1
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Anish TS, Aravind R, Radhakrishnan C, Gupta N, Yadav PD, Cherian JJ, Sahay R, Chenayil S, A S AK, Moorkoth AP, Ashadevi, Lathika VR, Moideen S, Kuriakose SL, Reena KJ, Mathew T. Pandemic potential of the Nipah virus and public health strategies adopted during outbreaks: Lessons from Kerala, India. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003926. [PMID: 39700307 DOI: 10.1371/journal.pgph.0003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Kerala, a south Indian state witnessed several outbreaks of Nipah encephalitis since 2018, a zoonotic viral disease with significant pandemic potential. This review highlights the relevance of surveillance and health system preparedness, infection control, early diagnosis and treatment with broad-spectrum antivirals, environmental conservation, and community engagement in mitigating Nipah outbreaks. Additionally, it emphasises the importance of developing new biologicals and anti-viral drugs to combat the disease. The article discusses the available evidence on the spillover mechanisms, genetic attributes of the circulating virus, ecological factors, risk of hospital-based superspreading, treatment outcomes and successful strategies employed in Kerala in response to the recurrent Nipah outbreaks.
Collapse
Affiliation(s)
- Thekkumkara Surendran Anish
- Kerala One Health Centre for Nipah Research and Resilience, Kozhikode, Kerala, India
- Department of Community Medicine, Government Medical College, Wayanad, Kerala, India
| | - Reghukumar Aravind
- Department of Infectious Diseases, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Chandni Radhakrishnan
- Department of Internal Medicine, Government Medical College, Kozhikode, Kerala, India
| | | | - Pragya D Yadav
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | - Jerin Jose Cherian
- Indian Council of Medical Research, New Delhi, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Rima Sahay
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | | | | | | | - Ashadevi
- Department of Health Services, Kozhikode, Kerala, India
| | | | - Shamsudeen Moideen
- IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| | | | | | - Thomas Mathew
- Department of Medical Education, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
McKnight CJ, Aboushady AT, Lane CR. Beyond early warning: towards greater granularity in the use of event-based surveillance for public health emergencies. BMC Public Health 2024; 24:3488. [PMID: 39696107 DOI: 10.1186/s12889-024-20963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The international health emergency caused by the emergence of the SARS-CoV-2 virus demonstrated the expanding usefulness of multi-country disease outbreak information gathered through event-based surveillance (EBS) as an extension beyond the main purposes of early warning, alert, and response (EWAR). In this article, previous events of multi-country outbreaks from 2010-2019 were reviewed for how EBS, within an expanded sphere of Epidemic Intelligence (EI), may help to enhance the understanding of outbreaks for a more timely and nuanced, multiple-point trigger approach to health emergencies. METHODS The public, open-source database of ProMed reports were reviewed for the date of first notification on major outbreaks of infectious diseases and then compared for subsequent dates of any new, exceptional epidemiological findings (novel host, settings, transmission characteristics) as a determining factor for prolonged, multi-country events later acknowledged on the WHO disease outbreak news (DON) website, or by peer-reviewed journal publication if no related DON information became available. RESULTS During the preceding decade, there was an ongoing occurrence of unexpected outbreaks requiring new information about previously unknown pathogens, such as MERS-CoV, and longstanding threats from multiple neglected tropical diseases. During these international outbreaks, key scientific insights about new host species, viral persistence, occurrence of human-to-human spread, and transmission setting, became known over the course of the response. CONCLUSION The timeliness between initial alerts of early outbreak detection and key epidemiological evidence about the emerging threat reached far beyond the first warning for the global community. To improve on the best knowledge available for an immediate response, it is recommended that further gathering and documentation from event-based surveillance is engaged to create a more complete assessment for uncontrollable infectious disease outbreaks and epidemics. Enhanced EBS (through modern tools, e.g., Epidemic Intelligence from Open Sources (EIOS) are critical for timely detection and response to such events.
Collapse
Affiliation(s)
- C J McKnight
- WHO Health Emergencies Programme, WHO Regional Office for Europe, Copenhagen, Denmark.
| | - A T Aboushady
- WHO Health Emergencies Programme, WHO Regional Office for Europe, Copenhagen, Denmark
| | - C R Lane
- WHO Health Emergencies Programme, WHO Country Office in Yemen, Sana'a, Yemen
| |
Collapse
|
4
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
5
|
Qiu X, Wang F, Sha A. Infection and transmission of henipavirus in animals. Comp Immunol Microbiol Infect Dis 2024; 109:102183. [PMID: 38640700 DOI: 10.1016/j.cimid.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.
Collapse
Affiliation(s)
- Xinyu Qiu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Feng Wang
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China.
| |
Collapse
|
6
|
Watanabe S, Yoshikawa T, Kaku Y, Kurosu T, Fukushi S, Sugimoto S, Nishisaka Y, Fuji H, Marsh G, Maeda K, Ebihara H, Morikawa S, Shimojima M, Saijo M. Construction of a recombinant vaccine expressing Nipah virus glycoprotein using the replicative and highly attenuated vaccinia virus strain LC16m8. PLoS Negl Trop Dis 2023; 17:e0011851. [PMID: 38100536 PMCID: PMC10756534 DOI: 10.1371/journal.pntd.0011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yuki Nishisaka
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Hikaru Fuji
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Glenn Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Azuero OC, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The genetic diversity of Nipah virus across spatial scales. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292668. [PMID: 37502973 PMCID: PMC10370237 DOI: 10.1101/2023.07.14.23292668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nipah virus (NiV), a highly lethal virus in humans, circulates silently in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining genomes from bats means we have a poor understanding of NiV diversity, including how many lineages circulate within a roost and the spread of NiV over increasing spatial scales. Here we develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). In Bangladesh, where most human infections occur, we find evidence of increased spillover risk from one of the two co-circulating sublineages. We divide the four major NiV sublineages into 15 genetic clusters (emerged 20-44 years ago). Within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1,500-2,000 km2. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate that each genetic cluster occupies an average area of 1.3 million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000 km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most of the genetic clusters have been identified, but only ~15% of overall NiV diversity has been uncovered. Our findings are consistent with entrenched co-circulation of distinct lineages, even within individual roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1000, Bangladesh
| | - Emily S. Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
8
|
Medina-Magües ES, Lopera-Madrid J, Lo MK, Spiropoulou CF, Montgomery JM, Medina-Magües LG, Salas-Quinchucua C, Jiménez-Mora AP, Osorio JE. Immunogenicity of poxvirus-based vaccines against Nipah virus. Sci Rep 2023; 13:11384. [PMID: 37452062 PMCID: PMC10349127 DOI: 10.1038/s41598-023-38010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.
Collapse
Affiliation(s)
- Emily S Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| | - Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Michael K Lo
- Center for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Lex G Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Cristhian Salas-Quinchucua
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela P Jiménez-Mora
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
9
|
Suwannarong K, Soonthornworasiri N, Maneekan P, Balthip K, Yimsamran S, Maneewatchararangsri S, Ponlap T, Saengkul C, Lantican C, Thammasutti K, Singhasivanon P. Love or conflict: A qualitative study of the human-long tailed macaque interface in Nakhon Sawan Province, Thailand. Acta Trop 2023; 240:106861. [PMID: 36781095 DOI: 10.1016/j.actatropica.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
A wide range of zoonotic pathogens can be transmitted during human-wildlife interactions. Few qualitative studies have been conducted on human-nonhuman primate interfaces in Thailand, notably direct and indirect contact. Since Long-tailed macaques (LTMs) are prevalent in Thailand's Banphot Phisai district, part of Nakhon Sawan province, this qualitative study was conducted in 2019 to determine in-depth contact characteristics between humans and LTMs in the communities. Key informant interviews (KIIs) and focus group discussions (FGDs) were conducted with 35 villagers who reported close contact with LTMs in this study location. The results showed that villagers had different levels of contact with LTMs, depending on their occupations, perceptions, beliefs, religions, previous experiences, and local regulations. Monks in temples and vendors selling food for LTMs were reported to have the closest contact with them. LTMs have been reported to destroy personal property, houses, buildings, and crops. However, the villagers do not hurt them due to their religious beliefs relating to a respected abbot (a man who headed an abbey of monks). Even community members have had extensive interaction with LTMs, but they lacked awareness and information regarding diseases transmitted to humans directly or indirectly by non-human primates. Therefore, individuals who have frequent and close contact with LTMs should be provided health education, and appropriate behavioral change communication interventions should be performed. Furthermore, the results could be used to develop future disease prevention strategies and public awareness campaigns in the area.
Collapse
Affiliation(s)
- Kanokwan Suwannarong
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; SUPA71 Co., Ltd, Bangkok, Thailand
| | | | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Surapon Yimsamran
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Santi Maneewatchararangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Chutarat Saengkul
- Faculty of Public Health, Nakhon Sawan Campus, Mahidol University, Nakhon Sawan, Thailand
| | | | | | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Chaiyes A, Duengkae P, Suksavate W, Pongpattananurak N, Wacharapluesadee S, Olival KJ, Srikulnath K, Pattanakiat S, Hemachudha T. Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand. ECOHEALTH 2022; 19:175-189. [PMID: 35657574 PMCID: PMC10116436 DOI: 10.1007/s10393-022-01588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle's flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.
Collapse
Affiliation(s)
- Aingorn Chaiyes
- School of Agricultural and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi, 11120, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| | - Warong Suksavate
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nantachai Pongpattananurak
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Supaporn Wacharapluesadee
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | | | - Kornsorn Srikulnath
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Sura Pattanakiat
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thiravat Hemachudha
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
11
|
Wacharapluesadee S, Ghai S, Duengkae P, Manee-Orn P, Thanapongtharm W, Saraya AW, Yingsakmongkon S, Joyjinda Y, Suradhat S, Ampoot W, Nuansrichay B, Kaewpom T, Tantilertcharoen R, Rodpan A, Wongsathapornchai K, Ponpinit T, Buathong R, Bunprakob S, Damrongwatanapokin S, Ruchiseesarod C, Petcharat S, Kalpravidh W, Olival KJ, Stokes MM, Hemachudha T. Two decades of one health surveillance of Nipah virus in Thailand. ONE HEALTH OUTLOOK 2021; 3:12. [PMID: 34218820 PMCID: PMC8255096 DOI: 10.1186/s42522-021-00044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Nipah virus (NiV) infection causes encephalitis and has > 75% mortality rate, making it a WHO priority pathogen due to its pandemic potential. There have been NiV outbreak(s) in Malaysia, India, Bangladesh, and southern Philippines. NiV naturally circulates among fruit bats of the genus Pteropus and has been detected widely across Southeast and South Asia. Both Malaysian and Bangladeshi NiV strains have been found in fruit bats in Thailand. This study summarizes 20 years of pre-emptive One Health surveillance of NiV in Thailand, including triangulated surveillance of bats, and humans and pigs in the vicinity of roosts inhabited by NiV-infected bats. METHODS Samples were collected periodically and tested for NiV from bats, pigs and healthy human volunteers from Wat Luang village, Chonburi province, home to the biggest P. lylei roosts in Thailand, and other provinces since 2001. Archived cerebrospinal fluid specimens from encephalitis patients between 2001 and 2012 were also tested for NiV. NiV RNA was detected using nested reverse transcription polymerase chain reaction (RT-PCR). NiV antibodies were detected using enzyme-linked immunosorbent assay or multiplex microsphere immunoassay. RESULTS NiV RNA (mainly Bangladesh strain) was detected every year in fruit bats by RT-PCR from 2002 to 2020. The whole genome sequence of NiV directly sequenced from bat urine in 2017 shared 99.17% identity to NiV from a Bangladeshi patient in 2004. No NiV-specific IgG antibodies or RNA have been found in healthy volunteers, encephalitis patients, or pigs to date. During the sample collection trips, 100 community members were trained on how to live safely with bats. CONCLUSIONS High identity shared between the NiV genome from Thai bats and the Bangladeshi patient highlights the outbreak potential of NiV in Thailand. Results from NiV cross-sectoral surveillance were conveyed to national authorities and villagers which led to preventive control measures, increased surveillance of pigs and humans in vicinity of known NiV-infected roosts, and increased vigilance and reduced risk behaviors at the community level. This proactive One Health approach to NiV surveillance is a success story; that increased collaboration between the human, animal, and wildlife sectors is imperative to staying ahead of a zoonotic disease outbreak.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Siriporn Ghai
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Prateep Duengkae
- Forest Biology Department, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Pattarapol Manee-Orn
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Weerapong Thanapongtharm
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Abhinbhen W Saraya
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sangchai Yingsakmongkon
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Yutthana Joyjinda
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sanipa Suradhat
- Center of Excellence in Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Weenassarin Ampoot
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Bundit Nuansrichay
- National Institute of Animal Health, Department of Livestock Development, Bangkok, Thailand
| | - Thongchai Kaewpom
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rachod Tantilertcharoen
- Center of Excellence in Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Apaporn Rodpan
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Teerada Ponpinit
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Saowalak Bunprakob
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sudarat Damrongwatanapokin
- U.S. Agency for International Development (USAID) Regional Development Mission for Asia, Bangkok, Thailand
| | - Chanida Ruchiseesarod
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | | | | | - Martha M Stokes
- Defense Threat Reduction Agency, Biological Threat Reduction Program, Fort Belvoir, Virginia, USA
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre and WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
12
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
13
|
Whitmer SLM, Lo MK, Sazzad HMS, Zufan S, Gurley ES, Sultana S, Amman B, Ladner JT, Rahman MZ, Doan S, Satter SM, Flora MS, Montgomery JM, Nichol ST, Spiropoulou CF, Klena JD. Inference of Nipah virus evolution, 1999-2015. Virus Evol 2021; 7:veaa062. [PMID: 34422315 PMCID: PMC7947586 DOI: 10.1093/ve/veaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV.
Collapse
Affiliation(s)
- Shannon L M Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Hossain M S Sazzad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sara Zufan
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Brian Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Stephanie Doan
- The Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329
| | - Syed M Satter
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Meerjady S Flora
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Genetic diversity of Nipah virus in Bangladesh. Int J Infect Dis 2020; 102:144-151. [PMID: 33129964 DOI: 10.1016/j.ijid.2020.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nipah virus (NiV) infection, often fatal in humans, is primarily transmitted in Bangladesh through the consumption of date palm sap contaminated by Pteropus bats. Person-to-person transmission is also common and increases the concern of large outbreaks. This study aimed to characterize the molecular epidemiology, phylogenetic relationship, and the evolution of the nucleocapsid gene (N gene) of NiV. METHODS We conducted molecular detection, genetic characterization, and Bayesian time-scale evolution analyses of NiV using pooled Pteropid bat roost urine samples from an outbreak area in 2012 and archived RNA samples from NiV case patients identified during 2012-2018 in Bangladesh. RESULTS NiV-RNA was detected in 19% (38/456) of bat roost urine samples and among them; nine N gene sequences were recovered. We also retrieved sequences from 53% (21 out of 39) of archived RNA samples from patients. Phylogenetic analysis revealed that all Bangladeshi strains belonged to NiV-BD genotype and had an evolutionary rate of 4.64 × 10-4 substitutions/site/year. The analyses suggested that the strains of NiV-BD genotype diverged during 1995 and formed two sublineages. CONCLUSION This analysis provides further evidence that the NiV strains of the Malaysian and Bangladesh genotypes diverged recently and continue to evolve. More extensive surveillance of NiV in bats and human will be helpful to explore strain diversity and virulence potential to infect humans through direct or person-to-person virus transmission.
Collapse
|
15
|
Watanabe S, Fukushi S, Harada T, Shimojima M, Yoshikawa T, Kurosu T, Kaku Y, Morikawa S, Saijo M. Effective inactivation of Nipah virus in serum samples for safe processing in low-containment laboratories. Virol J 2020; 17:151. [PMID: 33036623 PMCID: PMC7547523 DOI: 10.1186/s12985-020-01425-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. Methods We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. Results With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. Conclusions We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan. .,Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Toshihiko Harada
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan. shimoji-@nih.go.jp
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.,Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan. .,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
16
|
Beena V, Saikumar G. Emerging horizon for bat borne viral zoonoses. Virusdisease 2019; 30:321-328. [PMID: 31803797 PMCID: PMC6864002 DOI: 10.1007/s13337-019-00548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023] Open
Abstract
Bats are the only flying placental mammals that constitute the second largest order of mammals and present all around the world except in Arctic, Antarctica and a few oceanic islands. Sixty percent of emerging infectious diseases originating from animals are zoonotic and more than two-thirds of them originate in wildlife. Bats were evolved as a super-mammal for harboring many of the newly identified deadly diseases without any signs and lesions. Their unique ability to fly, particular diet, roosting behavior, long life span, ability to echolocate and critical susceptibility to pathogens make them suitable host to harbor numerous zoonotic pathogens like virus, bacteria and parasite. Many factors are responsible for the emergence of bat borne zoonoses but the most precipitating factor is human intrusions. Deforestation declined the natural habitat and forced the bats and other wild life to move out of their niche. These stressed bats, having lost foraging and behavioral pattern invade in proximity of human habitation. Either directly or indirectly they transmit the viruses to humans and animals. Development of fast detection modern techniques for viruses from the diseased and environmental samples and the lessons learned in the past helped in preventing the severity during the latest outbreaks.
Collapse
Affiliation(s)
- V Beena
- 1Present Address: CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001 India.,2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| | - G Saikumar
- 2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| |
Collapse
|
17
|
Li K, Yan S, Wang N, He W, Guan H, He C, Wang Z, Lu M, He W, Ye R, Veit M, Su S. Emergence and adaptive evolution of Nipah virus. Transbound Emerg Dis 2019; 67:121-132. [PMID: 31408582 PMCID: PMC7168560 DOI: 10.1111/tbed.13330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022]
Abstract
Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
Collapse
Affiliation(s)
- Kemang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haifei Guan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengxi He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Mbu'u CM, Mbacham WF, Gontao P, Sado Kamdem SL, Nlôga AMN, Groschup MH, Wade A, Fischer K, Balkema-Buschmann A. Henipaviruses at the Interface Between Bats, Livestock and Human Population in Africa. Vector Borne Zoonotic Dis 2019; 19:455-465. [PMID: 30985268 DOI: 10.1089/vbz.2018.2365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are closely related members within the genus Henipavirus, family Paramyxoviridae, for which fruit bats serve as the reservoir. The initial emergence of NiV infections in pigs and humans in Malaysia, and HeV infections in horses and humans in Australia, posed severe impacts on human and animal health, and continues threatening lives of humans and livestock within Southeast Asia and Australia. Recently, henipavirus-specific antibodies have also been detected in fruit bats in a number of sub-Saharan African countries and in Brazil, thereby considerably increasing the known geographic distribution of henipaviruses. Africa is progressively being recognized as a new high prevalence zone for henipaviruses, as deduced from serological and molecular evidence of past infections in Madagascar, Ghana, Republic of Congo, Gulf of Guinea, Zambia, Tanzania, Cameroon, and Nigeria lately. Serological data suggest henipavirus spillover from bats to livestock and human populations in Africa without reported clinical disease in any of these species. All virus isolation attempts have been abortive, highlighting the need for further investigations. The genome of the Ghanaian bat henipavirus designated Ghana virus (GhV), which was detected in a pteropid Eidolon helvum bat, is the only African henipavirus that has been completely sequenced limiting our current knowledge on the genetic diversity and pathogenesis of African henipaviruses. In this review, we summarize the available data on the circulation of henipaviruses in Africa, discuss potential sources for virus spillover, and highlight existing research gaps.
Collapse
Affiliation(s)
- Cyrille Mbanwi Mbu'u
- 1 Department of Microbiology, Faculty of Science, University of Yaoundé 1 (UY1), Yaoundé, Cameroon.,2 Laboratory for Public Health Research Biotechnologies (LAPHER Biotech.), Biotechnology Centre-University of Yaoundé 1 (BTC-UY1), Yaoundé, Cameroon
| | - Wilfred Fon Mbacham
- 2 Laboratory for Public Health Research Biotechnologies (LAPHER Biotech.), Biotechnology Centre-University of Yaoundé 1 (BTC-UY1), Yaoundé, Cameroon.,3 Department of Biochemistry, Faculty of Science, University of Yaoundé 1 (UY1), Yaoundé, Cameroon
| | - Pierre Gontao
- 4 Department of Biological Sciences, Faculty of Science, University of Ngaounderé, Ngaounderé, Cameroon
| | | | | | - Martin H Groschup
- 5 Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler Institut (FLI), Greifswald-Insel Riems, Germany
| | - Abel Wade
- 6 National Veterinary Laboratory (LANAVET), Garoua & Yaoundé, Cameroon
| | - Kerstin Fischer
- 5 Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler Institut (FLI), Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- 5 Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler Institut (FLI), Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Choden K, Ravon S, Epstein JH, Hoem T, Furey N, Gely M, Jolivot A, Hul V, Neung C, Tran A, Cappelle J. Pteropus lylei primarily forages in residential areas in Kandal, Cambodia. Ecol Evol 2019; 9:4181-4191. [PMID: 31015997 PMCID: PMC6468066 DOI: 10.1002/ece3.5046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/15/2019] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Bats are the second most species-rich Mammalian order and provide a wide range of ecologically important and economically significant ecosystem services. Nipah virus is a zoonotic emerging infectious disease for which pteropodid bats have been identified as a natural reservoir. In Cambodia, Nipah virus circulation has been reported in Pteropus lylei, but little is known about the spatial distribution of the species and the associated implications for conservation and public health.We deployed Global Positioning System (GPS) collars on 14 P. lylei to study their movements and foraging behavior in Cambodia in 2016. All of the flying foxes were captured from the same roost, and GPS locations were collected for 1 month. The habitats used by each bat were characterized through ground-truthing, and a spatial distribution model was developed of foraging sites.A total of 13,643 valid locations were collected during the study. Our study bats flew approximately 20 km from the roost each night to forage. The maximum distance traveled per night ranged from 6.88-105 km and averaged 28.3 km. Six of the 14 bats visited another roost for at least one night during the study, including one roost located 105 km away.Most foraging locations were in residential areas (53.7%) followed by plantations (26.6%). Our spatial distribution model confirmed that residential areas were the preferred foraging habitat for P. lylei, although our results should be interpreted with caution due to the limited number of individuals studied. Synthesis and applications: Our findings suggest that the use of residential and agricultural habitats by P. lylei may create opportunities for bats to interact with humans and livestock. They also suggest the importance of anthropogenic habitats for conservation of this vulnerable and ecologically important group in Cambodia. Our mapping of the probability of occurrence of foraging sites will help identification of areas where public awareness should be promoted regarding the ecosystem services provided by flying foxes and potential for disease transmission through indirect contact.
Collapse
Affiliation(s)
| | | | | | - Thavry Hoem
- Institut Pasteur du Cambodge Phnom Penh Cambodia
| | - Neil Furey
- Fauna & Flora International (Cambodia) Phnom Penh Cambodia
- Harrison Institute Sevenoaks UK
| | - Marie Gely
- Institut Pasteur du Cambodge Phnom Penh Cambodia
| | - Audrey Jolivot
- CIRAD, UMR TETIS Montpellier France
- UMR TETIS, CIRAD, CNRS, IRSTEA, AgroParisTech Montpellier University Montpellier France
| | - Vibol Hul
- Institut Pasteur du Cambodge Phnom Penh Cambodia
| | | | - Annelise Tran
- CIRAD, UMR TETIS Montpellier France
- UMR TETIS, CIRAD, CNRS, IRSTEA, AgroParisTech Montpellier University Montpellier France
- CIRAD, UMR ASTRE Montpellier France
- UMR ASTRE CIRAD, INRA, Montpellier University Montpellier France
| | - Julien Cappelle
- Institut Pasteur du Cambodge Phnom Penh Cambodia
- CIRAD, UMR ASTRE Montpellier France
- UMR ASTRE CIRAD, INRA, Montpellier University Montpellier France
- UMR EpiA INRA Marcy l'Etoile France
| |
Collapse
|
20
|
Ma L, Chen Z, Guan W, Chen Q, Liu D. Rapid and Specific Detection of All Known Nipah virus Strains' Sequences With Reverse Transcription-Loop-Mediated Isothermal Amplification. Front Microbiol 2019; 10:418. [PMID: 30915049 PMCID: PMC6421284 DOI: 10.3389/fmicb.2019.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic virus and can be transmitted through contaminated food or directly between people. NiV is classified as a Biosafety Level 4 agent, not only because of its relatively high case fatality rate, but also because there is no vaccine or other medical countermeasures and it appears to be transmitted by fomites/particulates. The development of rapid detection assay for NiV is of great importance because no effective field test is currently available. In this study, an isothermal (65°C) reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method was developed, targeting the nucleocapsid protein (N) gene, for the rapid detection of NiV, and was compared with conventional RT-PCR. Three pseudoviruses of NiV N gene representing all known strains were constructed to replace live NiV. A set of RT-LAMP primers, targeting a highly conserved region of the N gene in the viral genome was designed to identify all known NiV strains. Sensitivity tests indicated that the detection limit of the RT-LAMP assay was approximately 100 pg of total NiV pseudovirus RNA, which is at least 10-fold higher than that of conventional RT-PCR. Specificity tests showed that there was no cross-reactivity with nucleocapsid protein gene of Hendra virus, Newcastle disease virus, Japanese encephalitis virus, or Influenza A virus. The RT-LAMP assay provides results within 45 min, and requires no sophisticated instruments, except an isothermal water bath or metal bath with 1 μl calcein indicator. An analysis of the clinical samples showed that the assay had good stability. In conclusion, systematic experiments have shown that the RT-LAMP assay developed here effectively detects three NiV pseudoviruses representing all known strains of NiV, with high specificity, sensitivity and stability.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Japanese encephalitis in Malaysia: An overview and timeline. Acta Trop 2018; 185:219-229. [PMID: 29856986 DOI: 10.1016/j.actatropica.2018.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 11/22/2022]
Abstract
Japanese encephalitis (JE) is a vector-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). It causes encephalitis in human and horses, and may lead to reproductive failure in sows. The first human encephalitis case in Malaya (now Malaysia) was reported during World War II in a British prison in 1942. Later, encephalitis was observed among race horses in Singapore. In 1951, the first JEV was isolated from the brain of an encephalitis patient. The true storyline of JE exposure among humans and animals has not been documented in Malaysia. In some places such as Sarawak, JEV has been isolated from mosquitoes before an outbreak in 1992. JE is an epidemic in Malaysia except Sarawak. There are four major outbreaks reported in Pulau Langkawi (1974), Penang (1988), Perak and Negeri Sembilan (1998-1999), and Sarawak (1992). JE is considered endemic only in Sarawak. Initially, both adults and children were victims of JE in Malaysia, however, according to the current reports; JE infection is only lethal to children in Malaysia. This paper describes a timeline of JE cases (background of each case) from first detection to current status, vaccination programs against JE, diagnostic methods used in hospitals and factors which may contribute to the transmission of JE among humans and animals in Malaysia.
Collapse
|
22
|
Donaldson H, Lucey D. Enhancing preparation for large Nipah outbreaks beyond Bangladesh: Preventing a tragedy like Ebola in West Africa. Int J Infect Dis 2018; 72:69-72. [PMID: 29879523 PMCID: PMC7110759 DOI: 10.1016/j.ijid.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023] Open
Abstract
The Nipah virus has been transmitted from person-to-person via close contact in non-urban parts of India (including Kerala May 2018), Bangladesh, and the Philippines. It can cause encephalitis and pneumonia, and has a high case fatality rate. Nipah is a One Health zoonotic infectious disease linked to fruit bats, and sometimes pigs or horses. We advocate anticipating and preparing for urban and larger rural outbreaks of Nipah. Immediate enhanced preparations would include standardized guidance on infection prevention and control, and personal protective equipment, from the World Health Organization (WHO) on their OpenWHO website and 2018 "Managing Epidemics" handbook, along with adding best clinical practices by experts in countries with multiple outbreaks such as Bangladesh and India. Longer-term enhanced preparations include accelerating development of field diagnostics, antiviral drugs, immune-based therapies, and vaccines. WHO-coordinated multi-partner protocols to test investigational treatments, diagnostics, and vaccines are needed, by analogy to such protocols for Ebola during the unanticipated pan-epidemic in Guinea, Liberia, and Sierra Leone. Anticipating and preparing now for urban and rural Nipah outbreaks in nations with no experience with Nipah will help avoid the potential for what the United Nations 2016 report on Ebola in West Africa called a "preventable tragedy".
Collapse
Affiliation(s)
- Halsie Donaldson
- Department of Medicine-Infectious Diseases, Georgetown University School of Medicine, 3800 Reservoir Road NW, Washington, DC, USA
| | - Daniel Lucey
- Department of Medicine-Infectious Diseases, Georgetown University School of Medicine, 3800 Reservoir Road NW, Washington, DC, USA.
| |
Collapse
|
23
|
Deka MA, Morshed N. Mapping Disease Transmission Risk of Nipah Virus in South and Southeast Asia. Trop Med Infect Dis 2018; 3:E57. [PMID: 30274453 PMCID: PMC6073609 DOI: 10.3390/tropicalmed3020057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Since 1998, Nipah virus (NiV) (genus: Henipavirus; family: Paramyxoviridae), an often-fatal and highly virulent zoonotic pathogen, has caused sporadic outbreak events. Fruit bats from the genus Pteropus are the wildlife reservoirs and have a broad distribution throughout South and Southeast Asia, and East Africa. Understanding the disease biogeography of NiV is critical to comprehending the potential geographic distribution of this dangerous zoonosis. This study implemented the R packages ENMeval and BIOMOD2 as a means of modeling regional disease transmission risk and additionally measured niche similarity between the reservoir Pteropus and the ecological characteristics of outbreak localities with the Schoener's D index and I statistic. Results indicate a relatively high degree of niche overlap between models in geographic and environmental space (D statistic, 0.64; and I statistic, 0.89), and a potential geographic distribution encompassing 19% (2,963,178 km²) of South and Southeast Asia. This study should contribute to current and future efforts to understand the critical ecological contributors and geography of NiV. Furthermore, this study can be used as a geospatial guide to identify areas of high disease transmission risk and to inform national public health surveillance programs.
Collapse
Affiliation(s)
- Mark A Deka
- Department of Geography, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Niaz Morshed
- Department of Geography, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|