1
|
Sikora D, Kiś J, Stępień E, Drop B, Polz-Dacewicz M. Serum TLR2 and TLR9 in Prostate Cancer Patients in Relation to EBV Status. Int J Mol Sci 2024; 25:9053. [PMID: 39201739 PMCID: PMC11354572 DOI: 10.3390/ijms25169053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The relationship between Toll-like receptors (TLRs) and prostate cancer (PCa) is complex due to the presence of the Epstein-Barr virus (EBV) infection, which has been identified as a predisposing factor for some cancers, including PCa. The present study aims to investigate these complex links by examining the levels of selected TLRs and the potential impact of EBV infection on PCa. Therefore, we examined the serum of patients with PCa. The study compared EBV(+) patients to risk groups, the Gleason score (GS), and the T-trait. Additionally, the correlation between TLR and antibody levels was examined. The results indicated that higher levels of TLR-2 and TLR-9 were observed in more advanced PCa. The findings of this study may contribute to a deeper understanding of the role of viral infections in PCa and provide information on future strategies for the diagnosis, prevention, and treatment of these malignancies.
Collapse
Affiliation(s)
- Dominika Sikora
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (E.S.); (M.P.-D.)
| | - Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland;
| | - Ewa Stępień
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (E.S.); (M.P.-D.)
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (E.S.); (M.P.-D.)
| |
Collapse
|
2
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
3
|
Huang W, Bai L, Tang H. Epstein-Barr virus infection: the micro and macro worlds. Virol J 2023; 20:220. [PMID: 37784180 PMCID: PMC10546641 DOI: 10.1186/s12985-023-02187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Epstein‒Barr virus (EBV) is a DNA virus that belongs to the human B lymphotropic herpesvirus family and is highly prevalent in the human population. Once infected, a host can experience latent infection because EBV evades the immune system, leading to hosts harboring the virus for their lifetime. EBV is associated with many diseases and causes significant challenges to human health. This review first offers a description of the natural history of EBV infection, clarifies the interaction between EBV and the immune system, and finally focuses on several major types of diseases caused by EBV infection.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ahmadi Ghezeldasht S, Bidkhori HR, Miri R, Baghban A, Mosavat A, Rezaee SA. Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo. J Neurovirol 2023:10.1007/s13365-023-01160-0. [PMID: 37531001 DOI: 10.1007/s13365-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
There is an urgent need to find an effective therapy for life-threatening HTLV-1-associated diseases. Bitter melon (Momordica charantia) is considered a traditional herb with antiviral and anticancer properties and was tested in this study on HTLV-1 infectivity. GC-MS analyzed the alcoholic extract. In vitro assay was carried out using transfection of HUVEC cells by HTLV-1-MT2 cell line. The cells were exposed to alcoholic and aqueous extracts at 5,10, and 20 µg/mL concentrations. In vivo, mice were divided into four groups. Three groups were treated with HTLV-1-MT-2 cells as test groups and positive control, and PBS as the negative control group in the presence and absence of M. charantia extracts. Peripheral blood mononuclear cells (PBMCs), mesenteric lymph nodes (MLNs), and splenocytes were collected for HTLV-1-proviral load (PVL) assessment, TaqMan-qPCR. The GC-MS analysis revealed 36 components in M. charantia. The studies showed significant reductions in HTLV-1-PVL in the presence of extract in the HUVEC-treated groups (P = 0.001). Furthermore, the inhibitory effects of extracts on HTLV-1 infected mice showed significant differences in HTLV-1-PVL among M. charantia treated groups with untreated (P = 0.001). The T-cells in MLNs were significantly more susceptible to HTLV-1 than others (P = 0.001). There were significant differences among HTLV-1-infected cells in MLNs and splenocytes (P = 0.001 and 0.046, respectively). Also, aqueous and alcoholic extract-treated groups significantly affected HTLV-1-infected PBMCs (P = 0.002 and 0.009, respectively). M. charantia may have effective antiviral properties. The substantial compound of M. charantia could have inhibitory effects on the proliferation and transmission of HTLV-1 oncovirus.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
| | - Arezoo Baghban
- Department of Chemistry, Faculty of Science, Azad University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, 9177948564, Mashhad, Iran.
| |
Collapse
|
5
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
7
|
Toll-like receptor 10 is down-regulated in serum of patients with relapsing-remitting multiple sclerosis but not associated with Epstein-Barr virus. J Neurovirol 2023; 29:203-210. [PMID: 36934201 DOI: 10.1007/s13365-023-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/20/2023]
Abstract
In this study, toll-like receptor 10 (TLR10) and Epstein-Barr virus (EBV) were determined in the peripheral blood of 43 patients with relapsing-remitting multiple sclerosis and 41 age- and gender-matched controls. Serum TLR10 levels were assessed using an enzyme-linked immunosorbent assay kit. EBV DNA and viral load were detected using a real-time polymerase chain reaction assay kit. Results revealed that median TLR10 levels were significantly lower in patients than in controls (318 vs. 574 pg/mL; p < 0.001). Most patients were classified as low producers of TLR10 (≤ median of controls) compared to controls (84.0 vs. 51.0%; p < 0.001). Logistic regression analysis revealed that participants with low TLR10 production had an odds ratio of 4.52. Receiver operating characteristic curve analysis indicated that TLR10 is a good predictor of multiple sclerosis (area under the curve = 0.778; p < 0.001). Prevalence of EBV was less frequent in patients than in controls but the difference was not significant (23.3 vs. 41.5%; p = 0.102), while median EBV load was significantly higher in patients compared to controls (8.55 vs. 1.29 DNA copy/100 cells). When TLR10 levels were stratified according to age group, gender, EBV positivity, Expanded Disability Status Scale (EDSS), or therapy, no significant differences were found in each stratum. Further, no significant correlation was found between TLR10 levels and EDSS or EBV load. In conclusions, TLR10 was down-regulated in serum of multiple sclerosis patients, and this down-regulation was not affected by age, gender, EBV load, EDSS, or therapy.
Collapse
|
8
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
9
|
Atiyah NS, Fadhil HY, Ad’hiah AH. Toll-like receptor 10 gene polymorphism and risk of multiple sclerosis among Iraqi patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Toll-like receptors (TLRs) are a family of 10 pattern recognition receptors (TLR1–TLR10) involved in the regulation of inflammatory and immune responses besides their role in the pathogenesis of autoimmune diseases including multiple sclerosis (MS). TLR10 is the least studied TLR in MS, and data for single nucleotide polymorphisms (SNPs) of the TLR10 gene are limited. Therefore, a case–control study was performed on 85 patients with relapsing–remitting MS and 86 healthy controls (HC) to explore SNPs in the promoter region of TLR10 gene. A 927-bp region was amplified, and Sanger sequencing identified 10 SNPs with a minor allele frequency ≥ 10% (rs200395112 T/A, rs201802754 A/T, rs201228097 T/A, rs113588825 G/A, rs10004195 T/A, rs10034903 C/G, rs10012016 G/A/C, rs10012017 G/T, rs33994884 T/Deletion [Del] and rs28393318 A/G).
Results
Del allele and T/Del genotype of rs33994884, as well as AG genotype of rs28393318, showed significantly lower frequencies in MS patients compared to HC. Allele and genotype frequencies of the 10 SNPs showed no significant differences between MS patients classified according to the Expanded Disability Status Scale. Haplotype analysis revealed that haplotype A-T-A-G-A-G-G-T-A showed a significantly increased frequency in MS patients compared to HC (odds ratio [OR] = 9.70; 95% confidence interval [CI] = 1.28–73.31; corrected probability [pc] = 0.03), while frequency of A-T-A-G-T-C-A-T-G haplotype was significantly decreased (OR = 0.10; 95% CI = 0.01–0.85; pc = 0.05).
Conclusions
The study indicated that two SNPs may influence susceptibility to MS (rs33994884 and rs28393318), but haplotype analysis of TLR10 gene SNPs was more informative.
Collapse
|
10
|
Makhlouf M, Akl J, Ammoury A. Varicella Zoster Reactivation Following mRNA Vaccination: Two Case Reports and a Review of Cutaneous Adverse Events of COVID-19 Vaccines. EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/21-00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cutaneous reactions following the COVID-19 vaccination, in particular mRNA vaccines, have been increasingly reported in literature. The most common morphologies were delayed large local reactions, local injection site reactions, urticaria, and morbilliform reaction. The purpose of this report is to review the cutaneous manifestations of COVID-19 vaccines and to report two cases of COVID-19 mRNA vaccine-induced varicella zoster reactivation along with the possible pathogenesis.
These two cases are of an 80-year-old female patient with multiple comorbidities and a previously healthy 57-year-old male patient who experienced varicella zoster reactivation post-COVID-19 mRNA vaccine (Pfizer, New York City, New York, USA) following the first and second dose
Collapse
Affiliation(s)
- Milissa Makhlouf
- Department of Dermatology, Saint George Hospital University Medical Center, Beirut, Lebanon; Faculty of Medicine, University of Balamand, Lebanon
| | - Jennifer Akl
- Department of Dermatology, Saint George Hospital University Medical Center, Beirut, Lebanon; Faculty of Medicine, University of Balamand, Lebanon
| | - Alfred Ammoury
- Department of Dermatology, Saint George Hospital University Medical Center, Beirut, Lebanon; Faculty of Medicine, University of Balamand, Lebanon
| |
Collapse
|