1
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
2
|
Rissmann M, Lenk M, Stoek F, Szentiks CA, Eiden M, Groschup MH. Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens 2021; 10:pathogens10060681. [PMID: 34072763 PMCID: PMC8228813 DOI: 10.3390/pathogens10060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic arthropod-borne virus, which has led to devastating epidemics in African countries and on the Arabian Peninsula. Results of in-vivo, in-vitro and field studies suggested that amphibians and reptiles may play a role as reservoir hosts of RVFV, promoting its maintenance during inter-epidemic periods. To elucidate this hypothesis, we examined two newly established reptile-derived cell lines (Egyptian cobra and Chinese pond turtle) and five previously generated reptile- and amphibian-derived cell lines for their replicative capacity for three low- and high-pathogenic RVFV strains. At different time points after infection, viral loads (TCID50), genome loads and the presence of intracellular viral antigen (immunofluorescence) were assessed. Additionally, the influence of temperatures on the replication was examined. Except for one cell line (read-eared slider), all seven cell lines were infected by all three RVFV strains. Two different terrapin-derived cell lines (Common box turtle, Chinese pond turtle) were highly susceptible. A temperature-dependent replication of RVFV was detected for both amphibian and reptile cells. In conclusion, the results of this study indicate the general permissiveness of amphibian and reptile cell lines to RVFV and propose a potential involvement of terrapins in the virus ecology.
Collapse
Affiliation(s)
- Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Matthias Lenk
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany;
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Claudia A. Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
- Correspondence:
| |
Collapse
|
3
|
Strickland BA, Patel MC, Shilts MH, Boone HH, Kamali A, Zhang W, Stylos D, Boukhvalova MS, Rosas-Salazar C, Yooseph S, Rajagopala SV, Blanco JCG, Das SR. Microbial community structure and composition is associated with host species and sex in Sigmodon cotton rats. Anim Microbiome 2021; 3:29. [PMID: 33863395 PMCID: PMC8051552 DOI: 10.1186/s42523-021-00090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The cotton rat (genus Sigmodon) is an essential small animal model for the study of human infectious disease and viral therapeutic development. However, the impact of the host microbiome on infection outcomes has not been explored in this model, partly due to the lack of a comprehensive characterization of microbial communities across different cotton rat species. Understanding the dynamics of their microbiome could significantly help to better understand its role when modeling viral infections in this animal model. RESULTS We examined the bacterial communities of the gut and three external sites (skin, ear, and nose) of two inbred species of cotton rats commonly used in research (S. hispidus and S. fulviventer) by using 16S rRNA gene sequencing, constituting the first comprehensive characterization of the cotton rat microbiome. We showed that S. fulviventer maintained higher alpha diversity and richness than S. hispidus at external sites (skin, ear, nose), but there were no differentially abundant genera. However, S. fulviventer and S. hispidus had distinct fecal microbiomes composed of several significantly differentially abundant genera. Whole metagenomic shotgun sequencing of fecal samples identified species-level differences between S. hispidus and S. fulviventer, as well as different metabolic pathway functions as a result of differential host microbiome contributions. Furthermore, the microbiome composition of the external sites showed significant sex-based differences while fecal communities were not largely different. CONCLUSIONS Our study shows that host genetic background potentially exerts homeostatic pressures, resulting in distinct microbiomes for two different inbred cotton rat species. Because of the numerous studies that have uncovered strong relationships between host microbiome, viral infection outcomes, and immune responses, our findings represent a strong contribution for understanding the impact of different microbial communities on viral pathogenesis. Furthermore, we provide novel cotton rat microbiome data as a springboard to uncover the full therapeutic potential of the microbiome against viral infections.
Collapse
Affiliation(s)
- Britton A Strickland
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
- Present Address: Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Helen H Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arash Kamali
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhang
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Daniel Stylos
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | | | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | | | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Hosotani M, Nakamura T, Ichii O, Irie T, Sunden Y, Elewa YHA, Watanabe T, Ueda H, Mishima T, Kon Y. Unique histological features of the tail skin of cotton rat ( Sigmodon hispidus) related to caudal autotomy. Biol Open 2021; 10:bio.058230. [PMID: 33563609 PMCID: PMC7904004 DOI: 10.1242/bio.058230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caudal autotomy in rodents is an evolutionarily acquired phenomenon enabling escape from predators, by discarding the tail skin after traumatic injuries. The histological mechanisms underlying caudal autotomy seem to differ among species. Cotton rats (Sigmodon hispidus), which are important laboratory rodents for human infectious diseases, possess a fragile tail. In this study, we compared the tail histology of cotton rats with that of laboratory rats (Rattus norvegicus), which have no fragility on their tail, to elucidate the process of rodent caudal autotomy. First, the cotton rats developed a false autotomy characterized by loss of the tail sheath with the caudal vertebrae remaining without tail regeneration. Second, we found the fracture plane was continuous from the interscale of the tail epidermis to the dermis, which was lined with an alignment of E-cadherin+ cells. Third, we found an obvious cleavage plane between the dermis and subjacent tissues of the cotton-rat tail, where the subcutis was composed of looser, finer, and fragmented collagen fibers compared with those of the rat. Additionally, the cotton-rat tail was easily torn, with minimum bleeding. The median coccygeal artery of the cotton rat had a thick smooth muscle layer, and its lumen was filled with the peeled intima with fibrin coagulation, which might be associated with reduced bleeding following caudal autotomy. Taken together, we reveal the unique histological features of the tail relating to the caudal autotomy process in the cotton rat, and provide novel insights to help clarify the rodent caudal autotomy mechanism. Summary: The unique histological structures in derimis, subcutis and coccygeal artery of the tail skin are related to the caudal autotomy mechanism in the cotton rat.
Collapse
Affiliation(s)
- Marina Hosotani
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan .,Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Hokkaido, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takao Irie
- Medical Zoology Group, Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Yuji Sunden
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiromi Ueda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takashi Mishima
- Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Hokkaido, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Mull N, Jackson R, Sironen T, Forbes KM. Ecology of Neglected Rodent-Borne American Orthohantaviruses. Pathogens 2020; 9:E325. [PMID: 32357540 PMCID: PMC7281597 DOI: 10.3390/pathogens9050325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
The number of documented American orthohantaviruses has increased significantly over recent decades, but most fundamental research has remained focused on just two of them: Andes virus (ANDV) and Sin Nombre virus (SNV). The majority of American orthohantaviruses are known to cause disease in humans, and most of these pathogenic strains were not described prior to human cases, indicating the importance of understanding all members of the virus clade. In this review, we summarize information on the ecology of under-studied rodent-borne American orthohantaviruses to form general conclusions and highlight important gaps in knowledge. Information regarding the presence and genetic diversity of many orthohantaviruses throughout the distributional range of their hosts is minimal and would significantly benefit from virus isolations to indicate a reservoir role. Additionally, few studies have investigated the mechanisms underlying transmission routes and factors affecting the environmental persistence of orthohantaviruses, limiting our understanding of factors driving prevalence fluctuations. As landscapes continue to change, host ranges and human exposure to orthohantaviruses likely will as well. Research on the ecology of neglected orthohantaviruses is necessary for understanding both current and future threats to human health.
Collapse
Affiliation(s)
- Nathaniel Mull
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (R.J.); (K.M.F.)
| | - Reilly Jackson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (R.J.); (K.M.F.)
| | - Tarja Sironen
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
- Department of Veterinary Biosciences, University of Helsinki, 00790 Helsinki, Finland
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (R.J.); (K.M.F.)
| |
Collapse
|
6
|
Binder F, Lenk M, Weber S, Stoek F, Dill V, Reiche S, Riebe R, Wernike K, Hoffmann D, Ziegler U, Adler H, Essbauer S, Ulrich RG. Common vole (Microtus arvalis) and bank vole (Myodes glareolus) derived permanent cell lines differ in their susceptibility and replication kinetics of animal and zoonotic viruses. J Virol Methods 2019; 274:113729. [PMID: 31513859 DOI: 10.1016/j.jviromet.2019.113729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022]
Abstract
Pathogenesis and reservoir host adaptation of animal and zoonotic viruses are poorly understood due to missing adequate cell culture and animal models. The bank vole (Myodes glareolus) and common vole (Microtus arvalis) serve as hosts for a variety of zoonotic pathogens. For a better understanding of virus association to a putative animal host, we generated two novel cell lines from bank voles of different evolutionary lineages and two common vole cell lines and assayed their susceptibility, replication and cytopathogenic effect (CPE) formation for rodent-borne, suspected to be rodent-associated or viruses with no obvious rodent association. Already established bank vole cell line BVK168, used as control, was susceptible to almost all viruses tested and efficiently produced infectious virus for almost all of them. The Puumala orthohantavirus strain Vranica/Hällnäs showed efficient replication in a new bank vole kidney cell line, but not in the other four bank and common vole cell lines. Tula orthohantavirus replicated in the kidney cell line of common voles, but was hampered in its replication in the other cell lines. Several zoonotic viruses, such as Cowpox virus, Vaccinia virus, Rift Valley fever virus, and Encephalomyocarditis virus 1 replicated in all cell lines with CPE formation. West Nile virus, Usutu virus, Sindbis virus and Tick-borne encephalitis virus replicated only in a part of the cell lines, perhaps indicating cell line specific factors involved in replication. Rodent specific viruses differed in their replication potential: Murine gammaherpesvirus-68 replicated in the four tested vole cell lines, whereas murine norovirus failed to infect almost all cell lines. Schmallenberg virus and Foot-and-mouth disease virus replicated in some of the cell lines, although these viruses have never been associated to rodents. In conclusion, these newly developed cell lines may represent useful tools to study virus-cell interactions and to identify and characterize host cell factors involved in replication of rodent associated viruses.
Collapse
Affiliation(s)
- Florian Binder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Matthias Lenk
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Bio-Bank, Collection of Cell Lines in Veterinary Virology (CCLV), Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Saskia Weber
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Franziska Stoek
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Veronika Dill
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Sven Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Bio-Bank, Collection of Cell Lines in Veterinary Virology (CCLV), Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Roland Riebe
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Bio-Bank, Collection of Cell Lines in Veterinary Virology (CCLV), Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, 81377 Munich, Germany; University Hospital Grosshadern, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department Virology and Rickettsiology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Germany.
| |
Collapse
|
7
|
Muth D, Corman VM, Roth H, Binger T, Dijkman R, Gottula LT, Gloza-Rausch F, Balboni A, Battilani M, Rihtarič D, Toplak I, Ameneiros RS, Pfeifer A, Thiel V, Drexler JF, Müller MA, Drosten C. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep 2018; 8:15177. [PMID: 30310104 PMCID: PMC6181990 DOI: 10.1038/s41598-018-33487-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022] Open
Abstract
A 29 nucleotide deletion in open reading frame 8 (ORF8) is the most obvious genetic change in severe acute respiratory syndrome coronavirus (SARS-CoV) during its emergence in humans. In spite of intense study, it remains unclear whether the deletion actually reflects adaptation to humans. Here we engineered full, partially deleted (-29 nt), and fully deleted ORF8 into a SARS-CoV infectious cDNA clone, strain Frankfurt-1. Replication of the resulting viruses was compared in primate cell cultures as well as Rhinolophus bat cells made permissive for SARS-CoV replication by lentiviral transduction of the human angiotensin-converting enzyme 2 receptor. Cells from cotton rat, goat, and sheep provided control scenarios that represent host systems in which SARS-CoV is neither endemic nor epidemic. Independent of the cell system, the truncation of ORF8 (29 nt deletion) decreased replication up to 23-fold. The effect was independent of the type I interferon response. The 29 nt deletion in SARS-CoV is a deleterious mutation acquired along the initial human-to-human transmission chain. The resulting loss of fitness may be due to a founder effect, which has rarely been documented in processes of viral emergence. These results have important implications for the retrospective assessment of the threat posed by SARS.
Collapse
Affiliation(s)
- Doreen Muth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Hanna Roth
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Ronald Dijkman
- Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Lina Theresa Gottula
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Florian Gloza-Rausch
- Noctalis, Centre for Bat Protection and Information, Oberbergstraße 27, 23795, Bad Segeberg, Germany
| | - Andrea Balboni
- Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, (BO), Italy
| | - Mara Battilani
- Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, (BO), Italy
| | - Danijela Rihtarič
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Ramón Seage Ameneiros
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany
- Group Morcegos de Galicia, Drosera Society, Pdo. Magdalena, G-2, 2° esq, 15320, As Pontes, Spain
| | - Alexander Pfeifer
- Institute for Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Volker Thiel
- Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marcel Alexander Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany.
- German Center for Infection Research (DZIF), Berlin, Germany.
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
8
|
In Vitro Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants. J Virol 2017; 91:JVI.00851-17. [PMID: 28794038 PMCID: PMC5640862 DOI: 10.1128/jvi.00851-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory illness in infants. At this young age, infants typically depend on maternally transferred antibodies (matAbs) and their innate immune system for protection against infections. RSV-specific matAbs are thought to protect from severe illness, yet severe RSV disease occurs mainly below 6 months of age, when neutralizing matAb levels are present. To investigate this discrepancy, we asked if disease severity is related to antibody properties other than neutralization. Some antibody effector functions are mediated via their Fc binding region. However, it has been shown that this binding may lead to antibody-dependent enhancement (ADE) of infection or reduction of neutralization, both possibly leading to more disease. In this study, we first showed that high levels of ADE of RSV infection occur in monocytic THP-1 cells in the presence of RSV antibodies and that neutralization by these antibodies was reduced in Vero cells when they were transduced with Fc gamma receptors. We then demonstrated that antibodies from cotton rats with formalin-inactivated (FI)-RSV-induced pulmonary pathology were capable of causing ADE. Human matAbs also caused ADE and were less neutralizing in vitro in cells that carry Fc receptors. However, these effects were unrelated to disease severity because they were seen both in uninfected controls and in infants hospitalized with different levels of RSV disease severity. We conclude that ADE and reduction of neutralization are unlikely to be involved in RSV disease in infants with neutralizing matAbs.IMPORTANCE It is unclear why severity of RSV disease peaks at the age when infants have neutralizing levels of maternal antibodies. Additionally, the exact reason for FI-RSV-induced enhanced disease, as seen in the 1960s vaccine trials, is still unclear. We hypothesized that antibodies present under either of these conditions could contribute to disease severity. Antibodies can have effects that may lead to more disease instead of protection. We investigated two of those effects: antibody-dependent enhancement of infection (ADE) and neutralization reduction. We show that ADE occurs in vitro with antibodies from FI-RSV-immunized RSV-infected cotton rats. Moreover, passively acquired maternal antibodies from infants had the capacity to induce ADE and reduction of neutralization. However, no clear association with disease severity was seen, ruling out that these properties explain disease in the presence of maternal antibodies. Our data contribute to a better understanding of the impact of antibodies on RSV disease in infants.
Collapse
|