Collapse
Affiliation(s)
- Da-Ming Xie
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Zhi-Yun Li
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bing-Kai Ren
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Gong
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Sheng Huang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China.
| |
Collapse
|
11
|
Li J, Zhu X, Ye S, Dong Q, Hou J, Liu J, She W. Tanshinone IIA potentiates the therapeutic efficacy of glucocorticoids in lipopolysaccharide-treated HEI-OC1 cells through modulation of the FOXP3/Nrf2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39483046 DOI: 10.3724/abbs.2024194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Glucocorticoids (GCs) are commonly used to treat sudden sensorineural hearing loss (SSNHL), although some patients are resistant to this therapeutic approach. Clinical studies have demonstrated the efficacy of tanshinone IIA (TA) in combination with GC for managing various human ailments. However, it remains unclear whether TA can mitigate GC resistance in SSNHL. Our aim is to elucidate the role of NRF2-induced transcriptional regulation of HDAC2 in influencing GC resistance and investigate the involvement of TA-related molecular pathways in GC resistance. Here, HEI-OC1 cells are treated with lipopolysaccharide (LPS) to establish an in vitro model for SSNHL. The cells are subsequently treated with dexamethasone (DXE) or DXE+TA. RT-qPCR and western blot analysis are used to measure the mRNA and protein levels of Forkhead box P3 (FOXP3), nuclear factor erythroid 2-related factor 2 (NRF2), and histone deacetylase 2 (HDAC2). Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays are carried out to assess cell proliferation. Flow cytometry analysis is performed to evaluate apoptosis. Mechanistic studies involve chromatin immunoprecipitation (ChIP), luciferase reporter, and DNA pull-down assays. Our results show that treatment with TA+DEX significantly increases proliferation and suppresses apoptosis in LPS-treated HEI-treated OC1 cells. TA upregulates HDAC2 expression by activating NRF2-mediated transcription of HDAC2, with the NRF2-HDAC2 binding site located at bases 419-429 (ATGACACTCCA) in the promoter sequence of HDAC2. Furthermore, TA upregulates FOXP3 expression to activate NRF2 transcription, with the predicted FOXP3-binding site located at bases 864-870 (GCAAACA) in the promoter sequence of NRF2. In summary, these findings suggest that TA enhances the therapeutic effects of GC on the proliferation and apoptosis of HEI OC1 cells by increasing FOXP3/Nrf2 expression. These results indicate that TA may be promising for ameliorating GC resistance in patients with SSNHL.
Collapse
Affiliation(s)
- Jie Li
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Otolaryngology, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong 226000, China
| | - Xiaoyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Shiming Ye
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qi Dong
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Otorhinolaryngology Research Institute of Nanjing Drum Tower Hospital, Nanjing 210008, China
| |
Collapse
|
12
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2024:10.1007/s12035-024-04545-2. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
13
|
Chen L, Zhuang Z, Duan H, Lv D, Hong S, Chen P, He B, Shen Z. Corilagin improves cognitive impairment in APP/PS1 mice by reducing Aβ generation and enhancing synaptic plasticity. Eur J Pharmacol 2024; 981:176893. [PMID: 39134295 DOI: 10.1016/j.ejphar.2024.176893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is closely associated with the neurotoxic effects of amyloid-β (Aβ), leading to synaptic damage, neuronal loss and cognitive dysfunction. Previous in vitro studies have demonstrated the potential of corilagin to counteract Aβ-induced oxidative stress, inflammatory injury, and β-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity in Aβ production. However, the in vivo protective effects of corilagin on Alzheimer's disease remain unexplored. The purpose of this study was to investigate the protective effects of corilagin on APP/PS1 mice and the underlying mechanisms. The cognitive function of the mice was assessed by step-through passive avoidance and Morris water maze tests. Nissl staining was used to evaluate neuronal damage in the hippocampus. ELISA and Western blotting analyses were used to determine the associated protein expression. Transmission electron microscopy was utilized to observe the synaptic ultrastructure of hippocampal neurons. Golgi staining was applied to assess dendritic morphology and dendritic spine density in hippocampal pyramidal neurons. Immunohistochemistry and Western blotting were performed to examine the expression of synaptic-associated proteins. The results showed that corilagin improves learning and memory in APP/PS1 mice, reduces hippocampal neuron damage, inhibits BACE1 and reduces Aβ generation. It also improves synaptic plasticity and the expression of synaptic-associated proteins. Corilagin effectively reduces Aβ generation by inhibiting BACE1, ultimately reducing neuronal loss and enhancing synaptic plasticity to improve synaptic transmission. This study sheds light on the potential therapeutic role of corilagin in Alzheimer's disease.
Collapse
Affiliation(s)
- Linyi Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Zhujun Zhuang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Hengqian Duan
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Di Lv
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Shengxiong Hong
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Peng Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Bo He
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
14
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
15
|
Yang X, Zheng X, Xiao X, Li L. Effects and mechanisms of Salvia miltiorrhiza Bunge extract on myocardial cell apoptosis in rat heart failure model. Acta Cir Bras 2024; 39:e396524. [PMID: 39356933 PMCID: PMC11441121 DOI: 10.1590/acb396524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE This work aimed to investigate the effects of Tanshinone IIA (Tan IIA) on myocardial cell (MC) apoptosis in a rat model of heart failure (HF). METHODS Tan IIA was extracted from Salvia miltiorrhiza Bunge (SMB) using an ethanol reflux method. Fifty rats were randomly divided into five groups: sham (no treatment), mod (HF model establishment), low dose (LD: 0.1 mL/kg Tan IIA), medium dose (MD: 0.3 mL/kg Tan IIA), and high dose (HD: 0.5 mL/kg Tan IIA), with 10 rats in each group. The effects of different doses of Tan IIA on cardiac function, MC apoptosis, and the levels of proteins associated with the PI3K/Akt/mTOR signaling pathway were compared. RESULTS Mod group showed a significant decrease in systolic arterial pressure, mean arterial pressure, heart rate, left ventricular systolic pressure, left ventricular ejection fraction, left ventricular fractional shortening, and the levels of p-PI3K, p-Akt, and p-mTOR proteins versus sham group (p < 0.05). Additionally, the left ventricular end-diastolic diameter (LVIDd), end-systolic diameter, diastolic pressure, and MC apoptosis were significantly increased (p < 0.05). LD, MD, and HD groups exhibited significant improvements across various indicators of cardiac function and MC apoptosis versus mod group (p < 0.05). CONCLUSIONS Tan IIA may improve cardiac function and inhibit MC apoptosis in rats with HF by modulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Yang
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xuebin Zheng
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xiangqian Xiao
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Li Li
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| |
Collapse
|
16
|
Chi G, Lu J, He T, Wang Y, Zhou X, Zhang Y, Qiu L. High mobility group box-1 protein promotes astrocytic CCL5 production through the MAPK/NF-κB pathway following spinal cord injury. Sci Rep 2024; 14:22344. [PMID: 39333662 PMCID: PMC11437233 DOI: 10.1038/s41598-024-72947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Astrocytes act as immune cells that can produce a series of chemokines to attract large numbers of leucocytes to the lesion site, where they contribute to excessive inflammation following spinal cord injury (SCI). However, the relevant regulatory mechanism involved in chemokine production by astrocytes has not been fully elucidated. In the present study, we examined the correlation between C-C motif chemokine ligand 5 (CCL5) and high mobility group box-1 protein (HMGB1) in a T8-T10 spinal cord contusion model. Our results revealed that SCI-induced CCL5 protein levels increased synchronously with the increase in HMGB1. Administration of an HMGB1-neutralizing antibody significantly reduced the protein expression of CCL5 in the context of SCI. An in vitro study revealed that HMGB1 binding with TLR2/4 receptors potently facilitates the production of CCL5 by astrocytes by activating the intracellular ERK/JNK-mediated NF-κB pathway. Furthermore, the HMGB1-induced release of CCL5 from astrocytes is involved in promoting microglia/macrophage accumulation and M1 polarization. The inhibition of HMGB1 activity reduces microglia/macrophage infiltration by decreasing the expression of CCL5 and improves motor functional recovery following SCI. Our results provide insights into the new functions of HMGB1-mediated astrocytic CCL5 production, which elicits inflammatory cell recruitment to the site of injury; this recruitment is associated with excessive inflammation activation. These data may provide a new therapeutic strategy for central nervous system (CNS) inflammation.
Collapse
Affiliation(s)
- Guanghao Chi
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China
| | - Junqin Lu
- Department of Stomatology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Tao He
- College of Health Management, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yijia Wang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xinli Zhou
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China
| | - Yuxin Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
- Department of Rehabilitation Medicine, Fengcheng Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Longshun Qiu
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, 723000, Shanxi, China.
| |
Collapse
|
17
|
Fang L, Cheng H, Chen W, Peng C, Liu Y, Zhang C. Therapeutic effects of Tanshinone IIA and Tetramethylpyrazine nanoemulsions on cognitive impairment and neuronal damage in Alzheimer's disease rat models. J Pharm Pharmacol 2024; 76:1169-1177. [PMID: 38934298 DOI: 10.1093/jpp/rgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Weidong Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Yuanxu Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
18
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
19
|
Wen Y, Zhao C, Chen J, Tian L, Wu B, Xie W, Dong T. Gandouling Regulates Ferroptosis and Improves Neuroinflammation in Wilson's Disease Through the LCN2/NLRP3 Signaling Pathway. J Inflamm Res 2024; 17:5599-5618. [PMID: 39193124 PMCID: PMC11348929 DOI: 10.2147/jir.s465341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Neuroinflammation is a main cause of neurological damage in Wilson's disease (WD). Ferroptosis is present in the WD pathological process, which is also closely related to the neuroinflammation. LCN2, a ferroptosis-related gene in WD, is linked with the activation of NLRP3 inflammasome. Our group has previously demonstrated that Gandouling (GDL) can effectively improve neuroinflammation in WD. This study aims to investigate the protective effect of GDL on neuroinflammation in animal and cell models of WD, and whether the pharmacological mechanism is related to the LCN2/NLRP3 signaling pathway. Methods Toxic milk (TX) mice and HT22 cells stimulated by copper ions were selected as models. The pathology of hippocampal tissues in TX mice were observed by HE staining and transmission electron microscopy. High-throughput sequencing analysis was conducted to screen ferroptosis-related genes in WD. The expression of LCN2 and GPX4 in hippocampus of TX mice were detected by immunohistochemical. The expression of LCN2, NLRP3, GPX4, and SLC7A11 was determined in TX mice and HT22 cells by Western blotting and RT-qPCR. The levels of Fe2+, inflammatory factor indicators TNF-α, IL-1β and IL-6 and oxidative stress indicators 4-HNE, MAD, SOD, GSH and ROS were detected in each group by ELISA. Results The results showed that GDL ameliorated pathological and mitochondrial damages in hippocampus of TX mice. The analysis of bioinformatics showed that LCN2 was a differential gene associated with ferroptosis in WD. The results of Western blotting and RT-qPCR indicated that GDL reduced the expression of LCN2 and NLRP3, and enhanced the expression of GPX4 and SLC711 in TX mice and HT22 cells. The ELISA results showed that GDL decreased the expression of Fe2+ and inflammatory factors TNF-α, IL-1β and IL-6 in TX mice with ferroptosis inducer intervention and copper ion-loaded HT22 cells. GDL decreased the expression of oxidative stress indicators ROS, 4-HNE and MDA, and increased the expression of oxidative stress indicators GSH and SOD in TX mice and copper ion-loaded HT22 cells. Conclusion GDL has anti-inflammatory and antioxidant effects. LCN2 is a differential gene associated with ferroptosis in WD. GDL may alleviate ferroptosis by inhibiting the LCN2/NLPR3 signaling pathway, thereby improving neuroinflammatory responses and exerting neuroprotective effects in WD.
Collapse
Affiliation(s)
- Yuya Wen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Chenling Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Liwei Tian
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Bojin Wu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Wenting Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
- Key Laboratory of Xin’An Medicine, Ministry of Education, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| |
Collapse
|
20
|
Zhuang D, Yu N, Han S, Zhang X, Ju C. The Kv7 channel opener Retigabine reduces neuropathology and alleviates behavioral deficits in APP/PS1 transgenic mice. Behav Brain Res 2024; 471:115137. [PMID: 38971432 DOI: 10.1016/j.bbr.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Hyperexcitability of neuronal networks is central to the pathogenesis of Alzheimer's disease (AD). Pharmacological activation of Kv7 channels is an effective way to reduce neuronal firing. Our results showed that that pharmacologically activating the Kv7 channel with Retigabine (RTG) can alleviate cognitive impairment in mice without affecting spontaneous activity. RTG could also ameliorate damage to the Nissl bodies in cortex and hippocampal CA and DG regions in 9-month-old APP/PS1 mice. Additionally, RTG could reduce the Aβ plaque number in the hippocampus and cortex of both 6-month-old and 9-month-old mice. By recordings of electroencephalogram, we showed that a decrease in the number of abnormal discharges in the brains of the AD model mice when the Kv7 channel was opened. Moreover, Western blot analysis revealed a reduction in the expression of the p-Tau protein in both the hippocampus and cortex upon Kv7 channel opening. These findings suggest that Kv7 channel opener RTG may ameliorate cognitive impairment in AD, most likely by reducing brain excitability.
Collapse
Affiliation(s)
- Dongpei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, China.
| | - Shuo Han
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Xinyao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| |
Collapse
|
21
|
Hong J, Chen J, Li C, Zhao F, Zhang J, Shan Y, Wen H. High-frequency rTMS alleviates cognitive impairment and regulates synaptic plasticity in the hippocampus of rats with cerebral ischemia. Behav Brain Res 2024; 467:115018. [PMID: 38678971 DOI: 10.1016/j.bbr.2024.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Fei Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiantao Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Tateishi R, Ogawa-Kishida N, Fujii N, Nagata Y, Ohtsubo Y, Sasaki S, Takashima K, Kaneko T, Higashitani A. Increase of secondary metabolites in sweet basil (Ocimum basilicum L.) leaves by exposure to N 2O 5 with plasma technology. Sci Rep 2024; 14:12759. [PMID: 38834771 DOI: 10.1038/s41598-024-63508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) μmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.
Collapse
Affiliation(s)
- Rie Tateishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | | | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shota Sasaki
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Keisuke Takashima
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Toshiro Kaneko
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
23
|
Nawaz M, Afridi MN, Ullah I, Khan IA, Ishaq MS, Su Y, Rizwan HM, Cheng KW, Zhou Q, Wang M. The inhibitory effects of endophytic metabolites on glycated proteins under non-communicable disease conditions: A review. Int J Biol Macromol 2024; 269:131869. [PMID: 38670195 DOI: 10.1016/j.ijbiomac.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Irfan Ullah
- CPSP/REU/SGR-2016-021-8421, College of Physicians and Surgeons, Pakistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University Peshawar, KP, Pakistan
| | - Yuting Su
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Lian W, Wang Z, Zhou F, Yuan X, Xia C, Wang W, Yan Y, Cheng Y, Yang H, Xu J, He J, Zhang W. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ 1-42 induced Alzheimer's disease mice. J Neuroimmune Pharmacol 2024; 19:24. [PMID: 38780885 DOI: 10.1007/s11481-024-10120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aβ1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1β, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aβ and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.
Collapse
Grants
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- 3332023096 Central Universities Fundamental for Basic Scientific Research of Peking Union Medical College
- 2022SLZDCY-001 Yan'an Science and Technology Plan Project
- 2022JZ-49 Key Project Funding for Shaanxi Provincial Natural Science Basic Rearch Program
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2022-JKCS-16 Nonprofit Central Research Institute Fund of Chinese Academy of Medical Science
- CPA-B04-ZC-2021-005 Chinese Pharmaceutical Association-Yiling Biomedical Innovation Fund Project
Collapse
Affiliation(s)
- Wenwen Lian
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Fulin Zhou
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yunchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Jiekun Xu
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
26
|
Qin Q, Shan Z, Xing L, Jiang Y, Li M, Fan L, Zeng X, Ma X, Zheng D, Wang H, Wang H, Liu H, Liang S, Wu L, Liang S. Synergistic effect of mesenchymal stem cell-derived extracellular vesicle and miR-137 alleviates autism-like behaviors by modulating the NF-κB pathway. J Transl Med 2024; 22:446. [PMID: 38741170 PMCID: PMC11089771 DOI: 10.1186/s12967-024-05257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder predominant in childhood. Despite existing treatments, the benefits are still limited. This study explored the effectiveness of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) loaded with miR-137 in enhancing autism-like behaviors and mitigating neuroinflammation. Utilizing BTBR mice as an autism model, the study demonstrated that intranasal administration of MSC-miR137-EVs ameliorates autism-like behaviors and inhibits pro-inflammatory factors via the TLR4/NF-κB pathway. In vitro evaluation of LPS-activated BV2 cells revealed that MSC-miR137-EVs target the TLR4/NF-κB pathway through miR-137 inhibits proinflammatory M1 microglia. Moreover, bioinformatics analysis identified that MSC-EVs are rich in miR-146a-5p, which targets the TRAF6/NF-κB signaling pathway. In summary, the findings suggest that the integration of MSC-EVs with miR-137 may be a promising therapeutic strategy for ASD, which is worthy of clinical adoption.
Collapse
Affiliation(s)
- Qian Qin
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Lei Xing
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xin Zeng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xinrui Ma
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Danyang Zheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hui Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hao Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Shengjun Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
27
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
28
|
Zhao Q, Ma L, Chen S, Huang L, She G, Sun Y, Shi W, Mu L. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271:125716. [PMID: 38301373 DOI: 10.1016/j.talanta.2024.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AβOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AβOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AβOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.
Collapse
Affiliation(s)
- Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyi Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
29
|
Yang LX, Luo M, Li SY. Tanshinone IIA improves Alzheimer's disease via RNA nuclear-enriched abundant transcript 1/microRNA-291a-3p/member RAS oncogene family Rab22a axis. World J Psychiatry 2024; 14:563-581. [PMID: 38659601 PMCID: PMC11036463 DOI: 10.5498/wjp.v14.i4.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition characterized by oxidative stress and neuroinflammation. Tanshinone IIA (Tan-IIA), a bioactive compound isolated from Salvia miltiorrhiza plants, has shown potential neuroprotective effects; however, the mechanisms underlying such a function remain unclear. AIM To investigate potential Tan-IIA neuroprotective effects in AD and to elucidate their underlying mechanisms. METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology. To assess changes in oxidative stress and neuroinflammation, we performed enzyme-linked immunosorbent assay and western blotting. Additionally, the effect of Tan-IIA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Genetic changes related to the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1)/microRNA (miRNA, miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction. RESULTS In vivo, Tan-IIA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice. In vitro experiments showed that Tan-IIA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability, apoptosis, oxidative stress, and neuroinflammation. In this process, the lncRNA NEAT1 - a potential therapeutic target - is highly expressed in AD mice and downregulated via Tan-IIA treatment. Mechanistically, NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p, which activates nuclear factor kappa-B (NF-κB) signaling, leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein, which exacerbates AD. Tan-IIA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling. CONCLUSION This study demonstrates that Tan-IIA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway, serving as a foundation for the development of innovative approaches for AD therapy.
Collapse
Affiliation(s)
- Long-Xiu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Man Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Yu Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning 530199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
30
|
Fu S, Bao X, Wang Z, Tang Y, Wu Q, Zhu B, Zhou F, Ding Z. Antipyretic effect of inhaled Tetrastigma hemsleyanum polysaccharide on substance and energy metabolism in yeast-induced pyrexia mice via TLR4/NF-κb signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117732. [PMID: 38218501 DOI: 10.1016/j.jep.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg, is one of the perennial evergreen plants with grass vine, which has obvious curative effect on severe infectious diseases. Although Tetrastigma hemleyanum has long been recognized for its capacity of antipyretic and antitoxic, its specific mechanism is unknown. AIM OF THE STUDY To evaluate the antipyretic effect of Tetrastigma hemleyanum polysaccharide (THP) on mice with dry yeast-induced fever, and to explore its specific antipyretic mechanism. METHODS In this study, THP was administered by aerosol in febrile mice. The rectal temperatures of treated animals were monitored at different time points. Histopathological evaluation and various inflammatory indexes were used to assess inflammatory damage. The concentration variations of the central neurotransmitter, endocrine system, substance and energy metabolism indicators were measured to explore the physiological mechanism. Quantitative real-time PCR, Western bolt and Immunohistochemistry were performed to identify the correlation between antipyretic and TLR4/NF-κB signaling pathway. RESULTS THP reduced the body temperature of febrile mice induced by dry yeast, as well as the levels of thermogenic cytokines and downregulated the contents of thermoregulatory mediators. THP alleviated the pathological damage of liver and hypothalamus caused by fever. In addition, THP decreased the secretion of thyroid hormone, substance and energy metabolism related indicators. Furthermore, THP significantly suppressed TLR4/NF-κB signaling pathway-related indicators. CONCLUSIONS In conclusion, our results suggest that inhaled THP exerts antipyretic effect by mediating the thermoregulatory mediator, decreasing the content of pyrogenic factors to lower the body temperature, and eventually restoring the high metabolic level in the body to normal via inhibiting TLR4/NF-κB signaling pathway. The study provides a reasonable pharmacodynamic basis for the treatment of polysaccharide in febrile-related diseases.
Collapse
Affiliation(s)
- Siyu Fu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiaodan Bao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhejiong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, China.
| | - Youying Tang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Qian Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
31
|
Liu Y, Xia P, Zong S, Zheng N, Cui X, Wang C, Wang M, Wang X, Yu S, Zhao H, Lu Z. Inhibition of Alzheimer's disease by 4-octyl itaconate revealed by RNA-seq transcriptome analysis. Eur J Pharmacol 2024; 968:176432. [PMID: 38369275 DOI: 10.1016/j.ejphar.2024.176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
AIMS This study aimed to examine the therapeutic effects and response mechanisms of 4-OI in Alzheimer's disease (AD). METHODS In this study, network pharmacology was employed to analyze potential targets for AD drug therapy. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques were utilized to detect inflammatory phenotypes in a 4-OI-resistant mouse microglia cell line (BV2). We conducted four classical behavioral experiments, namely the open field test, new object recognition test, Y maze test, and Morris water maze, to assess the emotional state and cognitive level of APPswe/PS1dE9 (referred to as APP/PS1) mice after 4-OI treatment. Hematoxylin and eosin (HE) staining, along with immunofluorescence staining, were performed to detect amyloid (Aβ) deposition in mouse brain tissue. To explore the potential molecular mechanisms regulating the effects of 4-OI treatment, we performed RNA-SEQ and transcription factor prediction analyses. Additionally, mouse BV2 cells underwent Western blotting analysis to elucidate potential molecular mechanisms underlying the observed effects. RESULTS We discovered that 4-OI exerts an inhibitory effect on neuroinflammation by promoting autophagy. This effect is attributed to the activation of the AMPK/mTOR/ULK1 pathway, achieved through enhanced phosphorylation of AMPK and ULK1, coupled with a reduction in mTOR phosphorylation. Furthermore, 4-OI significantly enhances neuronal recovery in the hippocampus and diminishes Aβ plaque deposition in APP/PS1 mice, improved anxiety in mice, and ultimately led to improved cognitive function. CONCLUSIONS Overall, the results of this study demonstrated that 4-OI improved cognitive deficits in AD mice, confirming the therapeutic effect of 4-OI on AD.
Collapse
Affiliation(s)
- Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ni Zheng
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Miaomiao Wang
- Department of Clinical Laboratory Medicine, Jining No. 1 People's Hospital, Jining, 272029, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuyi Yu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
32
|
Xu W, Xiang X, Lin L, Gong ZH, Xiao WJ. l-Theanine delays d-galactose-induced senescence by regulating the cell cycle and inhibiting apoptosis in rat intestinal cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2073-2084. [PMID: 37919877 DOI: 10.1002/jsfa.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Intestinal senescence is associated with several aging-related diseases. l-Theanine (LTA) has demonstrated strong potential as an antioxidant and antisenescence agent. This study investigated the regulatory effect of LTA on cellular senescence using an in vitro model of d-galactose (D-Gal)-induced senescence in the rat epithelial cell line, intestinal epithelioid cell-6 (IEC-6). RESULTS Treatment of IEC-6 cells with 40 mg/mL D-Gal for 48 h resulted in the successful development of the senescent cell model. Compared with D-Gal alone, both LTA preventive and delayed intervention increased cell viability and the ratio of JC-1 monomers to aggregates, increased the antioxidant capacity, and decreased the advanced glycation end product (AGE) levels and the overall number of senescent cells. Preventive and delayed intervention with 1000 μM LTA alleviated the D-Gal-induced cell cycle arrest by regulating p38, p53, CDK4, and CDK6 expression at the mRNA and protein levels, and further induced CycD1 proteins. Moreover, LTA preventive intervention reduced apoptosis to a greater degree than delayed intervention by upregulating the expression of the receptors of AGEs, Bax, Bcl-2, and NF-κB at the mRNA and protein levels. CONCLUSION Our findings indicate that LTA intervention could attenuate senescence in IEC-6 cells by regulating the cell cycle and inhibiting apoptosis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Xi Xiang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
Gong P, Pei S, Long H, Yang W, Yao W, Li N, Wang J, Zhao Y, Chen F, Xie J, Guo Y. Potential inhibitory effect of Auricularia auricula polysaccharide on advanced glycation end-products (AGEs). Int J Biol Macromol 2024; 262:129856. [PMID: 38423908 DOI: 10.1016/j.ijbiomac.2024.129856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
In this study, a novel polysaccharide, AAP-2S, was extracted from Auricularia auricula, and the anti-glycosylation effect of AAP-2S and its underlying mechanisms were investigated using an in vitro BSA-fructose model and a cellular model. The results demonstrated the inhibiting formation of advanced glycation end products (AGEs) in vitro by AAP-2S. Concurrently, it attenuated oxidative damage to proteins in the model, preserved protein sulfhydryl groups from oxidation, reduced protein carbonylation, prevented structural alterations in proteins, and decreased the formation of β-crosslinked structures. Furthermore, AAP-2S demonstrated metal-chelating capabilities. GC-MS/MS-based metabolomics were employed to analyze changes in metabolic profiles induced by AAP-2S in a CML-induced HK-2 cell model. Mechanistic investigations revealed that AAP-2S could mitigate glycosylation and ameliorate cell fibrosis by modulating the RAGE/TGF-β/NOX4 pathway. This study provides a foundational framework for further exploration of Auricularia auricular polysaccharide as a natural anti-AGEs agent, paving the way for its potential development and application as a food additive.
Collapse
Affiliation(s)
- Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuya Pei
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanni Zhao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jianwu Xie
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
34
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
35
|
Leandrou E, Chalatsa I, Anagnostou D, Machalia C, Semitekolou M, Filippa V, Makridakis M, Vlahou A, Anastasiadou E, Vekrellis K, Emmanouilidou E. α-Synuclein oligomers potentiate neuroinflammatory NF-κB activity and induce Ca v3.2 calcium signaling in astrocytes. Transl Neurodegener 2024; 13:11. [PMID: 38378800 PMCID: PMC10880263 DOI: 10.1186/s40035-024-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ioanna Chalatsa
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Dimitrios Anagnostou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
| | - Christina Machalia
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Maria Semitekolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
- School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Vicky Filippa
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Manousos Makridakis
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Antonia Vlahou
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ema Anastasiadou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Evangelia Emmanouilidou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece.
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
36
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Wang N, Zhao Y, Wu M, Li N, Yan C, Guo H, Li Q, Li Q, Wang Q. Gemfibrozil Alleviates Cognitive Impairment by Inhibiting Ferroptosis of Astrocytes via Restoring the Iron Metabolism and Promoting Antioxidant Capacity in Type 2 Diabetes. Mol Neurobiol 2024; 61:1187-1201. [PMID: 37697219 DOI: 10.1007/s12035-023-03589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
Diabetes-associated cognitive dysfunction (DACD) is considered a significant complication of diabetes and manifests as cognitive impairment. Astrocytes are vital to the brain energy metabolism and cerebral antioxidant status. Ferroptosis has been implicated in cognitive impairment, but it is unclear whether the ferroptosis of astrocytes is involved in the progression of DACD. PPARA/PPARα (peroxisome proliferator-activated receptor alpha) is a transcription factor that regulates glucose and lipid metabolism in the brain. In this study, we demonstrated that high glucose promoted ferroptosis of astrocytes by disrupting iron metabolism and suppressing the xCT/GPX4-regulated pathway in diabetic mice and astrocytes cultured in high glucose. Administration of gemfibrozil, a known PPARα agonist, inhibited ferroptosis and improved memory impairment in db/db mice. Gemfibrozil also prevented the accumulation of lipid peroxidation products and lethal reactive oxygen species induced by iron deposition in astrocytes and substantially reduced neuronal and synaptic loss. Our findings demonstrated that ferroptosis of astrocytes is a novel mechanism in the development of DACD. Additionally, our study revealed the therapeutic effect of gemfibrozil in preventing and treating DACD by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yujing Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Meiyan Wu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qing Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
38
|
Fan C, Zhang Z, Lai Z, Yang Y, Li J, Liu L, Chen S, Hu X, Zhao H, Cui S. Chemical Evolution and Biological Evaluation of Natural Products for Efficient Therapy of Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305432. [PMID: 38126681 PMCID: PMC10870070 DOI: 10.1002/advs.202305432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Acute lung injury (ALI) is one of the most common complications in COVID-19 and also a syndrome of acute respiratory failure with high mortality rates, but lacks effective therapeutic drugs. Natural products provide inspiration and have proven to be the most valuable source for bioactive molecule discovery. In this study, the chemical evolution of the natural product Tanshinone IIA (Tan-IIA) to achieve a piperidine-fused scaffold through a synthetic route of pre-activation, multi-component reaction, and post-modification is presented. Through biological evaluation, it is pinpointed that compound 8b is a standout candidate with remarkable anti-inflammation and anti-oxidative stress properties, coupled with low toxicity. The mechanistic study unveils a multifaceted biological profile of 8b and shows that 8b is highly efficient in vivo for the treatment of ALI. Therefore, this work not only provides an effective strategy for the treatment of ALI, but also offers a distinctive natural product-inspired drug discovery.
Collapse
Affiliation(s)
- Chengcheng Fan
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Zeyi Zhang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Zhencheng Lai
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yanzi Yang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Jiaming Li
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Lei Liu
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Siyu Chen
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Xueping Hu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237China
| | - Huajun Zhao
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Sunliang Cui
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhuaZhejiang321299China
| |
Collapse
|
39
|
Liu C, Zhang X, Yang H, Zhao M, Liu Y, Zhao R, Li Z, Sun M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int J Pharm 2024; 649:123673. [PMID: 38056796 DOI: 10.1016/j.ijpharm.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Yanhong Liu
- Center for Prenatal Diagnosis, Centre for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin 130061, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
40
|
Zhang C, Chen F, Wang Y, Zhang K, Yang X, Wang X. Tanshinone IIA protects intestinal epithelial cells from deoxynivalenol-induced pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115743. [PMID: 38035519 DOI: 10.1016/j.ecoenv.2023.115743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin in food and feed, which can cause undesirable effects, including diarrhea, emesis, weight loss, and growth delay in livestock. Intestinal epithelial cells were the main target of DON, which can cause oxidative stress and inflammatory injury. Tanshinone IIA (Tan IIA) is fat-soluble diterpene quinone, which is the most abundant active ingredient in salvia miltiorrhiza plant with antioxidant and anti-inflammatory characteristics. However, it is not clear whether Tan IIA can protect against or inhibit intestinal oxidative stress and inflammatory injury under DON exposure. This study aimed to explore the protective effect of Tan IIA on DON-induced toxicity in porcine jejunum epithelial cells (IPEC-J2). Cells were exposed to 0, 0.5, 1.0, 2.0 µM DON and/or 45 µg/mL TAN ⅡA to detect oxidative stress indicators. inflammatory cytokines, NF-κB expression, NLRP3 inflammasome and pyroptosis-related factors. In this study, DON exposure caused IPEC-J2 cells oxidative stress by elevating ROS and 8-OHdG content, inhibited GSH-Px activity. Furthermore, DON increased pro-inflammatory factor (TNF-α, IL-1β, IL-18 and IL-6) expression and decreased the anti-inflammatory factor (IL-10) expression, causing inflammatory response via triggering NF-κB pathway. Interestingly, above changes were alleviated after Tan IIA treatment. In addition, Tan IIA relieved DON-induced pyroptosis by suppressing the expression of pyroptosis-related factors (NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18). In general, our data suggested that Tan IIA can ameliorate DON-induced intestinal epithelial cells injury associated with suppressing the pyroptosis signaling pathway. Our findings pointed that Tan IIA could be used as the potential therapeutic drugs on DON-induced enterotoxicity.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
41
|
Arefnezhad R, Nejabat A, Behjati F, Torkamanche M, Zarei H, Yekkehbash M, Afsharmanesh F, Niknam Z, Jamialahmadi T, Sahebkar A. Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents. Mini Rev Med Chem 2024; 24:1701-1709. [PMID: 38482618 DOI: 10.2174/0113895575299721240227070032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 08/28/2024]
Abstract
Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
42
|
Liu XQ, Hu T, Wu GL, Qiao LJ, Cai YF, Wang Q, Zhang SJ. Tanshinone IIA, the key compound in Salvia miltiorrhiza, improves cognitive impairment by upregulating Aβ-degrading enzymes in APP/PS1 mice. Int J Biol Macromol 2024; 254:127923. [PMID: 37944734 DOI: 10.1016/j.ijbiomac.2023.127923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In Alzheimer's disease (AD), amyloid-beta (Aβ) plays a crucial role in pathogenesis. Clearing Aβ from the brain is considered as a key therapeutic strategy. Previous studies indicated that Salvia miltiorrhiza (Danshen) could protect against AD. However, the main anti-AD components in Danshen and their specific mechanisms are not clear. In this study, pharmacological network analysis indicated that Tanshinone IIA (Tan IIA) was identified as the key active compound in Danshen contributing to protect against AD. Then, APP/PS1 double transgenic mice were employed to examine the neuroprotective effect of Tan IIA. APP/PS1 mice (age, 6 months) were administered (10 and 20 mg/kg) for 8 weeks. Tan IIA improved learning and anxiety behaviors in APP/PS1 mice. Furthermore, Tan IIA reduced oxidative stress, inhibited neuronal apoptosis, improved cholinergic nervous system and decreased endoplasmic reticulum stress in the brain of APP/PS1 mice. Moreover, Tan IIA treatment reduced the level of Aβ. Molecular docking result showed that Tan IIA might block AD by upregulating Aβ-degrading enzymes. Western blot results confirmed that the expressions of insulin degrading enzymes (IDE) and neprilysin (NEP) were significantly increased after Tan IIA treatment, which demonstrated that Tan IIA improved AD by increasing Aβ-degrading enzymes.
Collapse
Affiliation(s)
- Xiao-Qi Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tian Hu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
43
|
Sun J, Chen W, Zhou Z, Chen X, Zuo Y, He J, Liu H. Tanshinone IIA Facilitates Efficient Cartilage Regeneration under Inflammatory Factors Caused Stress via Upregulating LncRNA NEAT1_2. Biomedicines 2023; 11:3291. [PMID: 38137512 PMCID: PMC10741062 DOI: 10.3390/biomedicines11123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Osteoarthritis (OA) is a crippling condition characterized by chondrocyte dedifferentiation, cartilage degradation, and subsequent cartilage defects. Unfortunately, there is a lack of effective medicines to facilitate the repair of cartilage defects in OA patients. In this study, we investigated the role of lncRNA NEAT1_2 in maintaining the chondrocyte phenotype and identified tanshinone IIA(TAN) as a natural medicine that enhances NEAT1_2 levels, resulting in efficient cartilage regeneration under inflammatory cytokines. (2) Methods: The transcriptional levels of NEAT1_2 and cartilage phenotype-related genes were identified by RT-qPCR. The siRNA interference approach was utilized to silence NEAT1_2; the Alamar Blue assay was performed to determine chondrocyte viability under inflammatory conditions. To evaluate the concentrations of collagen type II and glycosaminoglycans distributed by chondrocytes in vitro and in vivo, immunohistochemical staining and Safranin O staining were used. (3) Results: IL-1β suppresses NEAT1_2 and genes related to the chondrocytic phenotype, whereas TAN effectively upregulates them in a NEAT1_2-dependent manner. Consistently, TAN alleviated chondrocyte oxidative stress inhibited cartilage degradation by modulating the relevant genes and promoted efficient cartilage regeneration in vitro and in vivo when chondrocytes are exposed to inflammatory cytokines. (4) Conclusions: TAN enhances the expression of NEAT1_2 inhibited by IL-1β and affects the transcription of chondrocytic phenotype-related genes, which promotes cartilage regeneration in an inflammatory environment.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Wei Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| |
Collapse
|
44
|
Zhou CH, Yang H, Zou LF, Liu DF, Yu LZ, Cao HH, Deng LE, Wang ZW, Lu ZB, Liu JS. Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish. Chin J Integr Med 2023; 29:1111-1120. [PMID: 37610554 DOI: 10.1007/s11655-023-3643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.
Collapse
Affiliation(s)
- Chun-Hong Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hua Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Di-Fa Liu
- State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi Province, 341000, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li-E Deng
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong Province, 523076, China
| | - Zhang-Wei Wang
- State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi Province, 341000, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
45
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
46
|
Waugh ML, Wolf LM, Turner JP, Phillips LN, Servoss SL, Moss MA. Modulating the RAGE-Induced Inflammatory Response: Peptoids as RAGE Antagonists. Chembiochem 2023; 24:e202300503. [PMID: 37679300 PMCID: PMC10711691 DOI: 10.1002/cbic.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-β (Aβ) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation end-products (RAGE), a key receptor of innate immune response, is reported in AD. In parallel, RAGE ligands, including Aβ aggregates, HMGB1, and S100B, are elevated in AD brain. Activation of RAGE by these ligands triggers release of inflammatory cytokines and upregulates cell surface RAGE. Despite such observation, there are currently no therapeutics that target RAGE for treatment of AD-associated neuroinflammation. Peptoids, a novel class of potential AD therapeutics, display low toxicity, facile blood-brain barrier permeability, and resistance to proteolytic degradation. In the current study, peptoids were designed to mimic Aβ, a ligand that binds the V-domain of RAGE, and curtail RAGE inflammatory activation. We reveal the nanomolar binding capability of peptoids JPT1 and JPT1a to RAGE and demonstrate their ability to attenuate lipopolysaccharide-induced pro-inflammatory cytokine production as well as upregulation of RAGE cell surface expression. These results support RAGE antagonist peptoid-based mimics as a prospective therapeutic strategy to counter neuroinflammation in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mihyun Lim Waugh
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Lauren M Wolf
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - James P Turner
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Lauren N Phillips
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Shannon L Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Melissa A Moss
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, SC 29208, USA
| |
Collapse
|
47
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
48
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
50
|
Hu KB, Lu XM, Wang HY, Liu HL, Wu QY, Liao P, Li S, Long ZY, Wang YT. Effects and mechanisms of tanshinone IIA on PTSD-like symptoms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155032. [PMID: 37611463 DOI: 10.1016/j.phymed.2023.155032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND In recent years, Salvia miltiorrhiza and its active substances have remarkably progressed in treating central neurological disorders. Tanshinone IIA (TSA) is an active ingredient derived from the rhizome of Salvia miltiorrhiza that has been found to alleviate the symptoms of several psychiatric illnesses. Post-traumatic stress disorder (PTSD) is a mental disorder that results after experiencing a serious physical or psychological injury. The currently used drugs are not satisfactory for the treatment of PTSD. However, it has been reported that TSA can improve PTSD-like symptoms like learning and memory, cognitive disorder, and depression through multi-target regulation. PURPOSE This paper discusses the ameliorative effects of TSA on PTSD-like symptoms and the possible mechanisms of action in terms of inhibition of neuronal apoptosis, anti-neuroinflammation, and anti-oxidative stress. Based on the pathological changes and clinical observations of PTSD, we hope to provide some reference for the clinical transformation of Chinese medicine in treating PTSD. METHODS A large number of literatures on tanshinone in the treatment of neurological diseases and PTSD were retrieved from online electronic PubMed and Web of Science databases. CONCLUSION TSA is a widely studied natural active ingredient against mental illness. This review will contribute to the future development of TSA as a new clinical candidate drug for improving PTSD-like symptoms.
Collapse
Affiliation(s)
- Kai-Bin Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|