1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Loncaric I, Szostak MP, Cabal-Rosel A, Grünzweil OM, Riegelnegg A, Misic D, Müller E, Feßler AT, Braun SD, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Lewis A, Bloom PH, Saggese MD. Molecular characterization, virulence and antimicrobial and biocidal susceptibility of selected bacteria isolated from the cloaca of nestling ospreys (Pandion haliaetus) from Mono Lake, California, USA. PLoS One 2024; 19:e0311306. [PMID: 39331631 PMCID: PMC11432900 DOI: 10.1371/journal.pone.0311306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In the present study, the presence of the Enterobacterales, Staphylococcus spp., Mammaliicoccus spp., and Enterococcus spp. in cloacal samples of nestling ospreys (Pandion haliaetus), a fish-eating specialist, from Mono Lake, California, USA was examined by a multiphasic approach, including antimicrobial and biocide susceptibility testing, genotyping, and whole genome sequencing of selected isolates. The most commonly detected species was Escherichia coli, followed by Mammaliicoccus sciuri, Staphylococcus delphini, Enterococcus faecalis, Enterococcus faecium, Hafnia alvei, Klebsiella pneumoniae, Citrobacter braakii and single isolates of Edwardsiella tarda, Edwardsiella albertii, Klebsiella aerogenes, Plesiomonas shigelloides and Staphylococcus pseudintermedius. Multi-drug resistance (MDR) was observed in two E. coli isolates and in an Enterococcus faecium isolate. The MDR blaCTX-M-55-positive E. coli belonged to the pandemic clone ST58. The results of the present study suggest that nestling ospreys are exposed to MDR bacteria, possibly through the ingestion of contaminated fish. Ospreys may be good biosentinels for the presence of these microorganisms and antibiotic resistance in the local environment and the risk for other wildlife, livestock and humans.
Collapse
Affiliation(s)
- Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael P Szostak
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Olivia M Grünzweil
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alina Riegelnegg
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dusan Misic
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T Feßler
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Schwarz
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinik Dresden, Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ashli Lewis
- California State Parks, Grass Valley, CA, United States of America
| | - Peter H Bloom
- Bloom Research Inc, Santa Ana, CA, United States of America
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
| |
Collapse
|
3
|
Liu J, Li X, Song W, Zeng X, Li H, Yang L, Wang D. The Multi-Kingdom Microbiome of Wintering Migratory Birds in Poyang Lake, China. Viruses 2024; 16:396. [PMID: 38543762 PMCID: PMC10974949 DOI: 10.3390/v16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Wild birds are a natural reservoir for zoonotic viruses. To clarify the role of migratory birds in viruses spread in Poyang Lake, we investigated the microbiome of 250 wild bird samples from 19 species in seven orders. The bacterial and viral content abundance and diversity were preliminarily evaluated by Kraken2 and Bracken. After de novo assembly by Megahit and Vamb, viral contigs were identified by CheckV. The reads remapped to viral contigs were quantified using Bowtie2. The bacterial microbiome composition of the samples covers 1526 genera belonging to 175 bacterial orders, while the composition of viruses covers 214 species belonging to 22 viral families. Several taxonomic biomarkers associated with avian carnivory, oral sampling, and raptor migration were identified. Additionally, 17 complete viral genomes belonging to Astroviridae, Caliciviridae, Dicistroviridae, Picornaviridae, and Tombusviridae were characterized, and their phylogenetic relationships were analyzed. This pioneering metagenomic study of migratory birds in Poyang Lake, China illuminates the diverse microbial landscape within these birds. It identifies potential pathogens, and uncovers taxonomic biomarkers relevant to varied bird habitats, feeding habits, ecological classifications, and sample types, underscoring the public health risks associated with wintering migratory birds.
Collapse
Affiliation(s)
- Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Wentao Song
- School of Public Health, Xiamen University, Xiamen 361005, China;
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Hui Li
- Nanchang Center for Disease Prevention and Control, Nanchang 330038, China;
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| |
Collapse
|
4
|
Owliaee I, Khaledian M, Mahmoudvand S, Amini R, Abney SE, Beikpour F, Jalilian FA. Global investigation of the presence of adenovirus in different types of water resources: a systematic review. Virusdisease 2024; 35:55-65. [PMID: 38817402 PMCID: PMC11133282 DOI: 10.1007/s13337-023-00857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/18/2023] [Indexed: 06/01/2024] Open
Abstract
Waterborne viruses such as adenoviruses cause major health problems in the world. Human adenoviruses are the second leading cause of childhood gastroenteritis worldwide. In recent years, the presence of the virus in aquatic resources has been shown in several studies. In this paper, the global presence of adenovirus in different types of water resources are reviewed through studying several surveys conducted in different countries worldwide. We designed one search study to collect the maximum number of related articles to this subject in international databases search engine via relevant keywords. After reviewing the articles, the most relevant ones were selected, and after classification and extracting the required information, they were reported in the tables presented in this study. In general, it was found that the highest rate of the presence of adenoviruses has been reported in sewage water, inlet, and outlet of the treatment plant while the lowest rate of the presence of adenovirus in the dam water. These findings demonstrate that treatment plant system has weakness in removing the adenovirus and are strongly recommended for treatment plants to use new and better protocols to remove this virus. In addition, appropriate diagnostic methods that combines molecular biological technique with infectivity assay should be implemented for detection of adenoviruses in water resources.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sarah E. Abney
- Garcias Robles Fulbright Postdoctoral Scholar at El Centro de Investigacion Cientifica de Yucatan, Mérida, Mexico
| | - Farzad Beikpour
- Department of Food Safety, Nutrition, and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Farid Azizi Jalilian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Andrianjakarivony FH, Bettarel Y, Desnues C. Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments. J Microbiol 2023:10.1007/s12275-023-00052-6. [PMID: 37261715 DOI: 10.1007/s12275-023-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), 13009, Marseille, France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, 34090, Montpellier, France.
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
| |
Collapse
|
6
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
7
|
Lima FS, Scalize PS, Gabriel EFM, Gomes RP, Gama AR, Demoliner M, Spilki FR, Vieira JDG, Carneiro LC. Escherichia coli, Species C Human Adenovirus, and Enterovirus in Water Samples Consumed in Rural Areas of Goiás, Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:77-88. [PMID: 34792781 DOI: 10.1007/s12560-021-09504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Rural environments lack basic sanitation services. Facilities for obtaining water and disposing sewage are often under the initiative of each resident, who may not be able to build and maintain them properly. Thus, water for human consumption is subject to fecal contamination and, consequently, the presence of waterborne pathogens, such as enteric viruses. This study evaluated fecal contamination of water samples from individual sources used for domestic water supply on small farms in the state of Goiás, Brazil. Samples were collected from 78 houses whose water sources were tubular wells, dug wells, springs, and surface waters. Escherichia coli (EC) bacteria, analyzed by the defined chromogenic substrate method, was used as a traditional indicator of fecal contamination. The enteric viruses Human mastadenovirus (HAdV) and Enterovirus (EV), analyzed by qPCR, were tested as complementary indicators of fecal contamination. At least one of these markers was found in 89.7% of the samples. Detection rates were 79.5% for EC, 52.6% for HAdV, and 5.1% for EV. The average concentration for EC was 8.82 × 101 most probable number (MPN) per 100 mL, while for HAdV and EV the concentrations were 7.51 × 105 and 1.89 × 106 genomic copies (GC) per liter, respectively. EC was the most frequent marker in ground and surface water samples. HAdV was detected significantly more frequently in groundwater than in surface water and was more efficient in indicating contamination in tubular wells. There was no association of frequencies or correlation of concentrations between EC and HAdV. HAdV indicated human fecal contamination and performed well as a complementary indicator. The results reveal that a large part of the analyzed population is vulnerable to waterborne diseases caused by enteric pathogens.
Collapse
Affiliation(s)
- Fernando Santos Lima
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Paulo Sérgio Scalize
- Escola de Engenharia Civil e Ambiental, Universidade Federal de Goiás, Goiânia, GO, 74605-220, Brazil
| | | | - Raylane Pereira Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Aline Rodrigues Gama
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | | | - Lilian Carla Carneiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
8
|
Masachessi G, Prez VE, Michelena JF, Lizasoain A, Ferreyra LJ, Martínez LC, Giordano MO, Barril PA, Paván JV, Pisano MB, Farías AA, Isa MB, Ré VE, Colina R, Nates SV. Proposal of a pathway for enteric virus groups detection as indicators of faecal contamination to enhance the evaluation of microbiological quality in freshwater in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143400. [PMID: 33199001 DOI: 10.1016/j.scitotenv.2020.143400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
An environmental survey was conducted in order to assess the frequency of detection of picobirnavirus (PBV), human adenovirus (HAdV) and infective enterovirus (iEV) as indicators of faecal contamination in freshwater, and to determine their potential as reporters of the presence of other enteric viruses, such as group A rotavirus (RVA). The study was carried out over a three-year period (2013-2015) in the San Roque Dam, Córdoba, Argentina. The overall frequency detection was 62.9% for PBV, 64.2% for HAdV and 70.4% for iEV. No significant differences were observed in the rates of detection for any of these viruses through the years studied, and a seasonal pattern was not present. Whenever there was RVA detection in the samples analyzed, there was also detection of iEV and/or HAdV and/or PBV. At least one of the viral groups analyzed was demonstrated in the 100% of the samples with faecal coliforms values within the guideline limits. In this setting, especially in those samples which reveal faecal indicator bacteria within the guideline limit, we propose to carry out a pathway, involving PBV, HAdV and iEV detection in order to enhance the evaluation of microbiological quality in freshwater in Argentina. The proposed methodological strategy could report faecal contamination in water, mainly of human origin, and the condition of the matrix to maintain viral viability. In addition, the viral groups selected could report the presence of RV.
Collapse
Affiliation(s)
- G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina.
| | - V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - J F Michelena
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - A Lizasoain
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - L J Ferreyra
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - P A Barril
- Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.), Expedicionarios del Desierto 1310, CP 8309 Centenario, Neuquén, Argentina
| | - J V Paván
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - A A Farías
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Isa
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - R Colina
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
9
|
Wasonga MO, Maingi J, Omwoyo O. Effects of Contamination of Freshwater Habitat With Common Heavy Metals and Anions on the Prevalence of Human Adenoviruses and Enteroviruses. Front Public Health 2021; 8:603217. [PMID: 33553093 PMCID: PMC7855706 DOI: 10.3389/fpubh.2020.603217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
The occurrence and survival of enteric viruses in open surface waters can be impacted by a host of factors including fecal emission levels, seasonal variations, virus stability and the physicochemical parameters. In this research, we aimed to document the association between contaminations of water samples with human enteric viruses (adenoviruses and enteroviruses) from a freshwater lake with variations in chemical contaminants. We collected 216 water samples from October 2010 to April 2012, from a 4 km stretch along Lake Victoria (LV) basin in Homa Bay town located in the western region of Kenya. The samples were analyzed for the existence of human adenoviruses (HAdV) and human enteroviruses (HEV), using the nested PCR (nPCR). We also assessed in the water samples the levels of twelve chemical contaminants consisting of six heavy metal elements and six anions. About 8.3 % of the samples were found to be contaminated with the enteric viruses. The concentrations of the 12 chemical contaminants were found to be largely within the WHO suggested limits. Most of the chemical contaminants were not related to the detection rates of the viruses from the statistical analysis. However, some positive and negative associations between the viral genome's detection and the chemical concentrations were established for only three metals (Fe, Pb, Cd) and the PO43− Radical. Cd had a weak positive significant relationship with HAdV (rho = 0.146, p = 0.032) while Pb and Fe had a weak positive significant relationship with HEV genome detection (rho = 0.156, p = 0.022) and (rho = 0.148 and p = 0.029) respectively. There was a modest negative relationship between phosphate ions and HEV (rho = −0.174, p = 0.010). The results of our study do not provide support for the hypothesis of an association between the presence of human enteric viruses and the levels of twelve chemical contaminants.
Collapse
Affiliation(s)
- Michael Opere Wasonga
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Ombori Omwoyo
- Department of Plant Sciences, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
10
|
Mbanga J, Abia ALK, Amoako DG, Essack SY. Quantitative microbial risk assessment for waterborne pathogens in a wastewater treatment plant and its receiving surface water body. BMC Microbiol 2020; 20:346. [PMID: 33183235 PMCID: PMC7663859 DOI: 10.1186/s12866-020-02036-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Access to safe water for drinking and domestic activities remains a challenge in emerging economies like South Africa, forcing resource-limited communities to use microbiologically polluted river water for personal and household purposes, posing a public health risk. This study quantified bacterial contamination and the potential health hazards that wastewater treatment plant (WWTP) workers and communities may face after exposure to waterborne pathogenic bacteria in a WWTP and its associated surface water, respectively. RESULTS Escherichia coli (Colilert®-18/ Quanti-Tray® 2000) and enterococci (Enterolert®/ Quanti-Tray® 2000) were quantified and definitively identified by real-time polymerase chain reaction targeting the uidA and tuf genes, respectively. An approximate beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with pathogenic E. coli. Mean E. coli concentration ranged from 2.60E+ 02/100 mL to 4.84E+ 06/100 mL; enterococci ranged from 2.60E+ 02/100 mL to 3.19E+ 06/100 mL across all sampled sites. Of the 580 E. coli isolates obtained from this study, 89.1% were intestinal, and 7.6% were extraintestinal pathogenic E. coli. The 579 enterococci obtained were 50.4% E. faecalis (50.4%), 31.4% E. faecium, 3.5%, E. casseliflavus and 0.7% E. gallinarum. The community health risk stemming from the use of the water for recreational and domestic purposes revealed a greater health risk (Pi) from the ingestion of 1 mL of river water from upstream (range, 55.1-92.9%) than downstream (range, 26.8-65.3%) sites. The occupational risk of infection with pathogenic E. coli for workers resulting from a once-off unintentional consumption of 1 mL of water was 0% (effluent) and 23.8% (raw influent). Multiple weekly exposures of 1 mL over a year could result in a Pi of 1.2 and 100% for the effluent and influent, respectively. CONCLUSION Our findings reveal that there is a potentially high risk of infection for WWTP workers and communities that use river water upstream and downstream of the investigated WWTP.
Collapse
Affiliation(s)
- Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
- Department of Applied Biology and Biochemistry, National University of Science and Technology, P.O Box AC 939 Ascot, Bulawayo, 00263, Zimbabwe.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
11
|
Osazuwa F, Johnson W, Grobler H. Genetic lineage of genogroup I norovirus identified among children with diarrhoea in Niger-Delta region, Nigeria. Infect Dis (Lond) 2019; 52:213-215. [DOI: 10.1080/23744235.2019.1693623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Favour Osazuwa
- MDS Molecular Services, Sub-Saharan African Center, Abuja, Nigeria
- Department of Medical Laboratory Sciences, University of Bnin, Benin City, Nigeria
| | - William Johnson
- Department of Medical Laboratory Sciences, University of Bnin, Benin City, Nigeria
| | - Hailey Grobler
- MDS Molecular Services, Sub-Saharan African Center, Abuja, Nigeria
| |
Collapse
|
12
|
Wen X, Zheng H, Yuan F, Zhu H, Kuang D, Shen Z, Lu Y, Yuan Z. Comparative Study of Two Methods of Enteric Virus Detection and Enteric Virus Relationship with Bacterial Indicator in Poyang Lake, Jiangxi, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183384. [PMID: 31547457 PMCID: PMC6765907 DOI: 10.3390/ijerph16183384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023]
Abstract
Currently, water contaminated with fecal matter poses a threat to public health and safety. Thus, enteric viruses are tested for as a part of water quality indicator assays; however, enteric viruses have not yet been listed in the criteria. Effective and sensitive methods for detecting enteric viruses are required in order to increase water safety. This study utilized enteric viruses as possible alternative indicators of water quality to examine fresh water in six sites in Poyang Lake, Nanchang, Jiangxi Province. The presence of norovirus geno-groups II (NoV GII), enteroviruses (EoV) and adenoviruses (AdV) were determined using Tianjin's protocol and Hawaii's protocol during a six month period from 2016-2017. The former used an electropositive material method for viral concentration and Taqman-q reverse transcription polymerase chain reaction (RT-PCR) to detect enteric viruses; while the latter used a filtration-based method for viral concentration and RT-PCR for enteric virus detection. There is a statistically significant difference between Tianjin's method and Hawaii's method for the detection of enteric viruses, such as NoV GII, EoV, and AdV (n = 36, p < 0.001). The enteric viruses showed no significant positive correlation with bacteria indicators (n = 36, p > 0.05). These data stress the need for additional indicators when establishing water quality systems, and the possibility of using enteric viruses as water quality indicators. It has become essential to improve shortcomings in order to search for an adequate method to detect enteric viruses in water and to implement such method in water quality monitoring.
Collapse
Affiliation(s)
- Xiaotong Wen
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Huilie Zheng
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Fang Yuan
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Hui Zhu
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Duyi Kuang
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Zhiqiang Shen
- Tianjin Institute of Health and Environmental Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China.
| | - Yuanan Lu
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Zhaokang Yuan
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| |
Collapse
|
13
|
Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl Environ Microbiol 2019; 85:AEM.00641-19. [PMID: 31076423 DOI: 10.1128/aem.00641-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial source tracking (MST) methods measure fecal contamination levels and identify possible sources using quantitative PCR (qPCR) that targets host-associated fecal microorganisms. To date, most established MST assays for human sources, especially bacterial markers, have shown some nonhuman host cross-reactions. Recently developed assays, such as the crAssphage CPQ_056, Lachnospiraceae Lachno3, and Bacteroides BacV6-21, have more limited information on host sensitivity and host specificity for human or sewage sources, particularly in countries other than the United States. In this study, we rigorously evaluated six sewage-associated MST assays (i.e., Bacteroides HF183, human adenovirus [HAdV], human polyomavirus [HPyV], crAssphage CPQ_056, Lachno3, and BacV6-21) to show advantages and disadvantages of their applications for MST. A total of 29 human and 3 sewage samples and 360 nonhuman fecal samples across 14 hosts collected from a subtropical region of Australia were tested for marker host specificity, host sensitivity, and concentrations. All sewage samples were positive for all six marker genes tested in this study. Bacterial markers were more prevalent than viral markers in human feces. Testing against animal hosts showed human feces (or sewage)-associated marker gene specificity was HAdV (1.00) > HPyV (0.99) > crAssphage CPQ_056 (0.98) > HF183 (0.96) > Lachno3 (0.95) > BacV6-21 (0.90), with marker concentrations in some animal fecal samples being 3 to 5 orders of magnitude lower than those in sewage. When considering host specificity, sensitivity, and concentrations in source samples, the HF183, Lachno3, and crAssphage CPQ_056 tests were the most suitable assays in this study for sewage contamination tracking in subtropical waters of Australia.IMPORTANCE Large financial investments are required to remediate fecal contamination sources in waterways, and accurate results from field studies are crucial to build confidence in MST approaches. Host specificity and sensitivity are two main performance characteristics for consideration when choosing MST assays. Ongoing efforts for marker assay validation will improve interpretation of results and could shed light on patterns of occurrence in nontarget hosts that might explain the underlying drivers of cross-reaction of certain markers. For field applications, caution should be taken to choose appropriate MST marker genes and assays based on available host specificity and sensitivity data and background knowledge of the contaminating sources in the study area. Since many waterborne pathogens are viruses, employing both viral and bacterial markers in investigations could provide insight into contamination dynamics and ecological behavior in the environment. Therefore, combined usage of marker assays is recommended for more accurate and informative sewage contamination detection and fecal source resolution.
Collapse
|
14
|
de Deus DR, Teixeira DM, Dos Santos Alves JC, Smith VC, da Silva Bandeira R, Siqueira JAM, de Sá Morais LLC, Resque HR, Gabbay YB. Occurrence of norovirus genogroups I and II in recreational water from four beaches in Belém city, Brazilian Amazon region. JOURNAL OF WATER AND HEALTH 2019; 17:442-454. [PMID: 31095519 DOI: 10.2166/wh.2019.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the presence of norovirus (NoV) in recreational waters of four estuarine beaches located in Mosqueiro Island, Belém city, Brazilian Amazon, during two years of monitoring (2012 and 2013). NoV particles were concentrated on filtering membrane by the adsorption-elution method and detected by semi-nested RT-PCR (reverse transcription polymerase chain reaction) and sequencing. NoV positivity was observed in 37.5% (39/104) of the surface water samples, with genogroup GI (69.2%) occurring at a higher frequency than GII (25.7%), with a cocirculation of both genogroups in two samples (5.1%). This virus was detected in all sampling points analyzed, showing the highest detection rate at the Paraíso Beach (46.2%). Statistically, there was a dependence relationship between tide levels and positive detection, with a higher frequency at high tide (46.7%) than at low tide (25%) periods. Months with the highest detection rates (April 2012 and April/May 2013) were preceded by periods of higher precipitation (March 2012 and February/March 2013). Phylogenetic analysis showed the circulation of the old pandemic variant (GII.4-US_95-96) and GI.8. The NoV detection demonstrated viral contamination on the beaches and evidenced the health risk to bathers, mainly through recreational activities such as bathing, and highlighted the importance of including enteric viruses research in the recreational water quality monitoring.
Collapse
Affiliation(s)
- Danielle Rodrigues de Deus
- Postgraduate Program in Parasitary Biology in the Amazon, State University of Pará, Tv. Perebebui, 2623, Marco, Belém, PA CEP 66087-662, Brazil
| | - Dielle Monteiro Teixeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jainara Cristina Dos Santos Alves
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Vanessa Cavaleiro Smith
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Renato da Silva Bandeira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Jones Anderson Monteiro Siqueira
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Lena Líllian Canto de Sá Morais
- Environment Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil
| | - Hugo Reis Resque
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Br. 316 Km 07 S/N, Levilandia, Ananindeua, PA CEP 67030-000, Brazil E-mail:
| |
Collapse
|
15
|
Gyawali P, Croucher D, Ahmed W, Devane M, Hewitt J. Evaluation of pepper mild mottle virus as an indicator of human faecal pollution in shellfish and growing waters. WATER RESEARCH 2019; 154:370-376. [PMID: 30822597 DOI: 10.1016/j.watres.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Bivalve molluscan shellfish grown in areas impacted by human faecal pollution are at risk of being contaminated with multiple enteric viruses. To minimise the public health risks associated with shellfish consumption, determining the presence of faecal contamination in shellfish and their growing waters is crucial. In this study, we evaluated the use of pepper mild mottle virus (PMMoV) as an indicator of human faecal contamination in oysters, mussels, cockles and shellfish growing waters in New Zealand. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR) the presence, and where applicable, the concentration of PMMoV was determined in faeces from 11 different animal species, influent (untreated) wastewater, shellfish and shellfish growing waters. Non-human faecal samples (from seagull, Canada goose, black swan and dog) were RT-qPCR positive for PMMoV. The faecal source specificity of PMMoV was 0.83 (maximum value of 1) when 'detected but not quantifiable' (DNQ) values were used. However, when 'lower limit of quantification' (LLOQ) values were used, the specificity increased to 0.92. The PMMoV concentration in influent wastewater (n = 10) ranged from 6.3 to 7.7 log10 genome copies (GC)/L with a mean (±standard deviation) of 7.1 ± 0.5 log10 GC/L. The overall occurrence of PMMoV in shellfish and shellfish growing waters from four different areas was 46/51 (90%) and 29/52 (56%), respectively. Of the cockles collected from an area known to be impacted by effluent wastewater, 14/14 (100%) contained PMMoV concentrations above the LLOQ. In contrast, only 13/37 (35%) shellfish and 6/52 (11.5%) growing water samples collected from three areas with low anthropogenic impact contained PMMoV concentrations above the LLOQ. The high concentration of PMMoV in influent wastewater indicates that PMMoV may be a promising indicator of human faecal contamination. The presence of PMMoV in shellfish and growing waters with a low anthropogenic impact may be of avian origin, and this needs to be considered if using PMMoV for monitoring shellfish and shellfish growing water quality in New Zealand.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand.
| | - Dawn Croucher
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, 4102, Australia
| | - Megan Devane
- Institute of Environmental Science and Research Ltd (ESR), Christchurch, 8041, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| |
Collapse
|
16
|
Gyawali P, Fletcher GC, McCoubrey DJ, Hewitt J. Norovirus in shellfish: An overview of post-harvest treatments and their challenges. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Ahmed W, Payyappat S, Cassidy M, Besley C. A duplex PCR assay for the simultaneous quantification of Bacteroides HF183 and crAssphage CPQ_056 marker genes in untreated sewage and stormwater. ENVIRONMENT INTERNATIONAL 2019; 126:252-259. [PMID: 30822654 DOI: 10.1016/j.envint.2019.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
The HF183 marker gene, derived from the 16S rRNA gene of Bacteroides dorei, has been widely used to identify sewage pollution in environmental waters. CrAssphages are recently discovered DNA bacteriophages that are highly abundant in untreated sewage and have shown promises for tracking sewage contamination in environmental waters. In this paper, we report the development of a duplex quantitative PCR (qPCR) assay for simultaneous quantification of HF183 and crAssphage CPQ_056 marker genes in untreated sewage and sewage impacted stormwater. Same primer and probe sequences were used in the duplex qPCR assay as used in published simplex qPCR assays. The performance characteristics of the duplex qPCR assay were similar to its simplex counterparts. We validated the performance of the duplex assay in a collaborative laboratory study with the aim to evaluate reproducibility, sensitivity and concordance for field study. The concordance values between the simplex vs. duplex qPCR assays for HF183 and crAssphage CPQ_056 marker genes ranged from 96.7 to 100% and the mean concentrations of HF183 and CPQ_056 in environmental water samples were remarkably similar or in some cases slightly greater for the duplex qPCR assay suggesting the reliability of this assay for monitoring HF183 and CPQ_056 simultaneously. The newly developed duplex qPCR assay will be a valuable addition to the MST toolbox for sewage pollution monitoring and would allow rapid and comparative sample analysis.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
18
|
Ahmed W, Payyappat S, Cassidy M, Besley C, Power K. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. WATER RESEARCH 2018; 145:769-778. [PMID: 30223182 DOI: 10.1016/j.watres.2018.08.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 05/18/2023]
Abstract
Considerable efforts have been made in recent years in developing novel marker genes for fecal pollution tracking in environmental waters. CrAssphage are recently discovered DNA bacteriophage that are highly abundant in human feces and untreated sewage. In this study, we evaluated the host-sensitivity and -specificity of the newly designed crAssphage qPCR assays (Stachler et al., 2017) CPQ_056 and CPQ_064 (i.e., marker genes) in fecal samples collected from various human and several animal host groups in Australia. We also investigated the utility of these marker genes to detect sewage pollution in an urban recreational lake (i.e., Lake Parramatta) in Sydney, NSW. The mean concentrations of CPQ_056 and CPQ_064 marker genes in untreated sewage were 9.43 ± 0.14 log10 GC/L and 8.91 ± 0.17 log10 GC/L, respectively, 2 to 3 orders of magnitude higher than other sewage-associated viruses used in microbial source tracking studies. Among 177 animal fecal samples tested from 11 species, the host-specificity values for CPQ_056 and CPQ_064 marker genes were 0.95 and 0.93, respectively. Limited cross-reactivity was observed with cat fecal and cattle wastewater samples. Abundance of crAssphage markers were monitored in an urban lake that receives stormwater runoff. The concentrations of both markers were higher (CPQ_056 ranging from 3.40 to 6.04 log10 GC/L and CPQ_064 ranging from 2.90 to 5.47 log10 GC/L) in 20 of 20 (for CPQ_056) and 18 of 20 (for CPQ_064) samples collected after storm events with gauged sewer overflows compared to dry weather event (10 of 10 samples were qPCR negative for the CPQ_056 and 8 of 10 were negative for the CPQ_064 marker genes) suggesting sewage pollution was transported by urban stormwater runoff to Lake Parramatta. The results of the study may provide context for management of sewage pollution from gauged overflow points of the sewerage system in the catchment.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Kaye Power
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
19
|
Miao J, Guo X, Liu W, Yang D, Shen Z, Qiu Z, Chen X, Zhang K, Hu H, Yin J, Yang Z, Li J, Jin M. Total coliforms as an indicator of human enterovirus presence in surface water across Tianjin city, China. BMC Infect Dis 2018; 18:542. [PMID: 30382895 PMCID: PMC6211496 DOI: 10.1186/s12879-018-3438-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Enteric viruses in surface water pose considerable risk to morbidity in populations living around water catchments and promote outbreaks of waterborne diseases. However, due to poor understanding of the correlation between water quality and the presence of human enteric viruses, the failure to assess viral contamination through alternative viral indicators makes it difficult to control disease transmission. METHODS We investigated the occurrence of Enteroviruses (EnVs), Rotaviruses (HRVs), Astroviruses (AstVs), Noroviruses GII (HuNoVs GII) and Adenoviruses (HAdVs) from Jinhe River over 4 years and analyzed their correlation with physicochemical and bacterial parameters in water samples. RESULTS The findings showed that all target viruses were detected in water at frequencies of 91.7% for HAdVs, 81.3% for HuNoVs GII, 79.2% for EnVs and AstVs, and 70.8% for HRVs. These viruses had a seasonal pattern, which showed that EnVs were abundant in summer but rare in winter, while HAdVs, HRVs, AstVs, and HuNoVs GII exhibited opposite seasonal trends. Pearson correlation analysis showed that total coliforms (TC) was significantly positively correlated with EnVs concentrations while no consistent significant correlations were observed between bacterial indices and viruses that precipitate acute gastroenteritis. CONCLUSIONS Taken together, the findings provide insights into alternative viral indicators, suggesting that TC is a potentially promising candidate for assessment of EnVs contamination. However, it failed to predict the presence of HAdVs, HRVs, AstVs, and HuNoVs GΙΙ in surface water across the city of Tianjin.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Xuan Guo
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
- Research Institution of Chemical Defense, Beijing, 102205 China
| | - Weili Liu
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Dong Yang
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Zhigang Qiu
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Xiang Chen
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Kunming Zhang
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Hui Hu
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Jing Yin
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Zhongwei Yang
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Junwen Li
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| | - Min Jin
- Tianjin Institute of Environmental & Operational Medcine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050 China
| |
Collapse
|