1
|
Li C, Li J, Gong B, Xu H, Guo Z, Xiang L, Zhang S, Sun Q, Zhao J, Zhang M, Tang YD, Leng C, Wu J, Wang Q, Peng J, Zhou G, Liu H, An T, Cai X, Tian ZJ, Zhang H. A lineage 1 branch porcine reproductive and respiratory syndrome virus live vaccine candidate provides broad cross-protection against HP-like PRRSV in piglets. Virulence 2025; 16:2451754. [PMID: 39800863 PMCID: PMC11730365 DOI: 10.1080/21505594.2025.2451754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
Multiple porcine reproductive and respiratory syndrome virus (PRRSV) subtypes coinfect numerous pig farms in China, and commercial PRRSV vaccines offer limited cross-protection against heterologous strains. Our previous research confirmed that a PRRSV lineage 1 branch attenuated live vaccine (SD-R) provides cross-protection against HP-PRRSV, NADC30-like PRRSV and NADC34-like PRRSV. HP-PRRSV has undergone significant genetic variation following nearly two decades of evolution and has transformed into a subtype referred to as HP-like PRRSV, which also exhibits high pathogenicity. The effectiveness of immunising piglets with the SD-R strain to provide protection against infection with HP-like PRRSV remains uncertain. In the present study, we evaluated the protective effects of SD-R vaccine strains on DLF-challenged piglets. The results revealed that piglets challenged with DLF presented clinical symptoms such as continuous high fever and an obvious decrease in daily weight gain. Importantly, the piglets immunised with SD-R exhibited notable reductions in pathological damage, especially of decreases in DLF-induced thymic atrophy. Moreover, the serum of SD-R-immunised piglets strongly neutralised DLF, and the number of SD-R-vaccinated piglets demonstrating viraemia was greatly reduced. These results suggest that the PRRSV lineage 1 branch live vaccine candidate provides broad cross-protection against HP-like PRRSV in piglets.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menglin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | - Jianan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Zhang FL, Chen YL, Luo ZY, Song ZB, Chen Z, Zhang JX, Zheng ZZ, Tan XM. Huashi baidu granule alleviates inflammation and lung edema by suppressing the NLRP3/caspase-1/GSDMD-N pathway and promoting fluid clearance in a porcine reproductive and respiratory syndrome (PRRS) model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119207. [PMID: 39653102 DOI: 10.1016/j.jep.2024.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huashi Baidu Granule (HSBDG), a traditional Chinese medicine (TCM), is used for treating coronavirus disease 2019 (COVID-19). Porcine reproductive and respiratory syndrome (PRRS) is considered the "COVID-19" for swine. According to the TCM theory, "dampness" is the main pathogenic factor in COVID-19 and PRRS, and "Huashi" means that this formula is good at removing "dampness". Studies have demonstrated that HSBDG's effect in COVID-19; but the mechanism of removing "dampness" remains elusive. AIM OF THE STUDY We aimed to assess the effect of HSBDG on PRRS, and elucidate its potential mechanism in removing "dampness". MATERIALS AND METHODS We established a PRRS-virus (PRRSV)-infected Marc-145 cells model, and performed qRT-PCR, Western blot analysis, and indirect immunofluorescence assay to examine the anti-PRRSV effects of HSBDG in vitro. PRRSV-infected pig model was established and used to investigate HSBDG's effect in PRRS and explore underlying mechanisms in removing "dampness" using ELISA and immunohistochemistry assay methods. RESULTS HSBDG exhibited anti-PRRSV activity and suppressed the viral replication and release phases. HSBDG treatment alleviated PRRS, lowered rectal temperature, reduced histopathological changes and viral load in lung tissues, and ameliorated organ lesions. Moreover, IL-1β, IL-6, IL-8, and TNF-α expressions were decreased in lung tissues. Mechanistically, HSBDG inhibited the NLRP3/Caspase-1/GSDMD-N pathway to reduce the inflammatory response and upregulated AQP1, AQP5, α-ENaC, and Na-K-ATPase expressions to promote lung fluid clearance. CONCLUSION HSBDG exerted anti-PRRSV effects and could attenuate PRRS. HSBDG potentially removes "dampness" by attenuating inflammation by suppressing the NLRP3/Caspase-1/GSDMD-N pathway and inhibiting pulmonary edema by upregulating the expression of AQP1, AQP5, α-ENaC, and Na-K-ATPase.
Collapse
Affiliation(s)
- Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Yi-Lin Chen
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Bu Song
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhe Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Jia-Xuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Zhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
4
|
Sun S, Zhang K, Zhang J, He P, Zhang P, Deng D, Chi C, Jiang S, Zheng W, Chen N, Zhu J. A nucleocapsid monoclonal antibody based sandwich ELISA for the general detection of both PRRSV-2 and PRRSV-1. Vet Microbiol 2025; 302:110399. [PMID: 39847872 DOI: 10.1016/j.vetmic.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (52KPHF55 and 109HHTVR113) were identified. The epitope 52KPHF55 is highly conserved across all strains of PRRSV-2 lineages and PRRSV-1 subtypes, and the corresponding two mAbs (6D7, 4D12) were selected to develop a sandwich ELISA that was able to detect all tested PRRSV-2 and PRRSV-1 strains. The developed sandwich ELISA demonstrated high specificity, sensitivity and repeatability. In detection of 133 clinical samples, the sandwich ELISA achieved 84.21 % coincidence with the real-time RT-PCR. In conclusion, the mAb based sandwich ELISA can be suitable for detection of potential all PRRSV-2 lineages and PRRSV-1 subtypes, providing a simple, quick and high content method for diagnosis of PRRS.
Collapse
Affiliation(s)
- Shaohua Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Kaili Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Ping He
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Pingping Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Dafu Deng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Chenglin Chi
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Yan X, Liu J, Yue F, Lin Y, Li Y, Wu W, Zhao S, Huang X, Zhao Q, Wen Y, Cao S, Du S, Zeng N, Yan Q. Efficacy of a reduced-dosage PRRS MLV vaccine against a NADC34-like strain of porcine reproductive and respiratory syndrome virus. Front Vet Sci 2025; 11:1493384. [PMID: 39834928 PMCID: PMC11743710 DOI: 10.3389/fvets.2024.1493384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction After being discovered for the first time in China in 2017, porcine reproductive and respiratory syndrome virus (PRRSV) NADC34-like strains have become the prevalent strain of PRRSV in certain regions of China. Our previous study showed that reduced Ingelvac PRRS MLV vaccination dosages against NADC30-like CF PRRSV had a better protection effect than the normal dosage. However, the protective effect of reduced dosages vaccination of Ingelvac PRRS MLV against NADC34-like PRRSV is unclear. Therefore, this study compared the effectiveness of 0.1 and 1 dosages against a NADC34-like PRRSV infection using commercial PRRSV vaccines, Ingelvac PRRS MLV, which have been widely utilized in China. Methods In this study, we immunized piglets with two different dosages of the MLV vaccine and infected piglets within a nasal way with NADC34-like CF PRRSV at 42 days post-vaccination. We observed the changes in growth performance before and after the NADC34-like PRRSV DX strain challenge and the protective effect of different vaccine dosages through multiple assays. Results After the challenge, the piglets from the challenge control group displayed clinical signs typical of PRRSV infection, including transient fever, high viremia, mild clinical symptoms, and histopathological changes in the lungs and lymph nodes, which indicates DX is a virulent virus. Without the challenge, the average daily gain of the non-immunized group at 5 weeks after the vaccination is greater than that of the 0.01 dosage group than that of the 1 dosage group, which proved that the commercial MLV vaccine has a negative effect on the growth performance of pigs and this effect may be dose-dependent. After the NADC34-like PRRSV challenge, there was no difference in average daily gain between the immunized pigs and pigs from the challenge control group. From the perspective of clinical score, gross lung lesions, and microscopic lesions, immunization with MLV vaccine can indeed relieve symptoms and lesions caused by the virus, and 0.1 dosage vaccination has a better effect in these aspects. Also, both dosages of MLV immunization shortened viremia with similar effects. Discussion Our research suggests that the MLV vaccine can provide piglets with some protection against NADC34-like PRRSV and the 0.1 dosage Ingelvac PRRS MLV vaccination showed greater benefits in our study. Therefore, considering the cost, side effects, and subsequent protective effects, we can adjust the immune dosage appropriately after further investigation to ensure safety, improve production efficiency, and reduce immunization costs.
Collapse
Affiliation(s)
- Xinyu Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayu Liu
- Giantstar Farming and Husbandry Co., Ltd., Chengdu, China
| | | | - Yan Lin
- Chengdu SG-Biotech Co., Ltd., Chengdu, China
| | - Yan Li
- Giantstar Farming and Husbandry Co., Ltd., Chengdu, China
| | - Wensi Wu
- Giantstar Farming and Husbandry Co., Ltd., Chengdu, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nanfang Zeng
- Giantstar Farming and Husbandry Co., Ltd., Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Xie CZ, Zhang P, Wang Z, Tao YM, Cui ZD, Nan FL, Zhang FC, Ren YX, Zhang H, Lu HJ. Construction and immunological evaluation of recombinant adenovirus vaccines of new novel NADC34-PRRSV strains in pigs. Front Vet Sci 2024; 11:1503526. [PMID: 39742318 PMCID: PMC11685224 DOI: 10.3389/fvets.2024.1503526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive and respiratory diseases in sow herds and piglets. The emergence of ORF5 RFLP 1-7-4-like (NADC34-like) PRRSV strain in China has brought a new round of challenges to PRRSV prevention. Methods In addition, recombinant adenovirus vaccine candidates against the newly emerged NADC34-like strain were constructed in the study; the immunogenicity of the vaccine was investigated in piglets. After inoculation with PRRSV recombinant adenovirus, specific antibodies, neutralizing antibodies, and levels of IFN-γ and IL-4 cytokines were detected in serum. Results Thirty-five days after immunization, the levels of IFN-γ and IL-4 cytokines in the pac-Ad5-34-GP3, pac-Ad5-34-GP5, and pac-Ad5-34-GP35 experimental groups were significantly higher (p < 0.05) than those of the PBS and the adenovirus group. All vaccines can cause corresponding Th1 and Th2 immune responses based on animal experimental results. After the challenge, no obvious clinical symptoms were observed in the immune groups compared with the control group, vaccinated animals could reduce the occurrence of viremia, and the occurrence of viremia was alleviated, with no obvious pathological changes in the lungs, indicating that recombinant adenovirus vaccine could provide a good protective immunity and produce a good humoral and cellular immune response at the same time. Discussion It shows that the recombinant adenovirus vaccine group has better protection against the virus. Provide vaccine reserve and theoretical support for the emergence of new PRRSV subtypes in China.
Collapse
Affiliation(s)
- Chang-zhan Xie
- Institute of Urban Agriculture, Chengdu National Agricultural Science & Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ping Zhang
- Institute of Urban Agriculture, Chengdu National Agricultural Science & Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zheng Wang
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yi-mo Tao
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo-dong Cui
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fu-long Nan
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fu-chao Zhang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yun-xin Ren
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - He Zhang
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hui-jun Lu
- Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Chen X, Zhang J. Understanding Post-Translational Modifications in Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2024; 11:654. [PMID: 39728994 DOI: 10.3390/vetsci11120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection. We emphasize how these modifications affect the function and activity of viral proteins, thereby influencing virus replication, assembly, and egress. Additionally, we delve into the host cellular responses triggered by PRRSV, particularly the PTMs that regulate host signaling pathways and immune responses. Furthermore, we summarize the current understandings of how PTMs facilitate the ability of virus to evade the host immune system, enabling it to establish persistent infections. Finally, we address the implications of these modifications in the development of novel antiviral strategies and the potential for exploiting PTMs as therapeutic targets. This review highlights the significance of PTMs in shaping viral pathogenicity and host antiviral mechanisms and provides valuable insights for future research aimed at developing effective interventions against PRRSV infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Jianlong Zhang
- Pingliang Vocational and Technical College, Pingliang 744000, China
| |
Collapse
|
8
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Tao C, Zhu X, Huang Y, Yuan W, Wang Z, Zhu H, Jia H. Development of a Multiplex RT-qPCR Method for the Identification and Lineage Typing of Porcine Reproductive and Respiratory Syndrome Virus. Int J Mol Sci 2024; 25:13203. [PMID: 39684913 DOI: 10.3390/ijms252313203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen that causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion of sows and the manifestation of respiratory diseases in piglets. PRRSV strains are categorized into two distinct genotypes: PRRSV-1 and PRRSV-2. PRRSV-2 can be further classified into several lineages, including sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like), lineage 8 (HP-PRRSV-like), lineage 5 (VR-2332-like), and lineage 3 (QYYZ-like), all of which are prevalent in China. In order to identify PRRSV-1 and PRRSV-2, two primer-probe combinations were designed, targeting the M gene. In order to further differentiate the five lineages of PRRSV-2, another five primer-probe combinations were designed, targeting the Nsp2 gene. A TaqMan-based multiplex RT-qPCR assay was subsequently developed, integrating the aforementioned seven sets into two primer pools. Following the optimization of primer concentration and annealing temperature, a comprehensive evaluation was conducted to assess the assay's amplification efficiency, specificity, repeatability, and sensitivity. The developed multiplex RT-qPCR method exhibited excellent repeatability, with coefficients of variation (CVs) less than 2.12%. The detection limits for all seven targets were found to be less than 5 copies/μL. Ultimately, the method was utilized for the detection of a total of 1009 clinical samples, with a PRRSV-positive rate of 7.63% (77/1009). Specifically, the reference method was utilized to further confirm the status of the 77 PRRSV-positive samples and another 27 samples suspected of PRRSV infection. The sensitivity of the method was 97.40% (75/77), and the specificity was 96.30% (26/27), resulting in an overall coincidence rate of 97.12% (101/104). All the PRRSV-positive samples were typed as NADC30-like strains, and the accuracy of this typing was further confirmed by Sanger sequencing. In conclusion, A one-step multiplex RT-qPCR method was successfully constructed, evaluated, and applied to detect clinical samples. The assay provides an easy-to-operate, time-saving, and highly efficient way for the quick identification of PRRSV and simultaneous detection of five PRRSV-2 lineages prevalent in China. The method could offer guidance for PRRSV prevention and control measures.
Collapse
Affiliation(s)
- Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xizhou Zhu
- Bioproducts Engineering Center, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
11
|
Huang B, Xu T, Luo Z, Deng L, Jian Z, Lai S, Ai Y, Zhou Y, Ge L, Xu Z, Zhu L. Prevalence and genetic diversity of PRRSV in Sichuan province of China from 2021 to 2023: Evidence of an ongoing epidemic transition. Virology 2024; 600:110213. [PMID: 39265448 DOI: 10.1016/j.virol.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) significantly impacts the global swine industry. Sichuan province, a key pig breeding center in China, has limited data on the molecular epidemiology of PRRS Virus (PRRSV). To address this, 1618 suspected PRRSV samples were collected from 2021 to 2023, with a prevalence rate of 39.74% (643/1618). Phylogenetic analysis showed PRRSV-2 as dominant (95.65%, 615/643), with PRRSV-1 at 4.35% (28/643). PRRSV-2 strains were further classified into NADC30-like (74.18%), NADC34-like (11.98%), C-PRRSV (5.44%), and HP-PRRSV (4.04%). The significant change in the proportions of different lineages indicates genomic divergence. NADC30-like strains exhibited significant amino acid mutations in ORF5, aiding immune evasion. Recombination analysis revealed complex patterns, primarily involving NADC30-like strains. This study highlights the genomic divergence of PRRSV in Sichuan, with NADC30-like strains becoming predominant and emerging strains like NADC34-like showing potential for further spread.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhipeng Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yuancheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 611130, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 611130, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
12
|
Huang B, Li F, You D, Deng L, Xu T, Lai S, Ai Y, Huang J, Zhou Y, Ge L, Zeng X, Xu Z, Zhu L. Porcine reproductive and respiratory syndrome virus infects the reproductive system of male piglets and impairs development of the blood-testis barrier. Virulence 2024; 15:2384564. [PMID: 39072452 PMCID: PMC11290757 DOI: 10.1080/21505594.2024.2384564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 07/30/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and β-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong You
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Liangpeng Ge
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xiu Zeng
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Chen H, Chen N, Chen H, Zhao Z, Yang J, Sun J, Li H, Cong R, Liu H, Liu T, Chen S. Histopathological characteristics of PRRS and expression profiles of viral receptors in the piglet immune system. Front Vet Sci 2024; 11:1428273. [PMID: 39568484 PMCID: PMC11576435 DOI: 10.3389/fvets.2024.1428273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious viral disease that causes significant economic losses to the swine industry worldwide. PRRS virus (PRRSV) infection is a receptor-mediated endocytosis and replication process. The purpose of this study was to determine the localization and expression of four important PRRSV receptors in immunological organs of piglets. After piglets were infected with PRRSV, Hematoxylin and Eosin staining, immunofluorescence, and Western blot were used to perform histopathological examination and receptors distribution analysis. The results showed that PRRSV caused severe damage to the piglets' immune organs, including atrophy of the thymus and swelling of lymph node. Histopathological lesions were mainly observed in the lung and lymph node and were characterized by interstitial pneumonia, collapsed follicles, exhaustion of germinal centers, and extensive hemorrhage. Immunofluorescence staining and Western blot results showed that the receptors of CD163 and NMHCII-A were mainly distributed in the thymus, hilar lymph nodes, and mesenteric lymph nodes. However, Sn and vimentin receptors were expressed at low levels in the immune organs of piglets. The distribution of the four receptors in the immune organs was more concentrated in the cortex but was more scattered in the medulla. Compared to the control group, the relative expression of the four receptors increased significantly in most immune organs after viral infection. In conclusion, our study examined the distribution and expression of four PRRSV receptors in immunological organs. We observed a significant increase in the expression of Sn, CD163, and vimentin following viral infection. These findings may provide potential targets for future antiviral reagent design or vaccine development.
Collapse
Affiliation(s)
- Hong Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Na Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongbo Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zefang Zhao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiayao Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianbo Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hanmei Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Rihua Cong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hailong Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tengfei Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shulin Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Yuan Z, Sun Y, Niu X, Yan Q, Zeng W, Du P, Xie K, Fang Y, Wang L, Ding H, Yi L, Zhao M, Fan S, Zhao D, Chen J. Epidemiologic Investigation and Genetic Variation Analysis of PRRSV, PCV2, and PCV3 in Guangdong Province, China from 2020 to 2022. Viruses 2024; 16:1687. [PMID: 39599802 PMCID: PMC11598979 DOI: 10.3390/v16111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Recently, the emergence of HP-PRRSV (Highly Pathogenic porcine reproductive and respiratory syndrome virus) and the exacerbation of mixed infections of PRRSV and PCV have resulted in significant economic losses for the Chinese pig industry. This study collected a total of 226 samples suspected of infection with the aforementioned viruses from diverse pig farms in seven urban districts of central and northern Guangdong Province between 2020 and 2022. The positive rates of PRRSV, PCV2, and PCV3 in the samples were 33.2%, 37.6%, and 7.5%, respectively, and there were various mixed-infection scenarios present in the samples. This study successfully isolated multiple strains of PRRSV2 and PCV2 from their positive samples, and obtained the gene sequences of six PCV3 (ORF1 + ORF2) from samples. The associated sequences obtained were subjected to bioinformatic analysis and revealed the following:Predominantly prevalent strains of PRRSV in Guangdong Province include HP-PRRSV and NADC30-like variants, whereas PCV2 is primarily represented by the 2b and 2d subtypes. Specifically, the amino acid variation patterns exhibited by the PRRSV GP5 and NSP2 proteins of the strains sg_2108, qy_2008, and fs_2108 under environmental selective pressure are remarkably similar to the characteristics of Highly Pathogenic PRRSV; thus, it is inferred that they may possess higher virulence. The detected PCV3 strains were predominantly concentrated within the PCV3a-IM branch. All PRRSV strains involved in this study are wild-type-PRRSV (wt-PRRSV), comprising three recombinant strains and seven highly virulent strains. Among these strains, the ORF1a gene exhibited the highest variability in their genomes. Environmental selective pressure may enhance the virulence and immune evasion capabilities of PRRSV and drive mutations in the Cap proteins of PCV2 and PCV3. Conversely, PCV2 and PCV3 strains demonstrated greater stability in genetic evolution. In conclusion, this study enhances the epidemiological data regarding PRRSV, PCV2, and PCV3 in Guangdong Province, China, and is significant for the surveillance, prevention, and active control of these three diseases.
Collapse
Affiliation(s)
- Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Pengfei Du
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Kaiyuan Xie
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Yunfu 527400, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Dongfang Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Yunfu 527400, China
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, HuiNeng North Road, Yunfu 527400, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| |
Collapse
|
15
|
Zhao YY, Ma X, Chen XM, Song YP, Zheng LL, Ma SJ, Chen HY. Molecular detection and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China. Microb Pathog 2024; 197:107024. [PMID: 39426634 DOI: 10.1016/j.micpath.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Porcine reproductive and respiratory syndrome caused by porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically devastating viral diseases in the global pork industry. To further clarify the epidemic characteristics of the virus, 365 clinical samples were collected from diseased pigs suffering from abortion and respiratory disease from 2018 to 2023 on 63 pig farms in Henan and Shanxi provinces, and screened for the presence of PRRSV using reverse transcription-polymerase chain reaction (RT-PCR). A total of 62 clinical samples (62/365, 16.99 %) were positive for PRRSV, and subsequently, full-length ORF5 gene sequences of 29 PRRSV strains and the complete genome sequence of one PRRSV HeN-HC isolate were obtained and analyzed. Phylogenetic analysis based on the ORF5 gene showed that 22 of the 29 PRRSV2 strains belonged to sublineage 1.8 (NADC30-like), 5 belonged to sublineage 8.5 (HP-PRRSV), and 2 belonged to sublineage 5.1 (VR-2332-like), indicating that both HP-PRRSV and NADC30-like strains were mainly circulating in Henan and Shanxi provinces. Compared to VR-2332 strain, different types of amino acid mutations were found in the GP5 protein of these 29 strains, and the amino acid deletions were displayed in the Nsp2 protein of the HeN-HC isolate, leading to the variation of protein structures. It is noteworthy that recombination events were identified in the HeN-Ping and HeN-B strains. In addition, a total of 60, 094 pig serum samples from Henan province were collected, and the positive rate of specific antibodies against PRRSV was 86.37 % from 2019 to 2022, and 86.66 %, 84.85 %, 87.54 % and 86.30 % in 2019, 2020, 2021 and 2022, respectively. Overall, this study provides valuable insights into the molecular epidemiology and evolution of PRRSV circulating in central China.
Collapse
Affiliation(s)
- You-Yi Zhao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Xiao Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Ya-Peng Song
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China.
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China; International Joint Research Center of National Animal Immunology, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
16
|
Li S, Guo S, Liu F, Yao Y, Zhu Y, Feng WH. miR-451-targeted PSMB8 promotes PRRSV infection by degrading IRF3. J Virol 2024; 98:e0078424. [PMID: 39194214 PMCID: PMC11407001 DOI: 10.1128/jvi.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Porcine respiratory and reproductive syndrome (PRRS) is one of the most devastating infectious diseases of pigs, causing reproductive failures in sows and severe respiratory symptoms in piglets and growing pigs. MicroRNAs (miRNAs) are reported to play an essential role in virus-host interactions. In this study, we demonstrated that miR-451 enhanced type I interferon (IFN-I) production through targeting proteasome subunit β8 (PSMB8), therefore restricting PRRS virus (PRRSV) replication. We showed that the expression of PSMB8 was upregulated by PRRSV infection, and knockdown of PSMB8 inhibited PRRSV replication by promoting IFN-I production. Moreover, we demonstrated that PSMB8 interacted with the regulatory domain of IRF3 to mediate K48-linked polyubiquitination and degradation of IRF3. Also, importantly, we showed that PSMB8, as a target gene of miR-451, negatively regulated IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to modulate innate immune responses. IMPORTANCE Porcine respiratory and reproductive syndrome virus (PRRSV), as a huge threat to the swine industry, is a causative agent that urgently needs to be solved. The dissecting of PRRSV pathogenesis and understanding of the host-pathogen interaction will provide insights into developing effective anti-PRRSV strategies. In this study, we showed that miR-451 dramatically inhibited PRRSV replication by targeting proteasome subunit β8 (PSMB8), a subunit of the immunoproteasome. Mutation of PSMB8 is often related to autoinflammatory diseases due to the elevated IFN production. We revealed that PSMB8 downregulated IFN production by promoting IRF3 degradation. In addition, we showed that PRRSV infection upregulated PSMB8 expression. Taken together, our findings reveal that miR-451 is a negative regulator of PRRSV replication, and PSMB8, a target gene of miR-451, negatively regulates IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to regulate innate immune responses.
Collapse
Affiliation(s)
- Sihan Li
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuyuan Guo
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yao Yao
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingqi Zhu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Xu H, Xie Y, Deng K, He D. Isolation and identification, genome-wide analysis and pathogenicity study of a novel PRRSV-1 in southern China. Front Microbiol 2024; 15:1465449. [PMID: 39323887 PMCID: PMC11422217 DOI: 10.3389/fmicb.2024.1465449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused severe economic losses to the global swine industry. In recent years, the incidence of PRRSV-1 has been gradually increasing in China, but there are still few studies on it. In this study, clinical samples for PRRS virus isolation were collected from a pig farm in South China in 2022. We effectively isolated a strain of PRRSV utilizing PAM cells and demonstrated its consistent transmission capability on Marc-145 cells. The isolated strain was confirmed as PRRSV-1 by RT-qPCR, IFA, electron microscopy, etiolated spot purification and whole genome sequencing, the strain was named GD2022. The length of GD2022 genome is 15058nt; Based on the genome-wide genetic evolutionary analysis of GD2022, the strain was classified as PRRSV-1. Further genetic evolutionary analysis of its ORF5 gene showed that GD2022 belonged to PRRSV-1 subtype 1 and formed an independent branch in the evolutionary tree. Compared with the sequence of the classical PRRSV-1 strain (LV strain), GD2022 has several amino acid site mutations in the antigenic region from GP3 to GP5, these mutations are different from those of other PRRSV-1 strains in China. Recombination analysis showed no recombination events with GD2022. In addition, piglets infected with GD2022 displayed clinical respiratory symptoms and typical pathological changes. In this study, a strain of the PRRSV-1 virus was isolated using both PAM cells and Marc-145 and proved to be pathogenic to piglets, providing an important reference for the identification, prevention, and control of PRRSV-1.
Collapse
Affiliation(s)
- Huirui Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yongsheng Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Kehui Deng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dongsheng He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
18
|
Lv C, Zheng Y, Liu K, Li G, Luo Q, Zhang H, Sha H, Wang R, Kong W, Zhao M. Genetic variation and recombination analysis of PRRSV-2 GP3 gene in China from 1996 to 2023. Front Microbiol 2024; 15:1435373. [PMID: 39220042 PMCID: PMC11362850 DOI: 10.3389/fmicb.2024.1435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has become widespread in China particularly the highly pathogenic porcine reproductive and respiratory syndromes (HP-PRRSV), NADC30, and NADC34 strains, and has posed a threat to the swine industry for over 20 years. To monitor genetic variation in PRRSV-2 GP3 strains in China, we analyzed 618 strains isolated between 1996 to 2023 and constructed phylogenetic trees. Additionally, 60 selected strains were used to analyze nucleotide and amino acid homology. PRRSV GP3 gene exhibited nucleotide identity ranging from 78.2% to 100.0% and amino acid similarity ranging from 74.9% to 99.6%. The GP3 gene in the 60 selected strains consisted of 254 amino acids, and amino acid mutations in the strains primarily occurred in B-cell epitopes, T-cell epitopes, and highly variable regions. The glycosylation sites of the strains used for amino acid sequence comparisons remained unaltered, except for the N29 site in the GD20220303-2022 strain. PRRSV-2 strains in China belong to lineages 1, 3, 5, and 8. Recombination analysis detected two recombination events, involving lineages 1 and 8. In conclusion, this study investigated multiple strains of the PRRSV-2 GP3 gene to explore the prevalence and genetic diversity of the GP3 gene in China from a gene family perspective. The results of the analyses provide a basis for clinical prevention strategies and vaccine development.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yajie Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Weili Kong
- University of California, San Francisco, San Francisco, CA, United States
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
19
|
Qiao YY, Wang HM, Lu H, Wang YJ, Zhang W, Gu H, Cai XH, Xu QS, Chen ZY, Tang YD. Generation of an infectious cDNA clone for NADC30-like PRRSV. Front Vet Sci 2024; 11:1468981. [PMID: 39205805 PMCID: PMC11349645 DOI: 10.3389/fvets.2024.1468981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is a highly significant infectious disease that poses a substantial threat to the global pig industry. In recent years, the NADC30-like strain has gradually emerged as prevalent in China, causing a profound impact on the country's pig farming industry. Therefore, it is important to conduct an in-depth study on the characteristics and gene functions of the NADC30-like strain. An infectious cDNA clone is an indispensable tool for investigating the functions of viral genes. In this current study, we successfully isolated a NADC30-like strain and constructed its full-length infectious cDNA clone. The utilization of this clone will facilitate our investigation into the viral replication, pathogenesis, and immune response associated with the PRRSV NADC30-like strain.
Collapse
Affiliation(s)
- Yang-Yang Qiao
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Hai-Ming Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Hui Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Yong-Juan Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Wei Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Hao Gu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin-Se Xu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Zhang-Yan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
20
|
Chang W, Wang J, Wu F, Zhang H, Yang M. Antiviral activity and underlying mechanisms of baicalin against porcine reproductive and respiratory syndrome virus in vitro. Microb Pathog 2024; 193:106712. [PMID: 38851360 DOI: 10.1016/j.micpath.2024.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a major challenge for the global swine industry, causing huge economic losses worldwide. To date, there are no effective measures to prevent and control the spread of PRRS virus (PRRSV). Baicalin (BA) is a natural flavonoid with various pharmacological effects, including antiviral, anti-inflammatory, antioxidant and immunomodulatory. Here, we demonstrate that BA exhibits potent anti-PRRSV activity in vitro, BA concentrations in the range of 5-20 μg/mL significantly inhibited PRRSV infection in a dose-dependent manner and were independent of PRRSV strain. Mechanistically, BA inhibited PRRSV replication by directly interacting with virions, thereby affecting multiple stages of the virus life cycle. Meanwhile, the preventive effect of BA on PRRSV could be realized by inhibiting CD151 and CD163 expression. Furthermore, BA reduced the PRRSV-induced expression of PAMs cytokines (IFN-α, IL-6, IL-8, and TNF-α), suggesting that BA-induced antiviral cytokines may help BA inhibit PRRSV infection. Taken together, BA can be used as an inhibitor of PRRSV infection in vitro, which provides a theoretical basis for the clinical application of BA and the prevention and control of PRRSV infection, which is worthy of further in vivo studies in swine.
Collapse
Affiliation(s)
- Weichen Chang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Jing Wang
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Feifan Wu
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Hongying Zhang
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Mingfan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China.
| |
Collapse
|
21
|
Chang X, Ma J, Zhou Y, Xiao S, Xiao X, Fang L. Development of a Ferritin Protein Nanoparticle Vaccine with PRRSV GP5 Protein. Viruses 2024; 16:991. [PMID: 38932282 PMCID: PMC11209462 DOI: 10.3390/v16060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.
Collapse
Affiliation(s)
- Xinjian Chang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
22
|
Ouyang Y, Du Y, Zhang H, Guo J, Sun Z, Luo X, Mei X, Xiao S, Fang L, Zhou Y. Genetic Characterization and Pathogenicity of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Strain in China. Viruses 2024; 16:993. [PMID: 38932283 PMCID: PMC11209116 DOI: 10.3390/v16060993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.
Collapse
Affiliation(s)
- Yan Ouyang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbing Du
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hejin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zheng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiuxin Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaowei Mei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
23
|
Li W, Li Y, Li M, Zhang H, Feng Z, Xu H, Li C, Guo Z, Gong B, Peng J, Zhou G, Tian Z, Wang Q. Development and application of a blocking ELISA based on a N protein monoclonal antibody for the antibody detection against porcine reproductive and respiratory syndrome virus 2. Int J Biol Macromol 2024; 269:131842. [PMID: 38679249 DOI: 10.1016/j.ijbiomac.2024.131842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanwei Li
- Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.), Beijing 102600, China
| | - Minhua Li
- Beijing IDEXX Laboratories, Co., Ltd, Beijing 101318, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zixuan Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
24
|
Gao X, Bian T, Gao P, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Fidelity Characterization of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and NADC30-like Strain. Viruses 2024; 16:797. [PMID: 38793678 PMCID: PMC11125636 DOI: 10.3390/v16050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06's nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity.
Collapse
Affiliation(s)
- Xiang Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ting Bian
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| |
Collapse
|
25
|
Li C, Fan A, Liu Z, Wang G, Zhou L, Zhang H, Huang L, Zhang J, Zhang Z, Zhang Y. Prevalence, Time of Infection, and Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2024; 16:774. [PMID: 38793655 PMCID: PMC11125865 DOI: 10.3390/v16050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Aihua Fan
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Gang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China;
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China;
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China;
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
| | - Yan Zhang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China;
| |
Collapse
|
26
|
Lin Y, Zhou L, Xiao C, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. Development and biological characterization of an infectious cDNA clone of NADC34-like PRRSV. Front Microbiol 2024; 15:1359970. [PMID: 38800747 PMCID: PMC11123230 DOI: 10.3389/fmicb.2024.1359970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes high abortion rates in gestating sows and stillbirths, as well as high piglet mortality, seriously jeopardizing the pig industry in China and worldwide. Methods In this study, an infectious clone containing the full-length genome of NADC34-like PRRSV was constructed for the first time using reverse genetic techniques. The gene was amplified segmentally onto a plasmid, transfected into BHK-21 cells, and the transfected supernatant was harvested and transfected into PAM cells, which showed classical cytopathic effects (CPE). Results The virus rJS-KS/2021 was successfully rescued which could be demonstrated by Western Blot and indirect immunofluorescence assays. Its growth curve was similar to the original strain. Replace the 5'UTR and 3'UTR of rJS-KS/2021 with 5'UTR and 3'UTR of HP-PRRSV (strain SH1) also failed to propagate on MARC-145. Discussion In this study, an infectious clone of NADC34-like was constructed by reverse genetics, replacing the UTR and changing the cellular tropism of the virus. These findings provide a solid foundation for studying the recombination of different PRRSVs and the adaption of PRRSVs on MARC-145 in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
27
|
Huang B, Deng L, Xu T, Jian Z, Lai S, Ai Y, Xu Z, Zhu L. Isolation and pathogenicity comparison of two novel natural recombinant porcine reproductive and respiratory syndrome viruses with different recombination patterns in Southwest China. Microbiol Spectr 2024; 12:e0407123. [PMID: 38511956 PMCID: PMC11064529 DOI: 10.1128/spectrum.04071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
28
|
Li L, Wang J, Chen L, Ren Q, Akhtar MF, Liu W, Wang C, Cao S, Liu W, Zhao Q, Li Y, Wang T. Diltiazem HCl suppresses porcine reproductive and respiratory syndrome virus infection in susceptible cells and in swine. Vet Microbiol 2024; 292:110054. [PMID: 38507832 DOI: 10.1016/j.vetmic.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jiayu Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qinghai Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shengliang Cao
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
29
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
Zhang R, Li H, Xie H, Hou X, Zhou L, Cao A, Zeshan B, Zhou Y, Wang X. Comparing the molecular evolution and recombination patterns of predominant PRRSV-2 lineages co-circulating in China. Front Microbiol 2024; 15:1398470. [PMID: 38737413 PMCID: PMC11088243 DOI: 10.3389/fmicb.2024.1398470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses widespread epidemics in swine herds, yet the drivers underlying lineage replacements/fitness dynamics remain unclear. To delineate the evolutionary trajectories of PRRSV-2 lineages prevalent in China, we performed a comprehensive longitudinal phylodynamic analysis of 822 viral sequences spanning 1991-2022. The objectives encompassed evaluating lineage dynamics, genetic diversity, recombination patterns and glycosylation profiles. A significant shift in the dominance of PRRSV-2 sub-lineages has been observed over the past 3 decades, transitioning from sub-lineage 8.7 to sub-lineage 1.8, followed by extensive diversification. The analysis revealed discordant recombination patterns between the two dominant viral sub-lineages 1.8 and 8.7, underscoring that modular genetic exchanges contribute significantly to their evolutionary shaping. Additionally, a strong association was found between recombination breakpoint locations and transcriptional regulatory sequences (TRSs). Glycosylation patterns also demonstrated considerable variability across sub-lineages and temporally, providing evidence for immune-driven viral evolution. Furthermore, we quantified different evolutionary rates across sub-lineages, with sub-lineage 1.8 uniquely displaying the highest nucleotide substitution rates. Taken together, these findings provide refined insight into the evolutionary mechanisms underpinning cyclic shifts in dominance among regionally circulating PRRSV sub-lineages.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixuan Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aiqiao Cao
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, Guangdong, China
| | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
31
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
32
|
Jiao S, Zhang J, Wang J, Ma X, Li G, Li J, Cui Z, Li D, Li P, Zeng Q, Liu Z, Lu Z, Sun P. Whole-genome analysis of the recombination and evolution of newly identified NADC30-like porcine reproductive and respiratory syndrome virus strains circulated in Gansu province of China in 2023. Front Vet Sci 2024; 11:1372032. [PMID: 38681852 PMCID: PMC11047440 DOI: 10.3389/fvets.2024.1372032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the major threats to swine industry, resulting in huge economic losses worldwide. Currently, PRRSV has diversified into multiple lineages with characteristics of extensive recombination in China. In this research, three virus strains were isolated and four virus whole genome sequences were generated and analyzed from clinical samples collected in Gansu province of China in 2023. The four virus strains were designated GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023. Phylogenetic analysis based on ORF5 sequences showed that GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023 shared 91.7, 91.2, 93.2 and 92.9% homology with NADC30 strain respectively, and belonged to lineage 1 of PRRSV-2. In addition, one amino acid deletion was observed at position 33 in ORF5 of GSTS4-2023, GSLX2-2023 and GSFEI2-2023. Moreover, amino acid alignment of the four strains showed a typical discontinuous 131-amino acid (aa) deletion in NSP2 for NADC30-like virus strains. Recombination analysis revealed that all four strains originated from NADC30 (lineage 1), with their minor parents coming from JXA1-like strains (lineage 8), VR-2332-like strains (lineage5) and QYYZ-like strains (lineage3). Finally, the three isolated virus strains, GSTS4-2023, GSLX2-2023 and GSFEI2-2023 showed relatively low levels of replication in cell culture. Our findings provide important implications for the field epidemiology of PRRSV.
Collapse
Affiliation(s)
- Shoude Jiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Qiaoying Zeng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
33
|
Wu Z, Chang T, Wang D, Zhang H, Liu H, Huang X, Tian Z, Tian X, Liu D, An T, Yan Y. Genomic surveillance and evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus in China spanning the African swine fever outbreak. Virus Evol 2024; 10:veae016. [PMID: 38404965 PMCID: PMC10890815 DOI: 10.1093/ve/veae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.
Collapse
Affiliation(s)
- Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| |
Collapse
|
34
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
35
|
Liu D, Chen Y. Epitope screening and vaccine molecule design of PRRSV GP3 and GP5 protein based on immunoinformatics. J Cell Mol Med 2024; 28:e18103. [PMID: 38217314 PMCID: PMC10844699 DOI: 10.1111/jcmm.18103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a respiratory disease in pigs that causes severe economic losses. Currently, live PRRSV vaccines are commonly used but fail to prevent PRRS outbreaks and reinfection. Inactivated PRRSV vaccines have poor immunogenicity, making PRRSV a significant threat to swine health globally. Therefore, there is an urgent need to develop an effective PRRSV vaccine. This study used immunoinformatics to predict, screen, design and construct a candidate vaccine that fused B-cell epitopes, CTL- and HTL-dominant protective epitopes of PRRSV strain's GP3 and GP5 proteins. The study identified 12 B-cell epitopes, 6 CTL epitopes and 5 HTL epitopes of GP3 and GP5 proteins. The candidate vaccine was constructed with 50S ribosomal protein L7/L1 molecular adjuvant, which has antigenicity, solubility, stability, non-allergenicity and a high affinity for its target receptor, TLR-3. The C-ImmSim immunostimulation results showed significant increases in cellular and humoral responses (B cells and T cells) and production of TGF-β, IL-2, IL-10, IFN-γ and IL-12. The constructed vaccine was stable and immunogenic, and it can effectively induce strong T-cell and B-cell immune responses against PRRSV. Therefore, it is a promising candidate vaccine for controlling and preventing PRRSV outbreaks.
Collapse
Affiliation(s)
- Dongyu Liu
- Heilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yaping Chen
- Heilongjiang Bayi Agricultural UniversityDaqingChina
| |
Collapse
|
36
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
37
|
Li C, Zhao J, Li W, Xu H, Gong B, Sun Q, Guo Z, Li J, Xiang L, Tang YD, Leng C, Wang Q, Peng J, Zhou G, Liu H, An T, Cai X, Tian ZJ, Zhang H. Prevalence and genetic evolution of porcine reproductive and respiratory syndrome virus in commercial fattening pig farms in China. Porcine Health Manag 2024; 10:5. [PMID: 38254191 PMCID: PMC10801985 DOI: 10.1186/s40813-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND To investigate the prevalence and evolution of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) at commercial fattening pig farms, a total of 1397 clinical samples were collected from a single fattening cycle at seven pig farms in five provinces of China from 2020 to 2021. RESULTS The RT‒PCR results revealed that PRRSV was present on all seven farms, and the percentage of PRRSV-positive individuals was 17.54-53.33%. A total of 344 partial NSP2 gene sequences and 334 complete ORF5 gene sequences were obtained from the positive samples. The statistical results showed that PRRSV-2 was present on all seven commercial fattening farms, and PRRSV-1 was present on only one commercial fattening farm. A total of six PRRSV-2 subtypes were detected, and five of the seven farms had two or more PRRSV-2 subtypes. L1.8 (L1C) PRRSV was the dominant epidemic strain on five of the seven pig farms. Sequence analysis of L1.8 (L1C) PRRSV from different commercial fattening pig farms revealed that its consistency across farms varied substantially. The amino acid alignment results demonstrated that there were 131 aa discontinuous deletions in NSP2 between different L1.8 (L1C) PRRSV strains and that the GP5 mutation in L1.8 (L1C) PRRSV was mainly concentrated in the peptide signal region and T-cell epitopes. Selection pressure analysis of GP5 revealed that the use of the PRRSV MLV vaccine had no significant episodic diversifying effect on L1.8 (L1C) PRRSV. CONCLUSION PRRSV infection is common at commercial fattening pig farms in China, and the percentage of positive individuals is high. There are multiple PRRSV subtypes of infection at commercial fattening pig farms in China. L1.8 (L1C) is the main circulating PRRSV strain on commercial fattening pig farms. L1.8 (L1C) PRRSV detected at different commercial fattening pig farms exhibited substantial differences in consistency but similar molecular characteristics. The pressure on the GP5 of L1.8 (L1C) PRRSV may not be directly related to the use of the vaccines.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bioreactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, No. 678 Haping Road, Xiangfang District, Harbin, 150001, China.
| |
Collapse
|
38
|
Zhang H, Li C, Xu H, Gong B, Li W, Guo Z, Xiang L, Sun Q, Zhao J, Peng J, Wang Q, Zhou G, Tang YD, An T, Cai XH, Tian ZJ. Protective efficacy of a candidate live attenuated vaccine derived from the SD-R strain of lineage 1 porcine reproductive and respiratory syndrome virus against a lethal challenge with HP-PRRSV HuN4 in piglets. Microbiol Spectr 2023; 11:e0198423. [PMID: 37819126 PMCID: PMC10714764 DOI: 10.1128/spectrum.01984-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Both highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and NADC30-like PRRSV have caused tremendous economic losses to the Chinese pig industry. In this study, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative HP-PRRSV strain (HuN4). The control piglets in the challenge experiment displayed obvious clinical symptoms of PRRSV infection, with a mortality rate up to 40%. In contrast, all the piglets in the vaccinated challenged group survived, and only some pigs had transient fever. The daily gain of SD-R immunized group piglets was significantly increased, and the pathological changes were significantly reduced. In addition, the viral replication levels in the serum of the immunized group were significantly lower than those of the challenged control group. The live attenuated vaccine SD-R strain can provide protection against HP-PRRSV challenge, indicating that the SD-R strain is a promising vaccine candidate for use in the swine industry.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
39
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
40
|
Zhu H, Wei L, Liu X, Liu S, Chen H, Chen P, Li X, Qian P. Pathogenicity Studies of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus LNSY-GY and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus GXGG-8011 in Piglets. Viruses 2023; 15:2247. [PMID: 38005924 PMCID: PMC10674415 DOI: 10.3390/v15112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses to the swine industry. The U.S., China, and Peru have reported NADC30-like or NADC34-like PRRSV-infected piglets, which have been identified as the cause of a significant number of abortions in clinics. Although the pathogenicity of NADC30-like PRRSV and NADC34-like PRRSV in piglets exhibits significant variability globally, studies on their pathogenicity in China are limited. In this study, the animal experiments showed that within 8-14 days post-infection, both piglets infected with NADC30-like PRRSV GXGG-8011 and those infected with NADC34-like PRRSV LNSY-GY exhibited significant weight loss compared to the control piglets. Additionally, the viremia of the LNSY-GY persisted for 28 days, while the viremia of piglets infected with the GXGG-8011 lasted for 17 days. Similarly, the duration of viral shedding through the fecal-oral route after the LNSY-GY infection was longer than that observed after the GXGG-8011 infection. Furthermore, post-infection, both the LNSY-GY and GXGG-8011 led to pronounced histopathological lesions in the lungs of piglets, including interstitial pneumonia and notable viral colonization. However, the antibody production in the LNSY-GY-infected group occurred earlier than that in the GXGG-8011-infected group. Our research findings indicate that LNSY-GY is a mildly pathogenic strain in piglets, whereas we speculate that the GXGG-8011 might be a highly pathogenic strain.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
41
|
Rawal G, Almeida MN, Gauger PC, Zimmerman JJ, Ye F, Rademacher CJ, Armenta Leyva B, Munguia-Ramirez B, Tarasiuk G, Schumacher LL, Aljets EK, Thomas JT, Zhu JH, Trexel JB, Zhang J. In Vivo and In Vitro Characterization of the Recently Emergent PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates. Viruses 2023; 15:2233. [PMID: 38005910 PMCID: PMC10674456 DOI: 10.3390/v15112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six groups with twelve pigs/group. Forty-eight pigs (eight/group) were for inoculation, and 24 pigs (four/group) served as contact pigs. Pigs in pen A of each room were inoculated with the corresponding virus or negative media. At two days post inoculation (DPI), contact pigs were added to pen B adjacent to pen A in each room. Pigs were necropsied at 10 and 28 DPI. Compared to other virus-inoculated groups, the L1C.5-inoculated pigs exhibited more severe anorexia and lethargy, higher mortality, a higher fraction of pigs with fever (>40 °C), higher average temperature at several DPIs, and higher viremia levels at 2 DPI. A higher percentage of the contact pigs in the L1C.5 group became viremic at two days post contact, implying the higher transmissibility of this virus strain. It was also found that some PRRSV isolates caused brain infection in inoculation pigs and/or contact pigs. The complete genome sequences and growth characteristics in ZMAC cells of five PRRSV-2 isolates were further compared. Collectively, this study confirms that the PRRSV 1-4-4 L1C variant (L1C.5) is highly virulent with potential higher transmissibility, but the genetic determinants of virulence remain to be elucidated.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Marcelo N. Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Fangshu Ye
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
| | - Christopher J. Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Betsy Armenta Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Berenice Munguia-Ramirez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Grzegorz Tarasiuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Loni L. Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Ethan K. Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Joseph T. Thomas
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jin-Hui Zhu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jolie B. Trexel
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| |
Collapse
|
42
|
Singh N, Batra K, Chaudhary D, Punia M, Kumar A, Maan NS, Maan S. Prevalence of porcine viral respiratory diseases in India. Anim Biotechnol 2023; 34:1642-1654. [PMID: 35112631 DOI: 10.1080/10495398.2022.2032117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pig industry is growing rapidly in India and contributes a major share of growth in the livestock sector. Over the last few years, there is a gradual increase in the adoption of pigs for production by economically weaker sections of the country. However, this production is affected by many respiratory diseases which are responsible for significant economic loss. The occurrence and impact of these diseases are still under-documented. The four important pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza A viruses (SIV) and classical swine fever virus (CSFV) are documented here. These diseases are highly devastating in nature and frequent outbreaks have been reported from different parts of the country. The rapid and specific diagnosis, effective prevention and control measures are required for the eradication of these diseases which is urgently required for the growth of the pig industry. This review highlights the prevalence, epidemiology, diagnostics and information gaps on important respiratory viral pathogens of pigs reported from different parts of India. This review also emphasizes the importance of these viral diseases and the urgent need to develop vaccines and effective measures for the eradication of these diseases.
Collapse
Affiliation(s)
- Neha Singh
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Deepika Chaudhary
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Monika Punia
- Department of Biotechnology, Ch. Devi Lal University, Sirsa, India
| | - Aman Kumar
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Narender Singh Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| |
Collapse
|
43
|
Gong X, Ma T, Wang J, Cao X, Zhang Q, Wang Y, Song C, Lai M, Zhang C, Fang X, Chen X. Nucleocapsid protein residues 35, 36, and 113 are critical sites in up-regulating the Interleukin-8 production via C/EBPα pathway by highly pathogenic porcine reproductive and respiratory syndrome virus. Microb Pathog 2023; 184:106345. [PMID: 37714310 DOI: 10.1016/j.micpath.2023.106345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads to persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected PAMs and Marc-145 cells release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism by which PRRSV modulates immune responses and inflammation.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Tianyi Ma
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xinran Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| |
Collapse
|
44
|
Wang X, Bi J, Yang C, Li Y, Yang Y, Deng J, Wang L, Gao X, Lin Y, Liu J, Yin G. Long non-coding RNA LOC103222771 promotes infection of porcine reproductive and respiratory syndrome virus in Marc-145 cells by downregulating Claudin-4. Vet Microbiol 2023; 286:109890. [PMID: 37857013 DOI: 10.1016/j.vetmic.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important swine disease caused by infection of porcine reproductive and respiratory syndrome virus (PRRSV), which leads to huge loss in swine industry. How to effectively control PRRS is challenging. Long non-coding RNA (lncRNA) are key regulator of viral infections and anti-virus immunological responses, therefore, further understanding of lncRNAs will aid to identification of novel regulators of viral infections and better design of prevention and control strategies to viral infection related diseases and immune disorders. We demonstrated that PRRSV infection upregulated the expression of lncRNA LOC103222771 in Marc-145 cells and porcine alveolar macrophage cells (PAMs) and that LOC103222771 is mainly located in cytoplasm. Knockdown of LOC103222771 could inhibit the PRRSV infection in Marc-145 cells. RNA-seq analysis and subsequent validation revealed increased expression of Claudin-4 (CLDN4) in Marc-145 when LOC103222771 was specifically downregulated,suggesting that LOC103222771 might be an upstream regulator of CLDN4, an important component of tight junctions for establishment of the paracellular barrier that controls the flow of molecules in the intercellular space between epithelial cells. We and others showed that Downregulation of CLDN4 could boost the infection of PRRSV. Collectively, LOC103222771/CLDN4 signal axis might be a novel mechanism of PRRSV pathogenesis, implying a potential therapeutic target against PRRSV infection.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junwen Deng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lei Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiaolin Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
45
|
Yu J, Shi H, Song K, Yang Y, Li X, Peng L, Fu B, Yi P. Naringenin Improves Innate Immune Suppression after PRRSV Infection by Reactivating the RIG-I-MAVS Signaling Pathway, Promoting the Production of IFN-I. Viruses 2023; 15:2172. [PMID: 38005850 PMCID: PMC10674737 DOI: 10.3390/v15112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been prevalent for nearly forty years since it was first reported. It has been one of the major diseases jeopardizing the healthy development of the world swine industry, as well as causing great economic losses to the industry's economic development. Furthermore, no way has been found to combat the disease due to the immunosuppressive properties of its pathogen porcine reproductive and respiratory syndrome virus (PRRSV) infection. We previously examined the mRNA expression of IFN-I in PRRSV-infected Marc-145 cells at different time periods using qRT-PCR, and found that the mRNA expression of IFN-I in the late stage of PRRSV infection showed suppression. Naringenin is a flavonoid found in citrus fruits and has a very wide range of pharmacological activities. Therefore, the aim of the present study was to investigate the modulatory effect of naringenin on the suppressed innate immune response after PRRSV infection. The expression of IFN-I, IL-10, and ISGs in the late stage of PRRSV infection was examined using qRT-PCR, and the results showed that naringenin improved the expression of antiviral cytokines suppressed by PRRSV infection. Further results showed that naringenin treatment significantly up-regulated the expression of proteins related to the RIG-I-MAV immune signaling pathway, and that naringenin could not significantly activate the RIG-I-MAVS signaling pathway after the addition of the RIG-I inhibitor Cyclo. Overall, these data demonstrated that naringenin could improve the innate immune response suppressed by PRRSV infection by modulating the RIG-I-MAVS signaling pathway. Therefore, our study will provide a theoretical basis for the development of naringenin as a drug against immunosuppressive viral infectious disease infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.Y.); (H.S.); (K.S.); (Y.Y.); (X.L.); (L.P.); (B.F.)
| |
Collapse
|
46
|
Chae H, Roh HS, Jo YM, Kim WG, Chae JB, Shin SU, Kang JW. Development of a one-step reverse transcription-quantitative polymerase chain reaction assay for the detection of porcine reproductive and respiratory syndrome virus. PLoS One 2023; 18:e0293042. [PMID: 37844073 PMCID: PMC10578580 DOI: 10.1371/journal.pone.0293042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an important disease that severely affects the swine industry and, therefore, warrants rapid and accurate diagnosis for its control. Despite the progress in developing diagnostic tools, including polymerase chain reaction (PCR)-based methods such as reverse transcription quantitative PCR (RT-qPCR) to diagnose PRRSV infection, its diagnosis at the genetic level is challenging because of its high genetic variability. Nevertheless, RT-qPCR is the easiest and fastest method for diagnosing PRRSV. Therefore, this study aimed to develop an RT-qPCR assay for rapid and accurate diagnosis of PRRSV by encompassing all publicly available PRRSV sequences. The developed assay using highly specific primers and probes could detect up to 10 copies of PRRSV-1 and -2 subtypes. Furthermore, a comparison of the performance of the developed assay with those of two commercial kits widely used in South Korea demonstrated the higher efficiency of the developed assay in detecting PRRSV infections in field samples. For PRRSV-1 detection, the developed assay showed a diagnostic agreement of 97.7% with the results of ORF5 sequencing, while for commercial kits, it showed 95.3% and 72.1% agreement. For PRRSV-2, the developed assay showed a diagnostic agreement of 97.7%, whereas the commercial kits showed 93% and 90.7% agreement. In conclusion, we developed an assay with higher accuracy than those of the tested commercial kits, which will contribute markedly to global PRRSV control.
Collapse
Affiliation(s)
- Hansong Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Hyun Soo Roh
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Young Mi Jo
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Won Gyeong Kim
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jeong Byoung Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Seung-Uk Shin
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jung Won Kang
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| |
Collapse
|
47
|
Li Y, Xu L, Jiao D, Zheng Z, Chen Z, Jing Y, Li Z, Ma Z, Feng Y, Guo X, Wang Y, He Y, Zheng H, Xiao S. Genomic similarity and antibody-dependent enhancement of immune serum potentially affect the protective efficacy of commercial MLV vaccines against NADC30-like PRRSV. Virol Sin 2023; 38:813-826. [PMID: 37660949 PMCID: PMC10590703 DOI: 10.1016/j.virs.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhihao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yumiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
48
|
Jiang D, Tu T, Zhou Y, Li Y, Luo Y, Yao X, Yang Z, Ren M, Wang Y. Epidemiological investigation and pathogenicity of porcine reproductive and respiratory syndrome virus in Sichuan, China. Front Microbiol 2023; 14:1241354. [PMID: 37779701 PMCID: PMC10533931 DOI: 10.3389/fmicb.2023.1241354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) lineage 8 was first detected in mainland China in 2006 and has since rapidly spread to become the primary epidemic strain in the country. In this study, samples such as lung tissue, hilar lymph nodes, abortion fetuses, and blood were collected from large-scale pig farms across 11 prefecture-level cities in Sichuan province between 2019 and 2020 for antigen detection and PRRS virus isolation. The antigen detection results indicated that the positive rate of HP-PRRSV (JXA1-Like strain) was 44.74% (51/114), NADC30-Like PRRSV was 17.54% (20/114), and classical PRRSV (VR2332-Like strain) was 37.72% (43/114). The predominant strain was HP-PRRSV. Positive samples were further inoculated into Marc-145 cells for virus isolation and identification, leading to the isolation of a new JXA1-Like PRRSV strain named SCSN2020. The strain was characterized by RT-qPCR, indirect immunofluorescence assay (IFA), plaque purification, electron microscopy, and whole genome sequencing. The total length of the viral genome was determined to be approximately 15,374 bp. A comparison of the SCSN2020 genome with VR2332 revealed that both strains had the same discontinuous 30-amino acid deletion on the Nsp2 gene. ORF5 genotyping classified the SCSN2020 strain as sublineage 8.7, with a whole genome sequence identity of 99.34% with JXA1. Furthermore, we evaluated the pathogenicity of the SCSN2020 strain in 28-day-old piglets and observed persistent fever from day 4 to day 10, weight loss started on day 7, dyspnea and severe lung lesions began started on day 14. The results of this study highlight the current PRRSV epidemic situation in Sichuan province and provide a scientific reference for subsequent prevention and control measures.
Collapse
Affiliation(s)
- Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanwei Li
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
49
|
Peng O, Xia Y, Wei Y, Zeng S, Zou C, Hu F, Xu Q, Huang Y, Geng R, Hu G, Cao Y, Zhang H. Integrative transcriptomic profiling of mRNA, miRNA, circRNA, and lncRNA in alveolar macrophages isolated from PRRSV-infected porcine. Front Immunol 2023; 14:1258778. [PMID: 37691924 PMCID: PMC10491896 DOI: 10.3389/fimmu.2023.1258778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV's intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated. Methods In this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs). Results Differentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data. Discussion This study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing.
Collapse
Affiliation(s)
- Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wei
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fangyu Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihui Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guangli Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Luo Q, Zheng Y, He Y, Li G, Zhang H, Sha H, Zhang Z, Huang L, Zhao M. Genetic variation and recombination analysis of the GP5 ( GP5a) gene of PRRSV-2 strains in China from 1996 to 2022. Front Microbiol 2023; 14:1238766. [PMID: 37675419 PMCID: PMC10477998 DOI: 10.3389/fmicb.2023.1238766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been prevalent in China for more than 25 years and remains one of the most significant pathogens threatening the pig industry. The high rate of mutation and frequent recombination of PRRSV have exacerbated its prevalence, particularly with the emergence of highly pathogenic PRRSV (HP-PRRSV) has significantly increased the pathogenicity of PRRSV, posing a serious threat to the development of Chinese pig farming. To monitor the genetic variation of PRRSV-2 in China, the GP5 sequences of 517 PRRSV-2 strains from 1996 to 2022 were analyzed and phylogenetic trees were constructed. Furthermore, a total of 60 PRRSV strains, originating from various lineages, were carefully chosen for nucleotide and amino acid homologies analysis. The results showed that the nucleotide homologies of the PRRSV GP5 gene ranged from 81.4 to 100.0%, and the amino acid homologies ranged from 78.1 to 100.0%. Similarly, the PRRSV GP5a gene showed 78.0 ~ 100.0% nucleotide homologies and 70.2 ~ 100.0% amino acid homologies. Amino acid sequence comparisons of GP5 and GP5a showed that some mutations, such as substitutions, deletions, and insertions, were found in several amino acid sites in GP5, these mutations were primarily found in the signal peptide region, two highly variable regions (HVRs), and near two T-cell antigenic sites, while the mutation sites of GP5a were mainly concentrated in the transmembrane and intramembrane regions. Phylogenetic analysis showed that the prevalent PRRSV-2 strains in China were divided into lineages 1, 3, 5, and 8. Among these, strains from lineage 8 and lineage 1 are currently the main prevalent strains, lineage 5 and lineage 8 have a closer genetic distance. Recombination analysis revealed that one recombination event occurred in 517 PRRSV-2 strains, this event involved recombination between lineage 8 and lineage 1. In conclusion, this analysis enhances our understanding of the prevalence and genetic variation of PRRSV-2 in China. These findings provide significant insights for the development of effective prevention and control strategies for PRRS and serve as a foundation for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|