1
|
Chen X, Chen R, Wen L, Qin T, Liao Y, Tao X, Yuan Z, Wei W, Li J, Huang Y, Wei W, Liu J, Su J, Ye L, Liang H, Jiang J. Long Noncoding RNA LINC02453 Inhibits HIV-1 Replication by Binding With SEC13 to Regulate the Viral Productive Cycle. J Med Virol 2024; 96:e70116. [PMID: 39704187 DOI: 10.1002/jmv.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs. Then, we conducted validation experiments at the population level, while cellular models of HIV-1 infection were constructed for functional experimental investigations in vitro. Subcellular localization of the identified lncRNA was determined, followed by an exploration of the specific regulatory mechanism underlying HIV resistance through some experiments, such as RNA pull-down, western blot and Hirt assays. LncRNA LINC02453 is highly expressed in HESN. Moreover, LINC02453 is identified as a novel lncRNA associated with heightened resistance to HIV-1. LINC02453 is predominantly localized in the nucleus and binds to SEC13, a component of the nuclear pore complex, leading to the inhibition of HIV-1 replication by regulating key processes such as late reverse transcription, nuclear import, and DNA integration. Our findings suggest that LINC02453 may serve as a prospective target for the development of innovative anti-HIV therapeutics.
Collapse
Affiliation(s)
- Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Liufang Wen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Tongxue Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yinlu Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmiao Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Youjin Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfei Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Engineering Center for Organoids and Organ-on-Chips of Highly Pathogenic Microbial Infections & Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Wang X, Tong W, Yang X, Zhai H, Qin W, Liu C, Zheng H, Yu H, Tong G, Zhang Z, Kong N, Shan T. RBM14 inhibits the replication of porcine epidemic diarrhea virus by recruiting p62 to degrade nucleocapsid protein through the activation of autophagy and interferon pathway. J Virol 2024; 98:e0018224. [PMID: 38411947 PMCID: PMC10949495 DOI: 10.1128/jvi.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Jiangsu University of Science and Technology, Zhenjiang, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huanjie Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhendong Zhang
- Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Garg M, Li L, Godbout R. Role of DDX1 in the oxidative response of ataxia telangiectasia patient-derived fibroblasts. Redox Biol 2024; 69:102988. [PMID: 38096740 PMCID: PMC10761787 DOI: 10.1016/j.redox.2023.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
4
|
Li C, Mori LP, Lyu S, Bronson R, Getzler AJ, Pipkin ME, Valente ST. The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation. Proc Natl Acad Sci U S A 2023; 120:e2217476120. [PMID: 36584296 PMCID: PMC9910500 DOI: 10.1073/pnas.2217476120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Luisa P. Mori
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Shuang Lyu
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Ronald Bronson
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Adam J. Getzler
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Susana T. Valente
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| |
Collapse
|
5
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
6
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
7
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
8
|
Ali MAM. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res 2021; 296:198352. [PMID: 33640359 DOI: 10.1016/j.virusres.2021.198352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicases, the largest family of superfamily 2 helicases, are a profoundly conserved family of RNA-binding proteins, containing a distinctive Asp-Glu-Ala-Asp (D-E-A-D) sequence motif, which is the origin of their name. Aside from the ATP-dependent unwinding of RNA duplexes, which set up these proteins as RNA helicases, DEAD-box proteins have been found to additionally stimulate RNA duplex fashioning and to uproot proteins from RNA, aiding the reformation of RNA and RNA-protein complexes. There is accumulating evidence that DEAD-box helicases play functions in the recognition of foreign nucleic acids and the modification of viral infection. As intracellular parasites, viruses must avoid identification by innate immune sensing mechanisms and disintegration by cellular machinery, whilst additionally exploiting host cell activities to assist replication. The capability of DEAD-box helicases to sense RNA in a sequence-independent way, as well as the broadness of cellular roles performed by members of this family, drive them to affect innate sensing and viral infections in numerous manners. Undoubtedly, DEAD-box helicases have been demonstrated to contribute to intracellular immune recognition, function as antiviral effectors, and even to be exploited by viruses to support their replication. Relying on the virus or the viral cycle phase, a DEAD-box helicase can function either in a proviral manner or as an antiviral factor. This review gives a comprehensive perspective on the various biochemical characteristics of DEAD-box helicases and their links to structural data. It additionally outlines the multiple functions that members of the DEAD-box helicase family play during viral infections.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
9
|
Szojka Z, Mótyán JA, Miczi M, Mahdi M, Tőzsér J. Y44A Mutation in the Acidic Domain of HIV-2 Tat Impairs Viral Reverse Transcription and LTR-Transactivation. Int J Mol Sci 2020; 21:ijms21165907. [PMID: 32824587 PMCID: PMC7460587 DOI: 10.3390/ijms21165907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/28/2022] Open
Abstract
HIV transactivator protein (Tat) plays a pivotal role in viral replication through modulation of cellular transcription factors and transactivation of viral genomic transcription. The effect of HIV-1 Tat on reverse transcription has long been described in the literature, however, that of HIV-2 is understudied. Sequence homology between Tat proteins of HIV-1 and 2 is estimated to be less than 30%, and the main difference lies within their N-terminal region. Here, we describe Y44A-inactivating mutation of HIV-2 Tat, studying its effect on capsid production, reverse transcription, and the efficiency of proviral transcription. Investigation of the mutation was performed using sequence- and structure-based in silico analysis and in vitro experiments. Our results indicate that the Y44A mutant HIV-2 Tat inhibited the activity and expression of RT (reverse transcriptase), in addition to diminishing Tat-dependent LTR (long terminal repeat) transactivation. These findings highlight the functional importance of the acidic domain of HIV-2 Tat in the regulation of reverse transcription and transactivation of the integrated provirions.
Collapse
Affiliation(s)
- Zsófia Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
| | - Márió Miczi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| |
Collapse
|
10
|
Ahlenstiel CL, Symonds G, Kent SJ, Kelleher AD. Block and Lock HIV Cure Strategies to Control the Latent Reservoir. Front Cell Infect Microbiol 2020; 10:424. [PMID: 32923412 PMCID: PMC7457024 DOI: 10.3389/fcimb.2020.00424] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The HIV latent reservoir represents the major challenge to cure development. Residing in resting CD4+ T cells and myeloid cells at multiple locations in the body, including sanctuary sites such as the brain, the latent reservoir is not eliminated by ART and has the ability to reactivate virus replication to pre-therapy levels when ART is ceased. There are four broad areas of HIV cure research. The only successful cure strategy, thus far, is stem cell transplantation using naturally HIV resistant CCR5Δ32 stem cells. A second potential cure approach uses gene editing technology, such as zinc-finger nucleases and CRISPR/Cas9. Another two cure strategies aim to control the HIV reservoir, with polar opposite concepts; The "shock and kill" approach, which aims to "shock" or reactivate the latent virus and then "kill" infected cells via targeted immune responses. Lastly, the "block and lock" approach, which aims to enhance the latent virus state by "blocking" HIV transcription and "locking" the HIV promoter in a deep latent state via epigenetic modifications. "Shock and kill" approaches are a major focus of cure studies, however we predict that the increased specificity of "block and lock" approaches will be required for the successful development of a sustained HIV clinical remission in the absence of ART. This review focuses on the current research of novel "block and lock" approaches being explored to generate an HIV cure via induction of epigenetic silencing. We will also discuss potential future therapeutic delivery and the challenges associated with progressing "block and lock" cure approaches as these move toward clinical trials.
Collapse
Affiliation(s)
| | | | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
11
|
Jin H, Li D, Lin MH, Li L, Harrich D. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses 2020; 12:v12040415. [PMID: 32276443 PMCID: PMC7232260 DOI: 10.3390/v12040415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV) establishes a chronic infection that can be well controlled, but not cured, by combined antiretroviral therapy (cART). Interventions have been explored to accomplish a functional cure, meaning that a patient remains infected but HIV is undetectable in the blood, with the aim of allowing patients to live without cART. Tat, the viral transactivator of transcription protein, plays a critical role in controlling HIV transcription, latency, and viral rebound following the interruption of cART treatment. Therefore, a logical approach for controlling HIV would be to block Tat. Tackling Tat with inhibitors has been a difficult task, but some recent discoveries hold promise. Two anti-HIV proteins, Nullbasic (a mutant of Tat) and HT1 (a fusion of HEXIM1 and Tat functional domains) inhibit viral transcription by interfering with the interaction of Tat and cellular factors. Two small molecules, didehydro-cortistatin A (dCA) and triptolide, inhibit Tat by different mechanisms: dCA through direct binding and triptolide through enhanced proteasomal degradation. Finally, two Tat-based vaccines under development elicit Tat-neutralizing antibodies. These vaccines have increased the levels of CD4+ cells and reduced viral loads in HIV-infected people, suggesting that the new vaccines are therapeutic. This review summarizes recent developments of anti-Tat agents and how they could contribute to a functional cure for HIV.
Collapse
Affiliation(s)
- Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
- Correspondence: ; Tel.: +617-3845-3679
| |
Collapse
|
12
|
Hildebrandt MR, Wang Y, Li L, Yasmin L, Glubrecht DD, Godbout R. Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout. Dev Biol 2019; 455:420-433. [DOI: 10.1016/j.ydbio.2019.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
|
13
|
Abstract
Nullbasic is a mutant form of the HIV-1 transcriptional activator protein (Tat) that strongly inhibits HIV-1 transcription and replication in lymphocytes in vitro To investigate Nullbasic inhibition in vivo, we employed an NSG mouse model where animals were engrafted with primary human CD4+ cells expressing a Nullbasic-ZsGreen1 (NB-ZSG) fusion protein or ZSG. NB-ZSG and ZSG were delivered by using a retroviral vector where CD4+ cells were transduced either prior to (preinfection) or following (postinfection) HIV-1 infection. The transduced cells were analyzed in vitro up to 10 days postinfection (dpi) and in vivo up to 39 dpi. Compared to ZSG, NB-ZSG strongly inhibited HIV-1 replication both in vitro and in vivo using preinfection treatment. In vitro, HIV-1 mRNA levels in cells were reduced by up to 60-fold. In vivo, HIV-1 RNA was undetectable in plasma samples during the course of the experiment, and HIV-1 mRNA levels in resident CD4+ cells in organ tissue were reduced up to 2,800-fold. Postinfection treatment of HIV-1-infected cells with NB-ZSG attenuated HIV-1 infection for up to 14 days. In vitro, a 25-fold reduction of viral mRNA in cells was observed but diminished to a <2-fold reduction by 10 dpi. In vivo, HIV-1 RNA was undetectable in plasma of NB-ZSG mice at 14 dpi but afterwards was not significantly different between NB-ZSG mice and control mice. However, we observed higher levels of CD4+ cells in NB-ZSG mice than in control mice, suggesting that NB-ZSG imparted a survival advantage to HIV-1-infected animals.IMPORTANCE HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces viral loads below detectable levels in patients. However, therapy interruption leads to viral rebound due to latently infected cells, which serve as a source of continued viral infection. Interest in strategies leading to a functional cure for HIV-1 infection by long-term or permanent viral suppression is growing. Here, we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, inhibits HIV-1 transcription in infected CD4+ cells in vivo Analysis shows that stable expression of Nullbasic in CD4+ cells could lead to durable anti-HIV-1 activity. Nullbasic, as a gene therapy candidate, could be a part of a functional-cure strategy to suppress HIV-1 transcription and replication.
Collapse
|
14
|
Golumbeanu M, Desfarges S, Hernandez C, Quadroni M, Rato S, Mohammadi P, Telenti A, Beerenwinkel N, Ciuffi A. Proteo-Transcriptomic Dynamics of Cellular Response to HIV-1 Infection. Sci Rep 2019; 9:213. [PMID: 30659199 PMCID: PMC6338737 DOI: 10.1038/s41598-018-36135-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023] Open
Abstract
Throughout the HIV-1 replication cycle, complex host-pathogen interactions take place in the infected cell, leading to the production of new virions. The virus modulates the host cellular machinery in order to support its life cycle, while counteracting intracellular defense mechanisms. We investigated the dynamic host response to HIV-1 infection by systematically measuring transcriptomic, proteomic, and phosphoproteomic expression changes in infected and uninfected SupT1 CD4+ T cells at five time points of the viral replication process. By means of a Gaussian mixed-effects model implemented in the new R/Bioconductor package TMixClust, we clustered host genes based on their temporal expression patterns. We identified a proteo-transcriptomic gene expression signature of 388 host genes specific for HIV-1 replication. Comprehensive functional analyses of these genes confirmed the previously described roles of some of the genes and revealed novel key virus-host interactions affecting multiple molecular processes within the host cell, including signal transduction, metabolism, cell cycle, and immune system. The results of our analysis are accessible through a freely available, dedicated and user-friendly R/Shiny application, called PEACHi2.0. This resource constitutes a catalogue of dynamic host responses to HIV-1 infection that provides a basis for a more comprehensive understanding of virus-host interactions.
Collapse
Affiliation(s)
- Monica Golumbeanu
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sébastien Desfarges
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- InvivoGen, Toulouse, France
| | - Céline Hernandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Computational Systems Biology Team, Institut de Biologie de I'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, PSL Université, Paris, France
| | - Manfredo Quadroni
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Rato
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, (CA), USA
| | - Amalio Telenti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, (CA), USA.
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|
16
|
Abstract
Viruses utilize a number of host factors in order to carry out their replication cycles. Influenza A virus (IAV) and human respiratory syncytial virus (RSV) both infect the tissues of the respiratory tract, and as such we hypothesize that they might require similar host factors. Several published genome-wide screens have identified putative IAV host factors; however, there is significant discordance between their hits. In order to build on this work, we integrated a variety of "OMICS" data sources using two complementary network analyses, yielding 51 genes enriched for both IAV and RSV replication. We designed a targeted small interfering RNA (siRNA)-based assay to screen these genes against IAV under robust conditions and identified 13 genes supported by two IAV subtypes in both primary and transformed human lung cells. One of these hits, RNA binding motif 14 (RBM14), was validated as a required host factor and furthermore was shown to relocalize to the nucleolus upon IAV infection but not with other viruses. Additionally, the IAV NS1 protein is both necessary and sufficient for RBM14 relocalization, and relocalization also requires the double-stranded RNA (dsRNA) binding capacity of NS1. This work reports the discovery of a new host requirement for IAV replication and exposes a novel example of interplay between IAV NS1 and the host protein, RBM14.IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) present major global disease burdens. There are high economic costs associated with morbidity as well as significant mortality rates, especially in developing countries, in children, and in the elderly. There are currently limited therapeutic options for these viruses, which underscores the need for novel research into virus biology that may lead to the discovery of new therapeutic approaches. This work extends existing research into host factors involved in virus replication and explores the interaction between IAV and one such host factor, RBM14. Further study to fully characterize this interaction may elucidate novel mechanisms used by the virus during its replication cycle and open new avenues for understanding virus biology.
Collapse
|
17
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
18
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
19
|
Rustanti L, Jin H, Li D, Lor M, Sivakumaran H, Harrich D. Differential Effects of Strategies to Improve the Transduction Efficiency of Lentiviral Vector that Conveys an Anti-HIV Protein, Nullbasic, in Human T Cells. Virol Sin 2018. [PMID: 29541943 DOI: 10.1007/s12250-018-0004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nullbasic is a mutant form of HIV-1 Tat that has strong ability to protect cells from HIV-1 replication by inhibiting three different steps of viral replication: reverse transcription, Rev export of viral mRNA from the nucleus to the cytoplasm and transcription of viral mRNA by RNA polymerase II. We previously showed that Nullbasic inhibits transduction of human cells including T cells by HIV-1-based lentiviral vectors. Here we investigated whether the Nullbasic antagonists huTat2 (a Tat targeting intrabody), HIV-1 Tat or Rev proteins or cellular DDX1 protein could improve transduction by a HIV-1 lentiviral vector conveying Nullbasic-ZsGreen1 to human T cells. We show that overexpression of huTat2, Tat-FLAG and DDX1-HA in virus-like particle (VLP) producer cells significantly improved transduction efficiency of VLPs that convey Nullbasic in Jurkat cells. Specifically, co-expression of Tat-FLAG and DDX1-HA in the VLP producer cell improved transduction efficiency better than if used individually. Transduction efficiencies could be further improved by including a spinoculation step. However, the same optimised protocol and using the same VLPs failed to transduce primary human CD4+ T cells. The results imply that the effects of Nullbasic on VLPs on early HIV-1 replication are robust in human CD4+ T cells. Given this significant block to lentiviral vector transduction by Nullbasic in primary CD4+ T cells, our data indicate that gammaretroviral, but not lentiviral, vectors are suitable for delivering Nullbasic to primary human T cells.
Collapse
Affiliation(s)
- Lina Rustanti
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
- National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Central Jakarta, DKI Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Haran Sivakumaran
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
20
|
Hammond JA, Zhou L, Lamichhane R, Chu HY, Millar DP, Gerace L, Williamson JR. A Survey of DDX21 Activity During Rev/RRE Complex Formation. J Mol Biol 2018; 430:537-553. [PMID: 28705764 PMCID: PMC5762417 DOI: 10.1016/j.jmb.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
HIV-1 requires a specialized nuclear export pathway to transport unspliced and partially spliced viral transcripts to the cytoplasm. Central to this pathway is the viral protein Rev, which binds to the Rev response element in stem IIB located on unspliced viral transcripts and subsequently oligomerizes in a cooperative manner. Previous work identified a number of cellular DEAD-box helicases as in vivo binding partners of Rev, and siRNA experiments indicated a functional role for many in the HIV replication cycle. Two DEAD-box proteins, DDX1 and DDX3, had previously been shown to play a role in HIV pathogenesis. In this study, another protein identified in that screen, DDX21, is tested for protein and RNA binding and subsequent enzymatic activities in the context of the Rev/RRE pathway. We found that DDX21 can bind to the RRE with high affinity, and this binding stimulates ATPase activity with an enzymatic efficiency similar to DDX1. Furthermore, DDX21 is both an ATP-dependent and ATP-independent helicase, and both ATPase and ATP-dependent helicase activities are inhibited by Rev in a dose-dependent manner, although ATP-independent helicase activity is not. A conserved binding interaction between DDX protein's DEAD domain and Rev was identified, with Rev's nuclear diffusion inhibitory signal motif playing a significant role in binding. Finally, DDX21 was shown to enhance Rev binding to the RRE in a manner similar to that previously described for DDX1, although DDX3 does not. These data indicate that DDX1 and DDX21 have similar biochemical activities with regard to the Rev/RRE system, while DDX3 differs.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui-Yi Chu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Lamichhane R, Hammond JA, Pauszek RF, Anderson RM, Pedron I, van der Schans E, Williamson JR, Millar DP. A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Res 2017; 45:4632-4641. [PMID: 28379444 PMCID: PMC5416872 DOI: 10.1093/nar/gkx206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 Rev protein activates nuclear export of unspliced and partially spliced viral RNA transcripts, which encode the viral genome and the genes encoding viral structural proteins, by binding to and oligomerizing on the Rev Response Element (RRE). The human DEAD-box protein 1 (DDX1) enhances the RNA export activity of Rev through an unknown mechanism. Using a single-molecule assembly assay and various DDX1 mutants, we show that DDX1 acts through the RRE RNA to specifically accelerate the nucleation step of the Rev-RRE assembly process. Single-molecule Förster resonance energy transfer (smFRET) experiments using donor-labeled Rev and acceptor-labeled DDX1 show that both proteins can associate with a single RRE molecule. However, simultaneous interaction is only observed in a subset of binding events and does not explain the extent to which DDX1 promotes the nucleation step of Rev-RRE assembly. Together, these results are consistent with a model wherein DDX1 acts as an RNA chaperone, remodeling the RRE into a conformation that is pre-organized to bind the first Rev monomer, thereby promoting the overall Rev-RRE assembly process.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rae M Anderson
- Department of Physics, University of San Diego, San Diego, CA 92110, USA
| | - Ingemar Pedron
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Edwin van der Schans
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Zhang L, Jia X, Jin JO, Lu H, Tan Z. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders. GENOMICS, PROTEOMICS & BIOINFORMATICS 2017; 15:110-120. [PMID: 28391008 PMCID: PMC5415375 DOI: 10.1016/j.gpb.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as well as subcellular proteomics and investigation of posttranslational modifications. Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues for the diagnosis and treatment of HIV infection and the related diseases.
Collapse
Affiliation(s)
- Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
23
|
Rustanti L, Jin H, Lor M, Lin MH, Rawle DJ, Harrich D. A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Virol J 2017; 14:52. [PMID: 28288662 PMCID: PMC5348743 DOI: 10.1186/s12985-017-0705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nullbasic is a mutant HIV-1 Tat protein that inhibits HIV-1 replication via three independent mechanisms that disrupts 1) reverse transcription of the viral RNA genome into a DNA copy, 2) HIV-1 Rev protein function required for viral mRNA transport from the nucleus to the cytoplasm and 3) HIV-1 mRNA transcription by RNA Polymerase II. The Nullbasic protein is derived from the subtype B strain HIV-1BH10 and has only been tested against other HIV-1 subtype B strains. However, subtype B strains only account for ~10% of HIV-1 infections globally and HIV-1 Tat sequences vary between subtypes especially for subtype C, which is responsible for ~50% HIV-1 infection worldwide. These differences could influence the ability of Tat to interact with RNA and cellular proteins and thus could affect the antiviral activity of Nullbasic. Therefore, Nullbasic was tested against representative HIV-1 strains from subtypes C, D and A/D recombinant to determine if it can inhibit their replication. Methods Nullbasic was delivered to human cells using a self-inactivating (SIN) γ-retroviral system. We evaluated Nullbasic-mCherry (NB-mCh) fusion protein activity against the HIV-1 strains in TZM-bl cell lines for inhibition of transactivation and virus replication. We also examined antiviral activity of Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein against the same strains in primary CD4+ T cells. The Nullbasic expression was monitored by western blot and flow cytometry. The effects of Nullbasic on primary CD4+ T cells cytotoxicity, proliferation and apoptosis were also examined. Results The results show that Nullbasic inhibits Tat-mediated transactivation and virus replication of all the HIV-1 strains tested in TZM-bl cells. Importantly, Nullbasic inhibits replication of the HIV-1 strains in primary CD4+ T cells without affecting cell proliferation, cytotoxicity or level of apoptotic cells. Conclusion A SIN-based γ-retroviral vector used to express Nullbasic fusion proteins improved protein expression particularly in primary CD4+ T cells. Nullbasic has antiviral activity against all strains from the subtypes tested although small differences in viral inhibition were observed. Further improvement of in γ-retroviral vector stable expression of Nullbasic expression may have utility in a future gene therapy approach applicable to genetically diverse HIV-1 strains. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0705-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rustanti
- School of Medicine, the University of Queensland, Herston, QLD, 4029, Australia.,Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Jalan Percetakan Negara 29, Central Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Min Hsuan Lin
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 33302, Taiwan
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
24
|
Hammond JA, Lamichhane R, Millar DP, Williamson JR. A DEAD-Box Helicase Mediates an RNA Structural Transition in the HIV-1 Rev Response Element. J Mol Biol 2017; 429:697-714. [PMID: 28153748 PMCID: PMC5510989 DOI: 10.1016/j.jmb.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/21/2017] [Indexed: 01/17/2023]
Abstract
Nuclear export of partially spliced or unspliced HIV-1 RNA transcripts requires binding of the viral protein regulator of expression of virion (Rev) to the Rev response element (RRE) and subsequent oligomerization in a cooperative manner. Cellular DEAD-box helicase DEAD-box protein 1 (DDX1) plays a role in HIV replication, interacting with and affecting Rev-containing HIV transcripts in vivo, interacting directly with the RRE and Rev in vitro, and promoting Rev oligomerization in vitro. Binding of DDX1 results in enhancement of Rev oligomerization on the RRE that is correlated with an RNA structural change within the RRE that persists even after dissociation of DDX1. Furthermore, this structural transition is likely located within the three-way junction of stem II of the RRE that is responsible for initial Rev binding. This discovery of the stem II structural transition leads to a model wherein DDX1 can act as an RNA chaperone, folding stem IIB into a proper Rev binding conformation.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
26
|
Abstract
Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA) and JQ1 had no effect, while suberanilohydroxamic acid (SAHA) modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA), but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII) and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells. HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces measurable viral loads in patients below detectable levels. However, therapy interruption leads to viral rebound due to latently infected cells that serve as a source of continued viral infection. Interest in strategies leading to a functional cure of HIV infection by permanent viral suppression, which may be achievable, is growing. Here we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, can inhibit HIV-1 transcription in infected Jurkat T cell to undetectable levels. Analysis shows that Nullbasic alters the epigenetic state of the HIV-1 long terminal repeat promoter, inhibiting its association with RNA polymerase II. This study indicates that key cellular proteins and pathways targeted here can silence HIV-1 transcription. Further elucidation could lead to functional-cure strategies by suppression of HIV transcription, which may be achievable by a pharmacological method.
Collapse
|
27
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
28
|
Fulcher AJ, Sivakumaran H, Jin H, Rawle DJ, Harrich D, Jans DA. The protein arginine methyltransferase PRMT6 inhibits HIV-1 Tat nucleolar retention. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:254-62. [PMID: 26611710 DOI: 10.1016/j.bbamcr.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus (HIV)-1 transactivator protein Tat is known to play a key role in HIV infection, integrally related to its role in the host cell nucleus/nucleolus. Here we show for the first time that Tat localisation can be modulated by specific methylation, whereby overexpression of active but not catalytically inactive PRMT6 methyltransferase specifically leads to exclusion of Tat from the nucleolus. An R52/53A mutated Tat derivative does not show this redistribution, implying that R52/53, within Tat's nuclear/nucleolar localisation signal, are the targets of PRMT6 activity. Analysis using fluorescence recovery after photobleaching indicate that Tat nucleolar accumulation is largely through binding to nucleolar components, with methylation of Tat by PRMT6 preventing this. To our knowledge, this is the first report of specific protein methylation inhibiting nucleolar retention.
Collapse
Affiliation(s)
- Alex J Fulcher
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Haran Sivakumaran
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; The University of Queensland, School of Population Health, Herston, Queensland 4072, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia; Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, Queensland, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Biotechnology and Development, Australia.
| |
Collapse
|
29
|
Loss of the Drosophila melanogaster DEAD box protein Ddx1 leads to reduced size and aberrant gametogenesis. Dev Biol 2015; 407:232-45. [PMID: 26433063 PMCID: PMC7094483 DOI: 10.1016/j.ydbio.2015.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
Abstract
Mammalian DDX1 has been implicated in RNA trafficking, DNA double-strand break repair and RNA processing; however, little is known about its role during animal development. Here, we report phenotypes associated with a null Ddx1 (Ddx1AX) mutation generated in Drosophila melanogaster. Ddx1 null flies are viable but significantly smaller than control and Ddx1 heterozygous flies. Female Ddx1 null flies have reduced fertility with egg chambers undergoing autophagy, whereas males are sterile due to disrupted spermatogenesis. Comparative RNA sequencing of control and Ddx1 null third instars identified several transcripts affected by Ddx1 inactivation. One of these, Sirup mRNA, was previously shown to be overexpressed under starvation conditions and implicated in mitochondrial function. We demonstrate that Sirup is a direct binding target of Ddx1 and that Sirup mRNA is differentially spliced in the presence or absence of Ddx1. Combining Ddx1 null mutation with Sirup dsRNA-mediated knock-down causes epistatic lethality not observed in either single mutant. Our data suggest a role for Drosophila Ddx1 in stress-induced regulation of splicing. We describe a new Ddx1 null Drosophila line. Ddx1 null flies are smaller in size and display aberrant gametogenesis. Sirup splicing is altered in Ddx1 null flies. We show both a physical and a genetic interaction between Ddx1 and Sirup.
Collapse
|